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Abstract— In a magnetic fusion reactor, the achievement of
a certain type of plasma current profiles, which are compatible
with magnetohydrodynamic (MHD) stability at high plasma
pressure, is key to enabling high fusion gain and noninductive
sustainment of the plasma current for steady-state operation.
The evolution in time of the current profile is related to the
evolution of the spatial derivative of the poloidal flux profile,
which is modeled in normalized cylindrical coordinates using
a partial differential equation (PDE) usually referred to as
the magnetic diffusion equation. The dynamics of the plasma
poloidal flux profile can be modified by three actuators: the
total plasma current, the non-inductive power, and the average
plasma density. These three actuators, which are constrained
not only in value and rate but also in their initial and
final values, are used to drive the poloidal flux profile, or
equivalently the current profile, as close as possible to a desired
target profile at a specific final time. To solve this constrained
finite-time open-loop optimal control problem, model reduction
based on proper orthogonal decomposition (POD) is combined
with sequential quadratic programming (SQP) in an iterative
fashion. The use of a low dimensional dynamical model reduces
the computational effort, and therefore the time required to
solve the optimization problem, which is critical for a potential
implementation of a receding horizon control strategy.

I. INTRODUCTION

Nuclear fusion is the process by which two nuclei fuse

together to form a heavier nucleus. This process is accom-

panied by a release of energy, which is the result of the mass

“lost” in the reaction. The amount of released energy is given

by Einstein’s famous equation (derived in 1905 as a part of

his special theory of relativity), E = (Mr − Mp)c
2, where

E is the energy, Mr the mass of the reactant nuclei, Mp the

mass of the product nuclei, and c the speed of light.

To make a fusion reaction possible, a certain amount of

energy is required to bring two repellant nuclei carrying

positive charges sufficiently close. To overcome the Coulomb

barrier, the kinetic energy of the nuclei is increased by

heating. The temperature required for a thermonuclear fusion

reaction to take place is around 100 million degrees. At

much lower temperatures (about 10 thousand degrees), the

electrons and nuclei separate and create an ionized gas called

plasma, also known as the fourth state of matter.
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Fig. 1. The geometry of a tokamak device. Source: Max-Planck-Institut
für Plasmaphysik (IPP).

An intangible doughnut-shaped bottle created by magnetic

lines is used to confine the high-temperature plasma. One

type of magnetic confinement device is called Tokamak,

an acronym for the Russian words Toroidalnaya Kamera

ee Magnitnaya Katushka (toroidal chamber with magnetic

coils), which was invented in the Soviet Union in the late

1950s. An assembly of (toroidal) coils produces a magnetic

field in the direction of the torus, to which is added the

(poloidal) magnetic field created by an intense axial current

flowing in the plasma itself (Fig. 1). A combined field is

therefore created, in which the magnetic field lines twist

their way around the tokamak to form a helical structure.

It is possible to use the poloidal component Bpol of the

helicoidal magnetic lines to define nested toroidal surfaces

corresponding to constant values of the poloidal magnetic

flux. The poloidal flux at a point P is the total magnetic flux

through the surface S bounded by the toroidal ring passing

through P , i.e.,
∫

BpoldS.

In a tokamak, the achievement of a suitable (toroidal)

current profile plays an important role in enabling high

fusion gain and noninductive sustainment of the plasma

current for steady-state operation (see, e.g., [1], [2], [3]).

The evolution in time of the current profile is related to the

evolution of the spatial derivative of the poloidal flux profile.

Therefore, we can control the current profile by controlling

the poloidal flux profile. The time evolution of the poloidal

flux profile is modeled in normalized cylindrical coordinates

using a partial differential equation (PDE) usually referred

to as the magnetic diffusion equation. The dynamics of

the plasma poloidal flux profile can be modified by three

actuators: the total plasma current, the non-inductive power,

and the average plasma density. These physical actuators

enter the magnetic diffusion equation as interior, boundary,

and diffusivity control terms.
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One possible approach to current profile control focuses

on creating the desired current profile during the plasma

current ramp-up and early flattop phases with the aim of

maintaining this target profile during the subsequent phases

of the discharge. Since the actuators that are used to achieve

the desired target profile are constrained, experiments have

shown that some of the desirable target profiles may not

be achieved for all arbitrary initial conditions. Therefore, a

perfect matching of the desirable target profile may not be

physically possible. In practice, the objective is to achieve

the best possible approximate matching at a prespecified time

tf during the early flattop phase of the total plasma current

pulse. Thus, such matching problem can be formulated

as a finite-time optimal control problem for the magnetic

diffusion PDE [4].

Optimal control of PDE systems has been studied exten-

sively (e.g., [5], [6], [7] and references therein), including

both direct and indirect approaches. The indirect method

studies the necessary condition for optimality (i.e., the Pon-

tryagin maximum principle) and the corresponding numerical

algorithms used for the minimization of the associated cost

functionals, while the direct method treats system states and

controls as independent variables to view the original optimal

control problems as constrained PDE-based optimization

problems, which can be handled by the sequential quadratic

programming (SQP) method [8].

To overcome the high dimensionality of the problem,

reduced order modeling (ROM) techniques play a very

important role in dealing with control of infinite dimensional

dynamical systems. The Proper Orthogonal Decomposition

(POD) method is an efficient ROM technique used to obtain

low dimensional dynamical systems (LDDS’s) from data

ensembles that arise from numerical simulation or experi-

mental observation. The POD method has been widely used

and proved successful to discover coherent structures from

complex physical processes (e.g., [9], [10]) and to control

PDE systems (e.g., [11]).

In this paper, we combine POD and SQP to compute

the open-loop optimal control sequences in the time interval

[t0, tf ] that minimize the quadratic error between the actual

poloidal magnetic flux profile at time tf and a desired target

profile. This work is aimed at saving long trial-and-error peri-

ods of time currently spent by fusion experimentalists trying

to manually adjust the time evolutions of the actuators to

achieve the desired current profile at some prespecified time.

Simulation results show the effectiveness of this approach.

The paper is organized as follows. The optimal control

problem for the current profile system is introduced in

Section II. The POD method to obtain a reduced order

model is discussed in Section III. In Section IV, the Galerkin

projection method based on a test function set composed

by dominant POD modes is also discussed. In Section V,

the procedure for the POD-LDDS-based optimization is

stated, and a brief introduction to SQP optimization theory

is presented. Simulation studies are presented in Section VI.

The paper is closed in Section VII by stating conclusions

and future research remarks.

II. STATEMENT OF THE OPTIMAL CONTROL PROBLEMS

The poloidal flux system can be modeled by the following

parabolic PDE over Q = [0, 1] × [t0, tf ] (see, e.g., [3]):




1

Θ(x)

∂y

∂t
=

1

xγ

∂

∂x


xγ

(
n̄(t)

I(t)
√

Ptot(t)

) 3
2

Γ(x)
∂y

∂x


 ,

+
χ(x)

Θ(x)

√
Ptot(t)

I(t)

y(x, 0) = y0(x), x ∈ Ω = [0, 1][
∂y

∂x

]

x=0

= 0,

[
∂y

∂x

]

x=1

= I(t),

(1)

where y(x, t) is the poloidal flux, and γ = d−1 is a constant

related to the geometry of the problem. The dimension index

d = 2 represents a cylindrical geometry and d = 1 a

slab geometry. The system parameters Θ(x),Γ(x) and χ(x)
are positive and differentiable with respect to the spatial

coordinate. In system (1), we have three physical actuators

n̄(t), I(t) and Ptot(t), which represent the average density,

total plasma current and total power of the non-inductive

heating source, respectively. Due to physical limitations,

such as magnitude and rate saturations, the three physical

actuators must satisfy the following constraints:

1 Magnitude saturations for the three actuators: Lbn̄ ≤
n̄(t) ≤ Ubn̄, LbI ≤ I(t) ≤ UbI , Lb√Ptot

≤√
Ptot(t) ≤ Ub√Ptot

, where Lb(·) and Ub(·) are given

physical bounds;

2 Rate saturations for the average density n̄(t) and the

total plasma current I(t): lbn̄ ≤ dn̄(t)
dt

≤ ubn̄, lbI ≤
dI(t)

dt
≤ ubI , where lb(·) and ub(·) are given physical

bounds;

3 Fixed initial and final values for both the average

density n̄(t) and the total plasma current I(t): n̄(t0) =
n̄0, n̄(tf ) = n̄f , I(t0) = I0, I(tf ) = If .

In this paper, we use the set of actuators Ξ = (n̄, I, Ptot)
satisfying the indicated constraints to compute an open loop

optimal input sequences for the poloidal flux system (1),

such that the system output at t = tf , i.e., y(x, tf ), can

reach a desired profile y∗(x) as closely as possible, i.e.,

‖y(x, tf ) − y∗(x)‖
L2(Ω) ≤ ε, (ε ≥ 0). The optimal control

problem can be stated as follows:





min
n̄,I,Ptot

J =

∫ 1

0

|y(x, tf ) − y∗(x)|2dx

s.t. system (1), and constraints.

(2)

In order to take into account the constraints for I(t) and

n̄(t), reducing at the same time the computational effort, we

propose simplified models for these control inputs, which are

parameterized in terms of a few to-be-optimized parameters,

i.e.,

I(t) =
If + I0

2
+

If − I0

2
erf

(
t − µI√

2σI

)
, (3)

n̄(t) =
n̄f + n̄0

2
+

n̄f − n̄0

2
erf

(
t − µn̄√

2σn̄

)
, (4)
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where σI , σn̄, µI , µn̄ are the to-be-optimized shape parame-

ters and erf(·) is the error function defined by [12]

erf(t) =
2√
π

∫ t

0

exp(−τ2)dτ. (5)

Remark 1: Modeling I(t) and n̄(t) as in (3) and (4) has

some physical advantages. The evolutions of these control

inputs can start and stop at given values very smoothly,

without much change rate. The maximum change rate takes

place at t = µI and t = µn̄ respectively.

III. PROPER ORTHOGONAL DECOMPOSITION METHOD

The set V = span{y1, · · · , yn} ⊂ Rm refers to a data

ensemble consisting of n snapshots yj = y(x̄, tj), for j =
1, . . . , n and where x̄ denotes m equidistant discrete points in

the spatial domain [0, 1], of system (1) obtained either from

experiments or simulations. Let {ψk}d
k=1 be an orthonormal

basis of the data ensemble V , where d = dimV ≤ m. We

then project each of the snapshots onto the basis ψk,

yj =

d∑

k=1

(yT
j ψk)ψk, j = 1, · · · , n. (6)

The goal of the POD method is to find a subset of the

orthonormal basis {ψk}d
k=1 such that for some predefined

1 ≤ l ≤ d the following average index is minimized

min
{ψk}l

k=1

1

n

n∑

j=1

∥∥∥∥∥yj −
l∑

k=1

(yT
j ψk)ψk

∥∥∥∥∥

2

,

subject to ψT
i ψj = δij , 1 ≤ i ≤ l, 1 ≤ j ≤ i,

where ‖y‖ =
√

yT y.

(7)

The solution of (7) can be found in the literature,

e.g., [9], [13]. Defining the correlation matrix K ∈ Rn×n as

Kij = 1
n
(yT

j yi), for i, j = 1, . . . , n, it follows the following

singular value decomposition result [13]:

Theorem 1: Let λ1 > . . . > λl > . . . > λd > 0
denote the positive eigenvalues of the correlation matrix

K and v1, . . . , vl, . . . , vd the associated eigenvectors, where

d = rank(K). Then, the POD basis functions take the form

ψk =
1√
λk

n∑

j=1

(vk)jyj =
1√
λk

Y vk, (k = 1, . . . , d) , (8)

where (vk)j is the j-th component of the eigenvector vk

and Y = (y1, · · · , yn) is the collection matrix of all the

snapshots. Moreover, the error (energy ratio) associated with

the approximation with the first l POD modes is

εl =
1

n

n∑

j=1

∥∥∥∥∥yj −
l∑

k=1

(yT
j ψk)ψk

∥∥∥∥∥

2

=

d∑

k=l+1

λk. (9)

IV. POD/GALERKIN METHOD

We denote the input functions by u0(t) =(
n̄(t)

I(t)
√

Ptot(t)

) 3
2

, u1(t) =

√
Ptot(t)

I(t) , u2(t) = I(t),

and let ψi ∈ VPOD be the test function, where

VPOD = span{ψ1, . . . , ψl} is the test function space

spanned by the POD modes. Then, we can obtain the weak

form of (1)

∂

∂t

∫ 1

0

xγ y(x, t)

Θ(x)
ψi(x)dx

= u0(t)

∫ 1

0

∂

∂x

(
xγΓ(x)

∂y(x, t)

∂x

)
ψi(x)dx

+ u1(t)

∫ 1

0

xγ χ(x)

Θ(x)
ψi(x)dx.

(10)

We integrate the second term by parts and take into account

the boundary conditions to obtain

∂
∂t

∫ 1

0
xγ y(x,t)

Θ(x) ψi(x)dx + u0(t)
∫ 1

0
xγΓ(x) ∂y

∂x
ψi

′(x)dx

= u0(t)u2(t)Γ(1)ψi(1)+u1(t)
∫ 1

0
xγ χ(x)

Θ(x)ψi(x)dx. (11)

We substitute the Galerkin approximation y(x, t) ≈
z(x, t) =

∑l
j=1 zj(t)ψj(x) into the weak form (11) to obtain

l∑

j=1

a(ψi, ψj)
dzj(t)

dt
+ u0(t)

l∑

j=1

b(ψi, ψj)zj(t)

= u0(t)u2(t)Γ(1)ψi(1) + u1(t)
( χ

Θ
, ψi

)
L2

,

(i = 1, . . . , l),

(12)

where z1, . . . , zl are unknown functions and

a(ψi, ψj) =

∫ 1

0

xγ 1

Θ(x)
ψi(x)ψj(x)dx, (13)

b(ψi, ψj) =

∫ 1

0

xγΓ(x)ψ′
i(x)ψ′

j(x)dx, (14)

( χ

Θ
, ψi

)
L2

=

∫ 1

0

xγ χ(x)

Θ(x)
ψi(x)dx. (15)

The initial values for z1, . . . , zl are uniquely determined by

the following relation:
∑l

i=1 zi(0)ψi(x) ≈ y(x, 0), i.e.,

zi(0) = (y(x, 0), ψi(x))L2 , i = 1, . . . , l. (16)

We denote Z = (z1, . . . , zl)
T the vector of the unknown

functions, and write (12) in the matrix form

MŻ + u0(t)KZ = l1u1(t) + l2u0(t)u2(t), (17)

where M = [a(ψi, ψj)]i,j=1,...,l, K = [b(ψi, ψj)]i,j=1,...,l,

and l1 = [(χΘ−1, ψi)L2 ]i=1,...,l, l2 = [Γ(1)ψi(1)]i=1,...,l.

We multiply both sides with M−1 to obtain

Ż = u0(t)L0Z + L1u1(t) + L2u0(t)u2(t), (18)

where L0 = −M−1K, L1 = M−1l1 and L2 = M−1l2.

V. POD-LDDS-BASED OPTIMIZATION

In this paper, we take advantage of the POD model reduc-

tion technique to solve the optimization problem iteratively.
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A. Algorithm

To start the optimization algorithm, we assume an initial

guess for the control sequences to simulate the PDE system

(1). Then, we use the simulation data ensemble to generate

POD basis functions and the LDDS (18) for the PDE (1).

Then we solve a finite dimensional nonlinear optimization

problem to obtain optimal control sequences. We update

the POD modes, and the LDDS, after generating a new

simulation data ensemble with the obtained optimal control

sequences. The algorithm can be summarized as follows:

1 Set k = 0 to give the initial guess for the control

sequences, n̄(k), I(k) and (Ptot)
(k)

;

2 Simulate the PDE system (1) to obtain data ensem-

ble Y (k);

3 Generate the POD modes V
(k)
POD and the LDDS

from the data ensemble,

dZ(k)

dt
= f

(k)
LDDS

(
Z(k), n̄(k), I(k), (Ptot)

(k)
)

; (19)

4 Solve the following optimization problem for the

LDDS,





min
Z(k),Ξ(k)

F
(
Z(k),Ξ(k)

)

�

∥∥∥∥∥
l∑

i=1

z
(k)
i (tf )ϕ

(k)
i (x) − y∗(x)

∥∥∥∥∥ ,

subject to : e
(
Z(k),Ξ(k)

)
= 0,

e
(
Z(k),Ξ(k)

)
�

dZ(k)

dt
− f

(k)
LDDS

(
Z(k),Ξ(k)

)
,

Ξ(k) =
(
n̄(k), I(k), (Ptot)

(k)
)

;

(20)

5 Go back to Step 2 and stop the iteration if the data

ensemble satisfies

‖Y (k+1) − Y (k)‖ ≤ ε; (21)

Otherwise, continue iteration until the error crite-

rion is satisfied.

B. Sequential Quadratic Programming

For each iteration (k), we now have a constrained non-

linear programming (NLP) problem (20). We define X(k) �(
Z(k),Ξ(k)

)
, and rewrite (20) as





min
X(k)

F
(
X(k)

)

s.t. e
(
X(k)

)
= 0.

(22)

If λ̂(k) is the Lagrange multiplier corresponding to

a local minimizer X̂(k) of (22), then the Lagrangian

L
(
X(k), λ(k)

)
= F

(
X(k)

)
+ λ(k) · e

(
X(k)

)
satisfies

L
(
X(k), λ̂(k)

)
= F

(
X(k)

)
for all admissible X(k). Then,

we can equivalently rewrite the constrained NLP problem

(22) as



min
X(k)

L
(
X(k), λ̂(k)

)
= F

(
X(k)

)
+ λ̂(k) · e

(
X(k)

)

s.t. e
(
X(k)

)
= 0,

(23)

since (23) also has X̂(k) as a local minimizer. The multiplier

λ̂(k) is unknown but an algorithm can approximate it as

X̂(k) is approximated. To obtain this local optimizer pair(
X̂(k), λ̂(k)

)
, we use the SQP method [8] which approx-

imates the NLP (23) with a sequence of quadratic pro-

gramming (QP) problems. At each step j, a local model of

the optimization problem is constructed around the current

solution
(
X(k,j), λ(k,j)

)
by using a quadratic approximation

of the objective functional and a linear approximation of the

constraint equation. Then the original NLP (23) becomes a

QP problem whose solution yields a step toward the solution

of the original problem:

QP(k,j):





min
p(k,j)

L
(
X(k,j) + p(k,j), λ(k,j)

)

≈ L
(
X(k,j), λ(k,j)

)

+ ∇L
(
X(k,j), λ(k,j)

)
· p(k,j)

+
1

2
p(k,j) · ∇2L

(
X(k,j), λ(k,j)

)
p(k,j),

s.t. e
(
X(k,j) + p(k,j)

)
≈ e

(
X(k,j)

)

+ ∇e
(
X(k,j)

)
· p(k,j) = 0.

(24)

To solve each QP(k,j) in (24), we introduce another La-

grangian functional as follows

l
(
p(k,j), λ(k,j), µ(k,j)

)
= L

(
X(k,j), λ(k,j)

)

+ ∇L
(
X(k,j), λ(k,j)

)
· p(k,j) (25)

+
1

2
p(k,j) · ∇2L

(
X(k,j), λ(k,j)

)
p(k,j)

+ µ(k,j) ·
{

e
(
X(k,j)

)
+ ∇e

(
X(k,j)

)
· p(k,j)

}
. (26)

Then, we can formulate the following unconstrained opti-

mization problem

min
{p(k,j),µ(k,j)}

l
(
p(k,j), µ(k,j)

)
, (27)

and the associated first order optimality conditions can be

obtained by forcing the first order derivatives to be zero,

i.e.,
(

∇2L (∇e)
T

∇e 0

)(
p(k,j)

µ(k,j)

)
= −

(
∇L
e

)
. (28)

We assume that the Hessian ∇2L(X(k,j), λ(k,j)) is positive

definite and the minimizer is well–defined. Therefore, by

solving p(k,j), µ(k,j) from (28), the update of
(
X(k,j), λ(k,j)

)

can be implemented as follows,

X(k,j+1) = X(k,j) + p(k,j), (29)

λ(k,j+1) = λ(k,j) + µ(k,j). (30)
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Fig. 2. Iterations of POD modes.

It is interesting to note that (28)-(30) can also be seen as the

solution via Newton’s method of ∇L = 0 and e = 0, the

optimality condition and constraint of (23) respectively.

VI. NUMERICAL ILLUSTRATIONS

In this section, we implement the POD-LDDS-based

optimization procedure for the poloidal flux system in a

simulation of a DIII-D plasma. The system parameters in

the PDE (1) can be given as interpolation polynomials

Θ(x) = 255.1x6 − 682.5x5

+ 688.4x4 − 322.3x3 + 69.5x2 − 5.8x + 0.5,

Γ(x) = 172.9812x6 − 458.3779x5 + 446.8464x4

− 190.9911x3 + 31.4997x2 − 0.2664x + 0.9213,

χ(x) = −504.0x6 + 1331.9x5 − 1227.6x4 + 437.1x3

− 26.2x2 − 14.3x − 2.9,

and the initial and desired profiles are given by y(x, t0) =
−0.17x3 + 0.35x2 − 0.06x − 0.37 and y∗(x) = −1.72x3 +
3.86x2 − 0.77x − 0.23 respectively.

We discretize the time domain [0, 1.2] into seven subin-

tervals and parameterize the actuator Ptot as eight dis-

crete points, i.e., Ptot(ti), (i = 1, 2, . . . , 8). We use lin-

ear interpolation to approximate the function Ptot(t) over

(ti, ti+1), (i = 1, 2, . . . , 7). The functions n̄(t) and I(t) are

parameterized by µI , µn̄, σI and σn̄ in expressions (3)–(4).

In total, we have twelve parameters to be optimized subject

to the following physical constraints:

0.45 ≤ µn̄ ≤ 0.75, 0.45 ≤ µI ≤ 0.75, (31)

0.09 ≤ σn̄ ≤ 0.15, 0.09 ≤ σI ≤ 0.15, (32)

0.5 ≤ Ptot(tk) ≤ 20, k = 1, 2, . . . , 8. (33)

We take n̄0 = 2, n̄f = 2.7, I0 = 0.709229, If =

1.18774, and set the initial guess
(
µ

(0)
I , σ

(0)
I , µ

(0)
n̄ , σ

(0)
n̄

)
=

(0.6, 0.12, 0.6, 0.1),
√

Ptot(ti) = 3, (i = 1, 2, . . . , 8). We

can note that the POD modes (Fig. 2), and optimized

sequences n̄(k) (Fig. 3), I(k) (Fig. 4), Ptot
(k) (Fig. 5) also

show a fast convergence. The iterative procedure is therefore

stopped after the fourth iteration. The evolution of the final

profile y(k)(tf , x) iteration after iteration, which is shown

in Fig. 6, is obtained by simulating the PDE system (1)

using the optimized sequences
(
n̄(k), I(k), Ptot

(k)
)

, (k =

1, 2, 3, 4). In Fig. 7, the converged open-loop optimal control

sequences n̄(t), I(t), Ptot(t), reconstructed after the fourth

iteration, are used to simulate the the poloidal flux evolution

governed by the PDE system (1).

Remark 2: The fact that the convergent final profile can

not match the desired target profile perfectly does not imply a

limitation of the POD-LDDS-based optimization procedure

but a consequence of the lack of precise reachability for

the parabolic system under the actuator constraints and

assumptions (3)-(4).
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Fig. 3. LDDS-based optimization.
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VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we solve the open–loop optimal current

profile control problem arising in tokamak plasmas by

using POD model reduction and nonlinear programming.

Numerical studies demonstrate that the iterative POD-LDDS-

optimization procedure is effective and reduces computa-

tional effort when compared with PDE-optimization.

The POD-LDDS-optimization procedure involves two it-

erations. One is the POD-LDDS iteration (k) in (29) (where

the model is updated as the input sequences change) and

the other is the SQP iteration (j) in (32) (where a series of

QP problems are solved). For the SQP iteration, convergence

has been theoretically proved (see, e.g., [8]). However, the

convergence of the POD-LDDS iteration is still an open

problem and a part of our future work.

REFERENCES

[1] E. Witrant et al., “A control-oriented model of the current profile in
tokamak plasma,” Plasma Phys. Control. Fusion, vol. 49, pp. 1075–
1105, 2007.

[2] Y. Ou et al., “Extremum-seeking finite-time optimal control of plasma
current profile at the DIII-D tokamak,” Proceedings of the 2007

American Control Conference, 2007.

[3] ——, “Towards model-based current profile control at DIII-D,” Fusion

Engineering and Design, vol. 82, pp. 1153–1160, 2007.

[4] J. Blum, Numerical simulation and optimal control in plasma physics.
John Wiley &. Sons, 1988.

[5] P. Neittaanmaki and D. Tiba, Optimal control of nonlinear parabolic

systems: theory, algorithms, and applications. Marcel Dekker, Inc.,
1994.

[6] V. Arnautu and P. Neittaanmaki, Optimal control from theory to

computer programs. Kluwer Academic Publishers, 1993.

0 0.2 0.4 0.6 0.8 1 1.2
2

2.5

3

3.5

4

4.5

5

5.5

6

t

√

P
to

t

k=1
k=2
k=3
k=4

Fig. 5. LDDS-based optimization.

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y
(x

,T
) DP

OP (k=1)
OP (k=2)
OP (k=3)
OP (k=4)

Fig. 6. Actual and desired profiles.

[7] R. Pytlak, Numerical Methods for Optimal Control Problems with

State Constraints. Springer, 1999.
[8] J. Nocedal and S. J. Wright, Numerical Optimization (2nd edition).

New York: Springer, 2006.
[9] P. Holmes, J. Lumley, and G. Berkooz, Turbulence, coherent struc-

tures, dynamical systems and symmetry. New York: Cambridge
University Press, 1996.

[10] M. Bergmann, L. Cordier, and J. Brancher, “Optimal rotary control
of the cylinder wake using proper orthogonal decomposition reduced-
order model,” Physics of Fluids, vol. 17, pp. 097 101(1–21), 2005.

[11] K. Kunisch and S. Volkwein, “Control of the Burgers equation by
a reduced-order approach using proper orthogonal decomposition,”
Journal of Optimization Theory and Applications, vol. 102, pp. 345–
371, 1999.

[12] O. Kallenberg, Foundations of Modern Probability (Springer Series in

Statistics). Springer, 2002.
[13] K. Kunisch and S. Volkwein, “Galerkin proper orthogonal decom-

position methods for parabolic problems,” Numerische Mathematik,
vol. 90, pp. 117–148, 2001.

0

0.5

1

0

0.5

1

1.5
−0.5

0

0.5

1

1.5

xt

y
(x

,t
)

Fig. 7. System evolution with optimization control.

284


