
Stabilizability of Networked Control Systems via Packet-loss Dependent

Output Feedback Controllers

Junyan Yu Long Wang Mei Yu Yingmin Jia Jie Chen

Abstract— We consider the output feedback stabilizability
of networked control systems with bounded packet loss. A
packet-loss dependent Lyapunov function is adopted to design
packet-loss dependent stabilizing output feedback controllers
by resolving some linear matrix inequalities. Moreover, two
types of packet-loss processes are discussed: one is the arbitrary
packet-loss process, and the other is the Markovian packet-
loss process. A numerical example and some simulations are
worked out to demonstrate the effectiveness of the proposed
design technique.

I. INTRODUCTION

Networked control systems have many industrial

applications, and typical examples are computer integrated

manufacturing systems, large-scale distributed industrial

processes, tele-operation and tele-control, fieldbus systems,

intelligent traffic systems, satellite clusters and group maneu-

vers, etc. NCSs have received increasing attentions in recent

years [1]-[4]. Compared with the traditional point-to-point

wiring, the use of the communication channels can reduce

the costs of cables and power, simplify the installation and

maintenance of the whole system, and increase the reliability.

However, the insertion of communication network in the

feedback control loop complicates the application of standard

results in analysis and design of a networked control system

(NCS) because many ideal assumptions made in the tradi-

tional control theory can not be applied to NCSs directly.

In a NCS, communication capacity depends not only on

the protocol, but also on the topology of the network. One

of the issues raised in NCSs is the unreliable transmission

paths because of limited bandwidth and large amount of

data packet transmitted over one line, which may result

in transmission delays, data packet dropout. The last is

a potential source of instability and poor performance of

NCSs. Therefore construction of a feedback controller using

the most fresh information to stabilize a NCS with packet

dropout is very essential to the real industrial applications.
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To our best knowledge, two effectively approaches have been

adopted to deal with the bounded packet dropout: the first

is delayed system approach [5][8], and the other is switched

system approach [6][7]. In addition, two types of packet loss

processes have been considered in existing results: the first

regards the data packet dropout as a arbitrary process, and

sufficient conditions for stabilizability have been presented

[6] [7]; the other is that the data packet dropout is taken

as a Markov process [7][8], and sufficient conditions for the

stabilizability also have been derived. Moreover, [9] modeled

NCSs with data packet dropout as asynchronous dynamic

systems, but the stability condition derived in it is in bilinear

matrix inequalities, which are difficult to solve.

The advantage of the switched system approach is that

the controllers can make full use of the previous information

to stabilize NCSs when the current state/out measurements

are not available from the network. [6] introduced switched

system approach earlier, and considered the stabilizability

of NCSs with bounded packet losses via both state feedback

and output feedback. Based on bounded packet losses, NCSs

were modeled as a class of switched systems, and switched

systems theories [10]-[13] can be used to design state/out

feedback controllers constructed by using the feasible so-

lutions of some linear matrix inequalities(LMIs) in [6].

Recently, [7] generalized the results in [6], and considered

the state feedback stabilizability by introducing a packet-

loss dependent Lyapunov function. State feedback controllers

were designed by using the packet-loss dependent Lyapunov

function, while it did not consider the output feedback

stabilizability, and the feedback gain is constant.

In this paper, different from existing results, we try to

present the design for time-varying output feedback con-

trollers, in details, the time-varying output feedback con-

trollers to be designed are packet-loss dependent. The ad-

vantage of such controllers is that we can regulate the

gains depending on the number of the packet losses. Here,

the switched system approach is adopted to discuss the

output feedback stabilizability of NCSs which consists of

discrete-time plants and design the packet-loss dependent

stabilizing output feedback controllers. Two types of packet-

loss processes are considered: one is the arbitrary packet-loss

process, and the other is the Markovian packet-loss process.

For both cases, sufficient conditions for stabilizability are de-

rived, and packet-loss dependent output feedback controllers

are designed by solving some LMIs.

The paper is organized as follows: Section II gives the de-

scription of our systems, and some lemmas are also presented

in this section. Section III deals with the stabilizability for
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NCSs with the arbitrary packet-loss process, and presents the

design for stabilizing output feedback controllers constructed

by using the feasible solutions of some LMIs. Section IV

solves the stabilizability for NCSs with Markovian packet-

loss process, and also stabilizing output feedback controllers

are constructed by solving some LMIs. A numerical example

and some simulations demonstrating the effectiveness of the

proposed design technique are given in Section V. Finally,

the conclusions are provided in Section VI.

Notations. Throughout this paper, the following notations

are used. Z
+ denotes the set of all nonnegative integer;

For any two positive integers m and n satisfying n ≥ m,

[m,n] = {m,m + 1, · · · , n}. Furthermore, denote [m,n] ×
[k, l] = {(i, j) : i ∈ [m,n], j ∈ [k, l]}.

II. PROBLEM FORMULATION

Consider the network control system consists of a discrete

plant and a time-varying discrete controller

x(t + 1) = Ax(t) + Bu(t),
y(t) = Cx(t),
u(t) = F (t)ȳ(t),

(1)

where t ∈ Z
+, x(t) ∈ R

n is the plant state vector, u(t) ∈
R

m is the plant input vector, and y(t) ∈ R
p is the output of

the plant. A, B and C are known real constant matrices with

proper dimensions. The piecewise continuous function F (t)
is the output feedback gain matrix to be designed. ȳ(t) ∈
R

p is the state measurement that is successfully transmitted

over the network. We suppose that a sensor data containing

the state information will be put into a single register and

substitute the old data when it is successfully sent to the

controller through the communication link. The controller

reads out the content of the register ȳ(t) and utilizes the data

to compute the new control input, which will be applied to

the plant.

We consider the NCS setup with a clock-driven sensor,

and both the controller and the actuator are combined into

one event-driven node, that is, network communication only

occurs between the sensor and the controller through a

communication channel with finite bandwidth. Further, we

suppose that the update instants of ȳ(t) is numerable and the

set of successive update instants {t0 = 0, t1, · · · , tk, · · · } is

the subset of Z
+.

The switched system approach is used to setup a switched

system in [6]. Here, we consider the NCS (1) by using the

approach. For the case that there are no transmission delays

between the sensor and the combined node, the switched

system approach is described as follows.

Without loss of generality, we assume that the packet

containing y(0) is transmitted to the controller successfully,

that is ȳ(0) = y(0), then

x(1) = (A + BF (0)C)x(0).

In the next step, if the data packet containing y(1) is

transmitted to the controller successfully, then

x(2) = (A + BF (1)C)x(1),

otherwise,

x(2) = Ax(1) + BF (1)Cx(0)
= (A(A + BF (0)C) + BF (1)C)x(0).

We refer to the time interval between tk and tk+1 as

one transmission interval. In this pattern of transmission, the

states of the NCS (1) at the update steps can be described

as follows.

x(tk+1) = (Atk+1−tk+

tk+1−tk−1
∑

l=0

AlBF (t)C)x(tk), k ∈ Z
+.

Define

z(0) = x(0), z(1) = x(t1), · · · , z(k) = x(tk), · · · ,

and

A(k) = Atk+1−tk +

tk+1−tk−1
∑

l=0

AlBF (t)C,

it follows that

z(j) = A(j)z(j − 1). (2)

We assume that the maximum transmission period is d,

therefore the upper bound of the dropped data packets is

d − 1. Further, we have

A(j) ∈ Ω, Ω = {A1, A2, · · · , Ad},

where

Ai = Ai +
i−1
∑

l=0

AlBF (t)C.

We assume that there is a counter which notes the number

in the last transmission interval [tk, tk−1). Given feedback

gain set {F1, F2, · · · , Fd}, for any tk, we take the packet-

loss dependent feedback gain as Ftk−tk−1
.

Now, letting tk+1 − tk = i, tk − tk−1 = j, we have

Āij = Ai +
i−1
∑

l=0

AlBFjC, (3)

then it is obvious that the evolution of NCS (1) at the

transmission instants can be described by the following

switched system

z(t + 1) = Āη(t)z(t), t ∈ Z
+ (4)

for arbitrary switching, where

Āη(t) = Ar(t) +
r(t)−1
∑

l=0

AlBFr(t−1)C ∈ Ω̄ =

{Ā11, Ā12, · · · , Ā1d, · · · , Ād1, Ād2, · · · , Ādd}.
η(t) = (r(t), r(t − 1)) ∈ [1, d] × [1, d], Here, η(1) =
(r(1), 1),∀i ∈ [1, d], that is, y(0) is transmitted to the

controller successfully.

Now, we present the following definitions and technical

lemmas for later use.

Definition 1: [7] A packet-loss process {r(tk) ∈ N :
r(tk) = tk+1 − tk} is said to be arbitrary if it takes values

in [1, d] arbitrarily.
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Definition 2: A packet-loss process {r(tk) ∈ N : r(tk) =
tk+1 − tk} is said to be Markovian if it is a Markov chain,

and the transition probability matrix P = [pij ] ∈ R
d×d,

where pij = Pr(r(tk+1) = i|r(tk) = j) ≥ 0 for any (i, j) ∈
[1, d] × [1, d], and

∑d

i=1 pij = 1.

Lemma 1: [14] Given the symmetric matrix

S =

[

S11 S12

ST
12 S22

]

, (5)

where S11 is r × r, then the three states are equivalent as

followed:

a) S < 0;

b) S11 < 0, S22 − ST
12S

−1
11 S12 < 0;

c) S22 < 0, S11 − S12S
−1
22 ST

12 < 0.

Lemma 2: [13] For a given C ∈ R
p×n with rank(C) =

p, assume that the singular value decomposition of C as

C = M
[

C0 0
]

NT (6)

where M ∈ R
p×p and N ∈ R

n×n are unitary matrices

and C0 ∈ R
p×p is a diagonal matrix with positive diagonal

elements in decreasing order. Q ∈ R
n×n is a symmetric

matrix, then there exists a matrix Z ∈ R
p×p such that CQ =

ZC if and only if

Q = N

[

Q1 0
0 Q2

]

NT (7)

where Q1 ∈ Rp×p, Q2 ∈ R(n−p)×(n−p).

III. STABILIZABILITY OF NCSS WITH ARBITRARY

PACKET-LOSS PROCESS

In this section, we suppose that the packet loss of the NCS

(1) is arbitrary. Sufficient conditions for the stabilizability via

output feedback is derived by a switched system approach

and stabilizing controllers are designed by resolving some

LMIs.

Definition 3: A function φ : Rn → R+ is of class K if it

is continuous, strictly increasing, and φ(0) = 0.

Without loss of generality, we assume that 0 is an equilibrium

of NCS (1), and the state response starts at t0 = 0 with the

initial condition x(0). The following result will ensure the

asymptotic stability of NCS (1). It is a generality of Lemma

1 in [6].

Lemma 3: If there exists a piecewise continuous function

V : R
n → R+ belonging to the function set Ω =

{V1, V2, · · · , Vq} with q ≥ 1, where Vl : R
n → R+ is a

continuous differentiable, locally positive definite function

for any l ∈ [1, q], and functions α, β, γ of class K such that

for all x ∈ Br = {x : ‖x‖ ≤ r},

α(‖x‖) ≤ Vl(x) ≤ β(‖x‖), ∀l ∈ [1, q], (8)

and

∆V k(x(tk)) = V (x(tk+1)) − V (x(tk)) ≤ −γ(‖x(tk)‖),
(9)

then NCS (1) is uniformly asymptotically stable.

Based on Lemma 3, for NCS (1) we can get the following

sufficient condition for the stabilizability via output feedback.

Theorem 1: If there exist d symmetric positive definite

matrices X1, X2, · · · , Xd and d matrices Y1, Y2, · · · , Yd,

Z1, Z2, · · · , Zd such that

CXi = ZiC (10)









Xj (AiXj +
i−1
∑

l=0

AlBYjC)T

AiXj +
i−1
∑

l=0

AlBYjC Xi









> 0,

∀(i, j) ∈ [1, d] × [1, d],
(11)

then NCS (1) is stabilizable via the output feedback con-

troller

u(t) = Yr(tk−1)Z
−1
r(tk−1)

ȳ(t), t ∈ [tk, tk+1).

Proof: Based on Lemma 3, we only need to prove that

there exists a feedback gain set {F1, F2, · · · , Fd} guarantee-

ing the stability of switched system (4) for any switching.

It is obvious that the switched system (4) can be repre-

sented equivalently by

z(t + 1) =
d
∑

j=1

d
∑

i=1

ξij(t)Āijz(t), t ∈ Z
+, (12)

where

Āij = Ai +
i−1
∑

l=0

AlBFjC.

Based on (12), we know that every number pair

(i, j) ∈ [1, d] × [1, d] denotes only one subsystem, and
d
∑

j=1

d
∑

i=1

ξij(t) = 1 if the (i, j) subsystem is active and 0

otherwise.

Now, for switched system (12), we adopt the following

switched Lyapunov function

V (t, z(t)) = zT (t)
d

∑

i=1

ξi(t)Piz(t), (13)

where Pi = X−1
i .

From Lemma 3, we only need to show that the Lyapunov

function (13) proves the stability of the system (12).

In fact, the difference of (13) along the trajectory of (12)

is defined as

∆V (z(t)) = V (z(t + 1)) − V (z(t))

= zT (t + 1)
d

∑

i=1

ξi(t + 1)Piz(t + 1)

−zT (t)
d

∑

i=1

ξi(t)Piz(t)
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= zT

d
∑

j=1

d
∑

i=1

ξij(t)(A
i +

i−1
∑

l=0

AlBFjC)T

d
∑

i=1

ξi(t + 1)Pi

d
∑

j=1

d
∑

i=1

ξij(t)

×(Ai

i−1
∑

l=0

AlBFjC)z(t)

−zT (t)
d

∑

i=1

ξi(t)Piz(t).

Then system (12) is stability proved by the Lyapunov func-

tion (13) if and only if

(Ai +
i−1
∑

l=0

AlBFjC)T Pi(A
i

i−1
∑

l=0

AlBFjC) − Pj < 0. (14)

From Lemma 1, we know that the inequality above holds if

and only if









Pj (Ai +
i−1
∑

l=0

AlBFjC)T Pi

Pi(A
i +

i−1
∑

l=0

AlBFjC) Pi









> 0.

(15)

By post- and pre-multiplying the both sides of the inequality

(15) using the following matrix diag{P−1
j , P−1

i }, and letting

Xi = P−1
i , Yi = FiXi , we can get (11). Thus, this

completes the proof.

Remark 1: Based on the analysis in Section II, we can

get the state evolvement equation of the close-loop system

as follows:

x(t + 1) = Ax(t) + BFr(tk−1)x(tk),

t ∈ [tk, tk+1), k ∈ N.

For the system above, we adopt the following packet-loss

dependent Lyapunov function

V (t) = xT (t)Pr(tk)x(t), t ∈ [tk, tk+1). (16)

Let r(tk) = tk+1 − tk = i, then (16) is nothing but (13).

Now, we suppose that C is of full row rank. We present

the singular value decomposition of C as

C = M
[

C0 0
]

NT , (17)

where M ∈ R
p×p and N ∈ R

n×n are unitary matrices

and C0 ∈ R
p×p is a diagonal matrix with positive diagonal

elements in decreasing order. For any i ∈ [1, q], assume that

Xi satisfies

Xi = N

[

X1i 0
0 X2i

]

NT , (18)

where X1i ∈ Rp×p, X2i ∈ R(n−p)×(n−p).

Based on Lemma 2, we can get the following result:

Theorem 2: If there exist symmetric positive definite ma-

trices Xi = N

[

X1i 0
0 X2i

]

NT with i ∈ [1, d] and

matrices Y1, Y2, · · · , Yd such that









Xj (AiXj +
i−1
∑

l=0

AlBYjC)T

AiXj +
i−1
∑

l=0

AlBYjC Xi









> 0,

∀(i, j) ∈ [1, d] × [1, d],
(19)

then the NCS (1) is stabilizable via the output feedback

controller

u(t) = Yr(tk−1)Z̄r(tk−1)ȳ(t), t ∈ [tk, tk+1),

where

Z̄i = MC0X
−1
1i C−1

0 MT ,

and C = M
[

C0 0
]

NT is the singular value decompo-

sition of C.

IV. STABILIZABILITY OF NCSS WITH MARKOVIAN

PACKET-LOSS PROCESS

In this section, we suppose that the packet loss of the NCS

(1) abide by the Markovian process. Sufficient condition

for the stabilizability via output feedback is derived by the

switched systems approach, and the feedback controllers are

designed by resolving some LMIs.

Definition 4: The NCS (1) with Markovian packet-

loss process is said to be mean square stable(MS) if

limt→∞ E[‖x(t)‖2] = 0 for any initial state (x0, r0).
The following result is a generalization of Theorem 9 in

[7].

Lemma 4: The NCS (1) with Markovian packet-loss

process is to be mean square stable(MS) if there exist positive

definite matrices Pi, i ∈ [1, d], such that

s
∑

i=1

[pij(A
i+

i−1
∑

l=0

AlBFjC)Pi(A
i+

i−1
∑

l=0

AlBFjC)]−Pj < 0.

Here, we omit its proof since it is similar with that of

Theorem 9 in [7].

the states of NCS (1) with Markovian packet-losses

process at the update steps can be described as follows:

z(t + 1) = Āη(t)z(t), (20)

where Āη(t) ∈ Ω̄.

Using Lyapunov function (13) for (20), it is easy to get

the sufficient condition for the stabilizability of the NCS (1)

via output feedback.

Theorem 3: The NCS (1) is MS if there exist symmet-

ric positive definite matrices X1, X2, · · · , Xd, and matrices

W1,W2, · · · ,Wd, G1, G2, · · · , Gd, Y1, Y2, · · · , Yd satisfy-

ing

CGi = WiC, (21)

[

Λ QT
i

Qi Xi

]

> 0, ∀i ∈ [1, d], (22)

3623



where

Qi = [
√

p1i(AGi + BYiC)T · · · √
pdi(A

dGi + BdYiC)T ],

Λ = diag(G1+GT
1 −X1, · · · , Gd+GT

d −Xd), Bj =

j−1
∑

l=0

AjB,

and the stabilizing controller is given by

u(t) = Fr(tk−1)ȳ(t) = Yr(tk−1)W
−1
r(tk−1)

ȳ(t), t ∈ [tk, tk+1).
Further, we suppose that C is of full row rank. By using

Lemma 2, we can get another sufficient condition in the

form of LMIs for the stabilizability of NCS (1) via output

feedback.

Theorem 4: If there exist symmetric positive definite ma-

trices Xi, symmetric matrices Gi = N

[

G1i 0
0 G2i

]

NT

and matrices Yi with i ∈ [1, d] such that
[

Λ QT
i

Qi Xi

]

> 0, ∀i ∈ [1, d], (23)

where

Qi = [
√

p1i(AGi + BYiC)T · · · √
pdi(A

dGi + BdYiC)T ],

Λ = diag(2G1 − X1, · · · , 2Gd − Xd), Bj =

j−1
∑

l=0

AjB,

then the NCS (1) is stabilizable via output feedback con-

troller

u(t) = Yr(tk−1)W̄r(tk−1)ȳ(t), t ∈ [tk, tk+1),

where

W̄i = MC0G
−1
1i C−1

0 MT ,

and C = M
[

C0 0
]

NT is the singular value decompo-

sition of C.

Remark 2: For NCS (1), we can find the maximum allow-

able bound of data packet dropout by solving the following

optimal problem

max
Xi,Yi,G1i,G2i

d

subject to (23).
(24)

V. NUMERICAL EXAMPLES

In this section, A numerical example and some simulations

are given to demonstrate the effectiveness of the proposed

design technique.

Example 1: Consider the second-order NCS

x(t + 1) =

[

0.66 0.209
−0.123 −0.5

]

x(t)

+

[

−1
1

]

u(t),

y(t) = [2 1]x(t),
u(t) = Fiȳ(t),∀i ∈ [1, d],

(25)

where

ȳ(t) =







y(t), if the packet containing y(t) is

transmitted successfully;

ȳ(t − 1), otherwise.
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Fig. 1a. State response (arbitrary packet loss).
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Fig. 1b. State response (no packet loss).

The state feedback gains Fi, i ∈ [1, d] are to be designed.

Denote C = M
[

C0 0
]

NT as the singular value decom-

position of C, then it is easy to get

M = 1, N =

[

0.8944 −0.4472
0.4472 0.8944

]

, C0 = [2.2361 0].

Suppose that the maximum transmission period d = 3
which means that the 66% of the packets can be lost, and take

the initial state as x0 = [−10 10]T . When the packet loss of

the NCS (25) is arbitrary, we solve the LMIs of Theorem 2

and the use of the Matlab LMI Toolbox yields the following

results:

X1 =

[

20.1201 0
0 20.9190

]

,

X2 =

[

24.2345 0
0 23.8506

]

,

X3 =

[

26.0053 0
0 25.4020

]

.

Y1 = 2.4811, Y2 = 2.4811, Y3 = 2.4811.

Based on Z̄i = MC0X
−1
1i C−1

0 MT , and Fi = YiZ̄i, we

obtain the output feedback gains:

F1 = 0.1233, F2 = 0.1024, F3 = 0.0954.

When the distribution of transmission period is taken as

1, 2, 3, 1, 2, 3, · · · , the step response of NCS (25) is shown in
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Fig. 2a. State response (Markovian packet losses).
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Fig. 2b. Frequency of packet losses

(Markovian packet losses).

Fig. 1a. It is clear from the figure that even in such a case,

the system can still be effectively stabilized via the switched

state feedback given above. Fig. 1b depicts the trajectory of

the system when no packet loss occurs.

In addition, we take the transition probability matrix as

P =





0.1 0.2 0.2
0.3 0.1 0.3
0.6 0.7 0.5



 . (26)

Suppose the packet loss of the NCS (25) abides by the

Markovian process. We solve the LMIs of Theorem 4 and the

use of the Matlab LMI Toolbox yields the following results:

X1 =

[

45.2926 0
0 45.4019

]

,

X2 =

[

43.7725 0
0 43.9160

]

,

X3 =

[

39.9295 0
0 39.8656

]

.

G1 =

[

45.8525 0
0 45.9253

]

,

G2 =

[

44.8391 0
0 44.9347

]

,

G3 =

[

44.8391 0
0 44.9347

]

.

Y1 = 4.2704, Y2 = 5.0810, Y3 = 4.7197.

Based on W̄i = MC0G
−1
1i C−1

0 MT , and Fi = YiW̄i, we

obtain the output feedback gains:

F1 = 0.0931, F2 = 0.1133, F3 = 0.1053.

When the initial state is given by x0 = [−10 10]T , the

system state trajectory is shown in Fig. 2a under the state

feedback above. The small circles in Fig. 2b simulate the

time instants when the zero-order hold updates its state.

VI. CONCLUSIONS

This paper has presented the design for the packet-loss

dependent output feedback controller of NCSs. Two types

of packet-loss processes have been considered: one is the

arbitrary packet-loss process, and the other is the Markovian

packet-loss process. For both cases, sufficient conditions

for output feedback stabilizability have been derived and

stabilizing controllers have been constructed by using the

feasible solutions of some LMIs.
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