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Abstract— This paper deals with the fault isolation issue in
a gas turbine unit of a combined cycle power plant where the
residual evaluation is addressed using data driven based struc-
tured models. The design of the isolation system is performed
considering a) the redundant graphs of the gas turbine obtained
from a non-linear complex dynamical model with 37 algebraic
and differential equations with 15 known variables; and b) a
data driven method to generate the corresponding residuals.
The structured residuals subspaces are generated via Dynamic
Principal Component Analysis with adaptive standardization
from sets of nominal historical data. Thus, the proposed
integration of data-driven methods with structural analysis to
generate the residuals does not require parameterized models
which are difficult to obtain for large scale systems, as the gas
turbine of a power plant.

I. INTRODUCTION

Combined cycle power plants (CCPP) are becoming

increasingly prevalent in the electric utilities market place.

The main reasons among others are: overall efficiencies

above 50%, with some modern designs approaching 60%,

low environmental impact and greater operating flexibility

with a reduced staff size. A CCPP at least is integrated

by a Gas Turbine-Generator (GT), a Heat Recovery-Steam

Generator (HRSG), and a Steam Turbine-Generator (ST).

The essential and more critical component in a CCPP is the

GT. Therefore, the design of supervision system for a GT

is a challenge for the safe process community.

It is known that the solution of a fault diagnosis problem

depends on the structural properties associated to the relation

of internal and external process variables, this means that

the existence of a residual generator is determined by the

system structure. The search of conditions to solve a FDI

problem has been tackled with a variety of tools by [1], [2],

[3]. In particular, [4], [5] proposed the structural analysis

based on graph theory, to obtain redundancy relations

between known variables for structurally equivalent systems.

For large scale systems with poor analytical models

and sparsity properties as the gas turbine generator, the

model-based FDI problem is not a simple task and requires

a considerable design effort. In these conditions the

data driven based approaches are good alternatives, [6].

The dynamic principal component analysis DPCA, which
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implicitly describes the correlation structure of a multivariate

process from historical data, has been successfully used to

solve faults detection tasks, [7]. However, a limitation of

DPCA is its impossibility to isolate faults. To improve the

faults isolation capacity of the principal components, here,

it is suggested: first, for a specific fault isolation task, to

capture subsets of correlated known variables as redundant

graphs obtained via structural analysis and; second, from

each subset of variables a residual subspace is determined

via DPCA with adaptive standardization. This idea was

briefly introduced in [8] and only preliminary results were

shown with an academic example. Here, the procedure is

formally introduced and applied to a gas turbine which is a

large scale system.

The outline of this paper is as follows. Section II describes

a framework to determine sets of correlated known variables

Ki involved in the primary redundancy relations considering

a specific fault isolability. Section III describes briefly how

to generate the residuals for a given set Ki using a DPCA

algorithm with adaptive standardization. Section IV intro-

duces the incidence matrix of the five components of the gas

turbine and its associated redundancy relations. This section

shows also the potentiality of the integration of DPCA with

structural analysis to solve isolation issues with simulated

results of the GT. Finally, the conclusions are presented in

section V.

II. SYSTEM STRUCTURE

The basic concepts in a FDI issue are the redundancy

relation and the residual generator.

Definition 1: Let z be a vector of known signals. The

scalar expression RR(z, ż, z̈, . . .) is a redundancy relation

if for all z consistent with the fault-free model it holds that

RR(z, ż, z̈, . . .) = 0 (1)

Definition 2: Let z be a vector of known signals. A

dynamic system, with input z and a scalar signal ρ(t) as

output, is a residual generator if z is consistent with the

fault-free model implies lim
t→∞

ρ(t) = 0, where vector z

includes both sensor data and known control signals.
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The existence of RR′s depends on the system structural

properties. These can be characterized by graph theory,

taking into account the equations which relate internal and

external variables and without numerical computations, [4].

Definition 3: A dynamic system can be described by a

bipartite graph G = {C,V, E} where C is the set associated

with the system equations or constraints with |C| = nc.

The set of variables in the graph is defined by V = X ∪ K
with |V| = nv; where X is the unknown variables set with

cardinality |X | = n; K = U ∪ Y is the known variables set,

U the exogenous variables set with |U| = l, and the set Y
of endogenous with |Y| = s.

For each state xi of a dynamic system an extra constraint

xk = dxi = ẋi

is included in the graph description.

The basic process to get the structure of G is the matching,

which is based in the calculability property and associates

variables with constraints from which the unknown variables

can be eliminated. Once a matching is obtained, the involved

constraints can be interpreted as operators from one variables

set to other generated by constraints concatenation or as

paths which links variables following the oriented graph.

A variety of matching algorithms exist to obtain from G
the possible paths between variables which characterize the

primary redundancy relations as concatenated functions of

known variables, [9], [5].

Due to the graph bidirectional property, one can redefine

an endogenous variable as exogenous, which is named

pseudo-exogenous. So, similar to Definition 1 for an

analytical redundancy relation, a redundant graph can be

defined as follows:

Definition 4: Let Ki = Usi ∪ yi be a subset of known

variables perfectly matched through the subset of restrictions

Ci, then

GRi(Ci,Usi, yi) (2)

is a redundant graph which establish, by means of

Ci, a consistency between the pseudo-exogenous subset

Usi ⊂ K \ yi and the target variable yi.

This definition together with the concept of pseudo-

exogenous variables, which are assumed independent in

an oriented subgraph, simplifies the analysis of subgraphs

and the search of redundancy relations with short paths,

maximizing the system fault isolability.

It is important to note that in the system redundant graph

decomposition, each GRi (2) is an independent subsystem

which could include some variables of the set Y as

exogenous inputs. This is illustrated with the interconnected

GR′s shown in Fig. 1, where the target variables of GR1

yi

Process

GR1 GRi GRn

usi

Fig. 1. Interconnection of redundant graphs
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Fig. 2. Bipartite Graph of system (c1-c6)

and GRn are input variables to GRi.

Starting from the bipartite graph G for a given set of faults

F of interest, the following example clarifies how to cha-

racterize the redundant graphs GRi and their corresponding

sets Ki = Usi ∪ yi of correlated variables and constraints Ci.

Consider the dynamic system given by

ẋ1 = −ax1 + x2 + u1 (c1)

x3 = dx1 (c2)

ẋ2 = x1 + bx2 (c3)

x4 = dx2 (c4)

y1 = x1 + x2 (c5)

y2 = 5 + x2 (c6)

with no concurrent faults in sensors, actuator and process;

the latest ones characterized as deviations in parameters

{a, b}.

From the bipartite graph described in Fig. 2, four redun-

dant graphs between known variables are identified and their

corresponding fault sensitivity are shown in Table I, where

f denotes a fault and its subindex defines the specific fault.

From this table the following remarks are obtained:

1) Since, GR1 and GR2 with u1 as independent variable

are sensitive to all faults except one, their isolation

capability is low; only sensor faults can be isolated

TABLE I

FAULTS SIGNATURE FOR SYSTEM (C1-C6)

Redundant Graphs fy1 fy2 fu1 fa fb

GR1(c1, c2, c3, c4, c5,Us1, y1) 1 0 1 1 1
GR2(c1, c2, c3, c4, c6,Us2, y2) 0 1 1 1 1
GR3(c1, c2, c5, c6,Us3, y1) 1 1 1 1 0
GR4(c3, c4, c5, c6,Us4, y2) 1 1 0 0 1
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considering these graphs. Moreover, since the three

last fault columns have the same signature, the fault

fu1, and process faults {fa, fb} are detectable, but not

isolable with these GR’s.

2) Because c3 and c4 are not in GR3, this graph is

insensitive to faults in {c3, c4}; and the dynamic of

x2 is not considered. In other words, a correlation

between Us3 = {u1, y1} and y2 has been detected by

GR3 which improves the isolability with respect to the

above redundant graphs.

3) Since, GR3 and GR4 isolate fb from {fa, fu1
}, both

have the same isolation capability, and one of these

can be eliminated in the fault signature matrix.

4) Considering that GR3 involves more known variables

than GR4, the latest is selected.

5) Only the actuator fault fu1 and the process fault fa are

not isolable.

6) The higher is the cardinality of the constraints set Ci

involved in a GRi, the lower is its isolation capability.

7) A high cardinality in Ci results at considering in Usi

only the conventional control inputs {u1, u2, . . . , ul}.

Incorporating elements of Y in Usi, the number

of constraints is reduced, which improves the

isolability. So, a GRi with maximal isolability

is achieved when, for the selection of any target

variable yi, the pseudo-exogenous set is conformed

by Usi = U ∪ {yk ∈ Y, yk 6= yi}.

This simple system redundant graph decomposition

describes the solution possibilities of a FDI issue without

numerical models.

Using symbolic tools and constraints concatenation, for

the implementation of the residual generators, analytical

redundancy relations (1) can be obtained from the GRi
′s as

long as corresponding parameterized models be available,

[10], [11].

In the case of large scale process analytical models are not

generally available, so, data driven methods are an alternative

to generate the residuals since they only require historical

data from the subsets of known variables Ki = Usi ∪ yi of

each redundant graph. Since, a GRi guarantees the existence

of correlation between their involved input and output sig-

nals, a DPCA modeling for each GRi can be performed. In

the DPCA framework, the residual evaluation is carried out

on the square predictive error. The justification of this idea

is given in the following section.

III. RESIDUAL BY DPCA STRUCTURED MODEL

Given a redundant graph

GRi (Ci,Usi, yi) (3)

which is sensitive to faults set Fi. According to the Definition

1, if the subsystem associated to (3) is stable and its

model is linearizable around an operation point, there exist

a redundancy relation of the form (1) described as

zi(w)(t)ai = 0 (4)

which is also sensitive to Fi. Where ai ∈ ℜm×1 and the

vector zi(w)(t) ∈ ℜ1×m written by

zi(w)(t) = [usi(t) . . .usi(t − w) yi(t) . . . yi(t − w)]

usi(t) ∈ ℜ1×l is associated to the pseudo-exogenous subset

Usi and yi is the target variable; m = (l + 1)(w + 1).
Under these conditions, the residual generation for (4) can

be tackled by DPCA, taking into account the auto and cross-

correlations of the signals zi(w)(t), which by simplicity we

will rename as z(t).
The starting point to get a DPCA modeling is a set of

N nominal historical data of z(t) which satisfy (4) and are

written as a matrix

Z(t) =




z(t)
z(t + 1)

...

z(t + N − 1)


 ∈ ℜN×m

Usually, data Z(t) are standardized with respect to their

means µz, and standard deviations σz and the resulting

matrix is denoted as Z̃(t).
The DPCA based implicit model is derived from the

eigenstructure of the correlation matrix R = 1
N−1 Z̃

T Z̃,

which can be written by

RQ = QΛ (5)

where Q ∈ ℜm×m is the orthonormal eigenvectors matrix

and Λ ∈ ℜm×m is the diagonal matrix of the corresponding

eigenvalues ordered in decreasing form: λ1 ≥ λ2 ≥ · · · ≥
λm with m = p + r.

Following the calculation given by [12], and considering

the linearity of the redundancy relation (4), p eigenvalues of

Λ are significative and r = w + 1 are close to zero. Thus

matrix Q can be decomposed by

Q =
[

Qp Qr

]
(6)

where Qp ∈ ℜm× p is the eigenvectors subset associated

to the most significative eigenvalues which are a base for

the named principal component subspace; and Qr ∈ ℜm× r

is the complementary eigenvectors subset associated to the

zero eigenvalues which are a base for the named residual

subspace.

Thus, for a given nominal time series vector z(t) satisfying

(4), which is standardized with respect to the historical means

µz, and standard deviations σz, its projection to the residual

subspace yields the residual vector

ri(t) = z̃(t)Qr = 0 ∈ ℜ1×r (7)

This means that consistent observations are orthogonal to the

residual subspace.

On the other side, considering a standardized inconsistent

observation

z̃f (t) = z̃(t) + fz(t) (8)
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where ‖fz‖ 6= 0 represents the faults effect. The projection

of (8) to the residual subspace is given by

ri(t) = z̃f (t)Qr = z̃(t)Qr + fz(t)Qr = fz(t)Qr 6= 0 (9)

As conclusion, the projection of any new observation z̃(t) to

the residual subspace can be used as a residual of (4), even

if this explicit relation is unknown.

To generate a scalar residual from the projection ri(t), the

square predictive error is used

ρi = ri(t)r
T
i (t) (10)

Thus, the residual evaluation for each redundancy relation

given in (4) can be carried out by DPCA based implicit

modeling.

In order to prevent false alarms and not to alter the iso-

lation capabilities given in the fault signature matrix, in the

framework of DPCA, it is necessary to generate insensitive

residuals, denoted as ρ̃i(t), with respect to external events to

GRi, like changes in the operation point or faults in other

subsystems.

To generate ρ̃i(t), the variations of usi(t) are considered

as ‘nominal’, therefore, it is required a standardization

procedure with on-line estimated statistical parameters (µz,

σz), obtained from usi(t), instead of fixed statistical val-

ues calculated off-line. In particular, the on-line adaptive

standardization procedure proposed by [13] is adopted here

for each residual generator. This is based in the fact that

the correlation structure R of subsystem (4) is invariant in

nominal conditions. The procedure is summarized as follow

• Estimate the mean µusi
and variances σusi

of usi

through exponentially weighted moving average and ex-

ponentially weighted moving covariance, respectively.

• Estimate the mean value µyi
and variance σyi

of the

target variable yi(t) from the statistical parameters of

usi.

IV. GAS TURBINE FAULT ISOLATION

A. Gas Turbine Model

The gas turbine of Fig. 3 is part of a combined cycle

power plant configuration with two GT, two heat recovery-

steam generators and a steam turbine. The main components

of the GT are: compressor, combustion, chamber, gas turbine,

electric generator and heat recovery. The model given in

[14] has 28 constraints: 19 static algebraic constraints and

9 dynamic-differential constraints and one can identify 27
unknown variables xi, 19 known variables ki and 29 physical

parameters θi.

The known variables set is divided in four set K = Ys ∪
Ya ∪ Uc ∪ Up with Ys = {k1, k2, k6, k10, k11, k12, k13, k14}
the process sensors; Ya = {k5, k7, k8, k16} the position

transducers from actuators; Up = {k3, k4, k9, k15} the ex-

ternal physical variables; and the control signals Uc =
{k17, k18, k19}.

The incidence matrix of the gas turbine system is given

in Fig. 4, where rows correspond to constraints, columns to

variables, and dots indicate edges of the bipartite graph.
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B. Fault Isolation Capability Analysis

Following the matching and the back-stepping processes

given in [4] for the incidence matrix of Fig. 4, the ten RR′s

of Table II, and the subsystem without redundancy of Table

III have been identified in [15].

C. Residual Evaluation

Considering the structural analysis for the gas turbine

given in Tables II and III, this subsection discusses the sig-

nificance of an ad hoc assignation of exogenous signals and

the data normalization with statistical parameters estimation

on line to hold the fault isolation capability of the redundant

relations. This property includes the redundant relations for

no strong faults detectability.

For space reasons and importance of the cases, only

faults in the actuator c13 (Gas Control Valve GT) which

follows the control signal at full load generation; and in the

mechanical coupling between the generator and turbine c20

are considered here. Thus, the fault set is given by

F = {fc13, fc20}

Looking for the RR′s of Table II, which are sensitive to
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TABLE II

REDUNDANCY RELATIONS FOR GAS TURBINE SYSTEM

RR′s Constraints, C Known Variables,K

RR1 d6, c21, c22 k2, k13

RR2 c17, c18 k1, k10, k11, k12

RR3 d1, c7 k5, k17

RR4 d4, c13 k8, k18

RR5 d9, c28 k16, k19

RR6 d8, c10, c17, c23, c25, c27 k1, k9, k10, k11,
k12, k14, k16

RR7 d2, c1, c2, c5, c6, c8, c9, c10, c17 k1, k2, k3, k5, k6,
k7, k8, k9, k11, k12

RR8 d3, c1, c2, c5, c6, c8, c9, c17 k1, k2, k3, k5, k6,
k7, k8, k9, k11, k12

RR9 c4 k1, k3, k4, k6

RR10 d7, c10, c17, c23, c24, c25, c26 k1, k3, k9, k10, k11,
k12, k14, k15, k16

TABLE III

TURBINE SUBSYSTEM WITHOUT REDUNDANCY

C x4 x19 x17 x16 x18 x8 x11 K

d5 1 0 0 0 0 0 0 k2

c19 0 1 0 0 0 0 0 k2

c15 0 0 1 0 0 0 0 k1, k10, x1

c14 0 0 0 1 0 0 0 k6, x10, x12

c16 0 0 1 1 1 0 0 k1, x1

c3 0 0 0 0 0 1 0 k1, k3, x3

c20 1 1 0 1 1 1 1 k2, k13, x15

faults in the constraint c13 the graph

GR4(d4, c13,Us4, k8) with Us4 = k18 (11)

is only identified. Considering the explicit model of the in-

volved constraints, the associated analytical RR4 is obtained

k̇8 = θ26
−1(k18 − k8)

which is also sensitive to faults in the transducer of the valve

position k8. From this residual one can see that both faults

in the transducer and the valve are strong detectable.

Since Table III indicates that c20 is part of the subsystem

which can not be monitored, extra sensors must be added

to detect a fault in the interconnection of the turbine gas

and generator. Considering the incidence matrix of Table III

and the physical meaning of the unknown variables given

in Appendix A, a reasonable proposition is to measure the

starting motor energy x11 which appears in c20 i.e. k20 :=
x11. Thus, this additional sensor changes the structure of the

GT and allows to get the redundant graph

GR11(d5, c1, c2, c3, c10, c15, c16, c18, c20,Us11, k10) (12)

which allows the detection of mechanics faults in the

turbo-generator c20 and in the wattmeter with the pseudo-

exogenous variables set

Us11 = {k1, k2, k3, k5, k11, k13, k20}

From graph (12) and the GT explicit model, the respective

analytical RR11

θ20k2k̇2 + θ11k2 + g(Us11, k10) = 0

TABLE IV

FAULTS SIGNATURE FOR THE GAS TURBINE

Redundant Graphs → Residuals fc13 fc20

GR4(C4,Us4, k8) → ρ4 1 0
GR11(C11,Us11, k10) → ρ11 0 1

is obtained where g is a non linear function of eight known

variables. It is important to note that changes in the parame-

ters θ11 and θ20 associated to the mechanical part affect only

the transient of the turbogenerator angular velocity k2. This

is explained because the turbo generator is connected to an

infinite electric network. Therefore, the faults associated to

GR11 are not strong detectable.

The signature matrix for the fault set is given in Table

IV. If the residual generator of (12) is implemented by

an analytical model based method which does not require

standardized observations, inconsistent data produced by

sensors set Us11 ∪ k10 and faults in the constraints set

C11 = {c1, c2, c3, c10, c15, c16, c18, c20} generates a transient

in the residual, as the fault signature matrix of Table IV indi-

cates. The same behavior is achieved with ρ̃11 generated by

DPCA including an adaptation of the statistical parameters

of Us11. On the contrary, if the residual generator of (12)

is implemented using DPCA without on-line adaptable data

standardization, additionally to the above considered faults,

all external faults to GR11 which affect the statistical values

of the exogenous sets Us11 will induce a residual different

from zero, generating false alarms.

As example, lets consider a fault in the subsystem c7

(Compressor Inlet Guide Vanes Actuator) described by

θ25k̇5 = k17 − k5

which is an independent subsystem to GR11. The faults in

c7, will induce changes in the actual statistical values of

the position k5 ∈ U11, which will fire ρ11 because the actual

statistical values of k5 are inconsistent with its past statistical

values. This meas ρ11 is not robust to external events.

Simulation results validate the GT residuals of Table IV

obtained by DPCA. To get the training data, the GT is

simulated with full load generation of 47MW and speed

of 60 Hz. Thus considering the subsets Ki = Usi ∪ yi of

each redundant graph GRi (11) and (12), two residuals are

obtained.

Three additive faults in the respective constraints are

simulated: fc13 = 0.1, fc20 = 0.1, and fault fc7 = 0.15; all

are activated at 150 s. The corresponding residuals responses

from the DPCA based residual generators for GR4 and GR11

are shown in Fig. 5. It is verified that the response of the

DPCA based residual generators with adaptive standardiza-

tion ρ̃4 and ρ̃11, coincide with that indicated in Table IV,

even when these residual generators do not use the explicit

relations RR4 and RR11. On the other side, one can see

the false alarm effect in ρ11 generated with DPCA without

adaptive standardization for the case of faults fc13 and fc7.
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Fig. 5. Residuals responses. ρ̃11 - with adaptive standardization; ρ11 -
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V. CONCLUSIONS

This paper proposes the extraction of sets of correlated

variables which are involved in the fault diagnosis problem

of a gas turbine from the residual structure; the design of the

residual generator is based in principal component modeling.

Since the gas turbine model has the sparsity property, the

structural possibilities for FDI purposes are obtained by

means of graph theory tools. The integration of these tools

simplifies the fault isolation task using dynamic principal

component analysis. An advantage of the proposed method

is that for the residual generation it only requires historical

data for complex processes. Since the key of this approach

assumes an invariant data correlation matrix, the isolation

property may be deteriorated by faults which strongly modify

the process linearity.
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VI. APPENDIX A

A. UNKNOWN VARIABLES X

Combustion chamber gas density, x1; Combustion cham-

ber gas rate density, x2; Compressor inlet air flow, x3; Tur-

bogenerator speed rate, x4; Compressor IGVs position rate,

x5; Combustion chamber gas temperature, x6; Combustion

chamber gas rate temperature, x7; Compressor energy, x8;

Compressor bleed air flow, x9; Compressor outlet air flow,

x10; Starting motor energy, x11; Combustion chamber gas

fuel flow, x12; Gas turbine fuel gas valve position rate,

x13; Combustion chamber inlet gas flow, x14; Combustion

chamber outlet gas flow, x15; Combustion chamber gas

enthalpy, x16; Gas turbine exhaust gas density, x17; Gas

turbine exhaust gas enthalpy, x18; Gas turbine energy friction

losses, x19; Electrical generator power angle , x20; Electrical

generator power rate angle, x21; Heat recovery gas rate tem-

perature, x22; Heat recovery gas density, x23; Heat recovery

gas rate density, x24; Heat recovery outlet gas flow, x25;

Afterburners gas fuel flow, x26; Afterburner fuel gas valve

position rate, x27.

B. KNOWN VARIABLES K

Compressor discharge pressure, k1; Turbogenerator speed,

k2; Atmospheric pressure, k3; Outlet temperature, k4; Com-

pressor inlet guide vanes position, k5; Compressor air dis-

charge temperature, k6; Compressor air bleed valve position,

k7; Gas turbine fuel gas valve position, k8; Inlet fuel gas

valves pressure, k9; Heat recovery pressure, k10; Exhaust gas

temperature (EGT), k11; Blade path temperature (BPT), k12;

Electrical generator power output, k13; Heat recovery gas

temperature, k14; Heat recovery gas outlet temperature, k15;

Afterburner fuel gas valve position, k16; Inlet guide vanes

control signal, k17; Gas turbine fuel gas valve control signal,

k18; Afterburner fuel gas valve control signal, k19.
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