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Abstract— The problem of online system identification and
control of microscopic processes is considered. Traditionally,
such processes are numerically simulated employing atom-
istic simulations. The unavailability of closed-form models
to describe the evolution makes the controller design task
challenging. A methodology is developed in which subspace
algorithms for bilinear system identification are coupled with
feedback linearization techniques with objective the online
identification and control of microscopic processes. We illustrate
the applicability of the proposed methodology on a Kinetic
Monte Carlo (KMC) realization of a simplified surface reaction
scheme that describes the dynamics of CO oxidation by O2 on a
Pt catalytic surface. The proposed controller successfully forces
the process from one stationary state to another state.

I. INTRODUCTION

Owing to a competitive global market and reduced profit

margins, recent focus in the microelectronics industry has

been towards tighter quality control based on device perfor-

mance specifications. To achieve such a goal, the properties

of the end product microstructure need to be characterized.

As a result, we need models for microelectronics fabrication

processes that take in to account events that take place at

disparate time and length scales, (namely, the process scales

of seconds and the product ones of nano seconds). Such

models, which also describe many chemical, biological and

material process systems, are called multiscale systems and

pose significant challenges both from an analysis and control

point of view [3]. These difficulties can be attributed in part

to the unavailability of closed form descriptions of the mi-

croscopic process evolution. Motivated by this, a significant

amount of research has been focused on the development of

control methods to overcome these difficulties.

One of the proposed approaches designed feedback con-

trollers by employing Kinetic-Monte-Carlo (KMC) simu-

lations as the underlying process observer [12]. It was

successfully applied to regulate the surface roughness in

a GaAs deposition process model [13]. Since the KMC

models are not available in closed form, the design of model-

based controllers was impossible. Taking this into account

in [14], [16], controllers were designed using the linearized

Kuramoto-Sivashinsky equation (KSE) as the underlying

process model. To improve on the linear controllers an

extension was proposed in [15], where the authors designed

a nonlinear feedback controller to control the roughness

of a one dimensional surface again employing stochastic
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KSE as the underlying process growth model. The pro-

posed approach assumed a specific structure to the nonlinear

stochastic terms.

In [19] linear models were identified directly based on

the output from KMC simulators. The linear controller that

was designed based on the identified model, was used to

control the lower order statistical moments of microscopic

distributions. In a different approach [22] the problem of non

availability of closed form models was addressed by deriving

a low-order state space model through offline system iden-

tification, based on finite set of ”coarse” observables. The

identified state space model was used to design a receding

horizon controller to regulate the roughness, during thin film

growth, at a particular setpoint. The coarse observables in

this work were identified from spatial correlation functions

of the thin film surface to represent the dominant traits of

the microstructure during a deposition process. In [24] it

was shown that the different deposition surfaces, constructed

through a stochastic reconstruction procedure, with identical

values of these variables exhibited approximately identical

coarse dynamic behavior. In a different approach [8] a

methodology based on proper orthogonal decomposition and

in [17] a data driven approach, were developed for the

statistical reduction of the master equation.

Another approach [20] deals with the feedback lineariza-

tion problem of nonlinear systems described by microscopic/

stochastic simulators, in which the non availability of a

closed form model was circumvented by directly calculating

the quantities needed for design of nonlinear controllers

from appropriately initialized microscopic simulations. A

shortcoming of this method however is that it is limited to

stabilization and involves closed loop eigenvalue assignment

constraints.

In [1], [23] the so called hybrid multiscale process models

were used, where the continuum laws which are applicable at

the macroscopic level were combined with computationally

expensive microscopic laws (Monte-Carlo (MC) / KMC

or Molecular dynamics (MD)) to get the ”coarse” process

behavior. Using the ”coarse” variables nonlinear process

models were identified offline through the solution of a

series of nonlinear programs. Subsequently the identified

models were used to design output feedback controllers.

The methodology used in this approach is computationally

intensive and involves offline process identification.

The present work deals with the online identification of

nonlinear models that accurately describe the evolution of

the process output based on information from microscopic

simulations. We build upon the approach of [1], [22] and de-

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrB04.3

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 4413



velop a computationally tractable online process model iden-

tification and adaptive control methodology, which takes into

account the change in the underlying process dynamics as the

process traverses different regions in the variable state space.

The computationally tractable online system-identification

component of the approach is based on subspace-system

identification (SSI). SSI algorithms [6], such as N4SID are

traditionally used to identify linear systems. Recently, N4SID

was also extended for identification of bilinear systems ex-

cited by white inputs [6]. A modification for bilinear systems

excited by general inputs was also proposed in [4]. We extend

the applicability of SSI algorithm to identify a nonlinear

process model and subsequently design output feedback

linearizing controllers based on the identified model. The

process model is updated as new measurements become

available, to better approximate the microscopic process

evolution. We illustrate the applicability of the proposed

identification scheme on a Kinetic Monte Carlo (KMC)

realization of a simplified surface reaction scheme describing

the oxidation of CO by O2 on a Pt catalytic surface [2].

Employing the proposed methodology we design an output

feedback controller that successfully forces the process from

one stationary state to another.

This paper is organized as follows. In subsection II-A we

present concepts from Carleman linearization that show that

a nonlinear, affine in input model can be approximated by a

discrete time bilinear model. In subsection II-B the system

identification technique adopted is presented. In section III an

output feedback controller is designed based on the identified

bilinear model. In section IV the methodology for online

identification of microscopic processes is presented; in sec-

tion V an example is presented to illustrate the methodology.

II. MATHEMATICAL FORMULATION

We seek to identify nonlinear dynamic models of nonlinear

dynamic systems with the following state space representa-

tion

ẋ = f (x)+g(x)u, x(0) = x0 (1)

where x ∈ IRn is the vector of state variables, u ∈ IR is

a scalar input. f (x) is a nonlinear vector function of the

state, and g(x) is a nonlinear vector function which accounts

for the influence of the control actuator on the process. We

assume that the functions f(·) and g(·) are analytic in their

arguments and that we have full state information of the

process available. Moreover, without loss of generality, we

also assume that the target steady state of the system is the

origin.

In the remainder of this manuscript we use the following

notation, where the Kronecker product between matrices

A ∈ IRN×M and B ∈ IRL×K can be defined as a matrix

C ∈ IR(NL)×(MK)

C = A⊗B ≡









a1,1B a1,2B · · · a1,MB

a2,1B a2,2B · · · a2,MB

· · · · · · · · · · · ·
aN,1B aN,2B · · · aN,MB









(2)

We also define the k-th order Kronecker product as A[k] =
A[k−1] ⊗ A, A[1] = A and A[0] = 1. In ∈ IRn×n is defined

as the unitary matrix of dimension n. The Khatri-Rao

product for two matrices A = [a1,a2, ...,am] ∈ IRr×m and

B = [b1,b2, · · · ,bm] ∈ IRs×m is defined as the column-wise

Kronecker product A⊙B = [a1 ⊗b1,a2 ⊗b2, · · · ,am ⊗bm] ∈
IRsr×m. The orthogonal projection of the row space of matrix

A ∈ IRr×m into the row space of matrix B ∈ IRs×m is defined

as A/B = AB†B. The Moore-Penrose pseudoinverse of a

matrix A∈ IRr×m is a matrix A† ∈ IRm×r such that AA†A = A.

A. Problem formulation

Referring to the system of (1), we apply McLaurin series

expansion to the nonlinear vector fields f (x), g(x), to obtain

f (x) =
∞

∑
k=1

1

k!
f[k]|x=0x[k]; g(x) = g(0)+

∞

∑
k=1

1

k!
g[k]|x=0x[k] (3)

where f[k]|x=0 ∈ IRn×(nk) and g[k]|x=0 ∈ IRn×(nk) are the k-

th partial derivatives of f (x) and g(x) with respect to x,

respectively, evaluated at x = 0. To simplify the notation

we denote Ak ≡ (1/k!) f[k]|x=0, Bk ≡ (1/k!)g[k]|x=0, ∀k and

B0 = g(0) for the rest of the paper. With x[k] we denote the k-

th Kronecker product, and (·)! denotes the standard factorial

of integer (·). Thus, (1) can be equivalently written in the

form

ẋ = f (x)+g(x)u ≡
∞

∑
k=1

Akx[k] +
∞

∑
k=0

Bkx[k]u (4)

We will focus on a finite order polynomial approximation

of the nonlinear system of order p f for f (x) and pg for g(x).
Without loss of generality we assume that p f = pg +1 = p,

in which case (4) takes the form:

ẋ ≃
p

∑
k=1

Akx[k] +
p−1

∑
k=0

Bkx[k]u (5)

To linearize the system of (4), we compute the dynamic

behavior of the terms x[k] as follows:

d(x[k])

dt
=

p−k+1

∑
i=1

Ak,ix
[i+k−1] +

p−k

∑
i=0

Bk,ix
[i+k−1]u (6)

where Ak,i =
k−1

∑
l=0

I
[l]
n ⊗Ai ⊗ I

[k−1+l]
n and Bk,i is defined simi-

larly.

Defining x⊗ = [xT x[2]T · · ·x[p]T ]T , the system of (6) can be

written in the following bilinear form

ẋ⊗ = Ax⊗ +[N u⊗x+Bu] (7)
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where A , N and B are matrices of the form:

A =













A1,1 A1,2 · · · A1,p

0 A2,1 · · · A2,p−1

0 0 · · · A3,p−2

· · · · · · · · · · · ·
0 0 · · · Ap,1













, B =













B1,0

0

0

· · ·
0













,

N =













N1,1 N1,2 · · · N1,p−1 0

N2,0 N2,1 · · · N2,p−2 0

0 N3,0 · · · N3,p−3 0

· · · · · · · · · · · · · · ·
0 0 · · · Np,0 0













(8)

The presented operation, also known as Carleman lin-

earization [11], sets the basis for the identification of the

system behavior.

Time discretization of (7) with piece-wise constant control

action u(t) = u(kT̂ ), kT̂ ≤ t ≤ (k + 1)T̂ , (where T̂ is the

sample time) leads to [18]:

x((k +1)T̂ ) = Ax(kT̂ )+
∞

∑
i=0

Niu
[i] ⊗ x(kT̂ )+

∞

∑
i=0

Biu
[i](kT̂ )

(9)

where A, Ni,Bi are defined as

A = eA T̂

Ni=
Z T̂

0
eA(T−σ1)N

Z σ1

0
eA(σ1−σ2)N · · ·

Z σi−1

0
eA(σi−1−σi)N eAσi dσidσi−1 · · ·dσ1

(10)

Bi=
Z T̂

0
eA(T−σ1)N

Z σ1

0
eA(σ1−σ2)N · · ·

Z σi−1

0
eA(σi−1−σi)B dσidσi−1 · · ·dσ1

Truncating the infinite series up to order q and assuming

T̂ = 1 for convenience, we obtain the following bilinear

discrete time system of form

x(k +1) = Ax(k)+Nu⊗(k)⊗ x(k)+Bu⊗(k) (11)

where u⊗ = [u[1],u[2], · · · ,u[q]], N = [N1,N2, · · · ,Nq] and B =
[B1,B2, · · · ,Bq]. This discrete-bilinear model approximates

(up to arbitrary accuracy) the nonlinear model of (11). In

this work q is taken to be 4.

B. System Identification

We now use bilinear subspace system-identification for

white inputs [5] to identify (11). For the sake of completeness

we briefly outline the algorithm as following:

1) Compute the projections

Oi = Yi|2i−1/

[

Yi−1|0
Ui−1|0

]

Oi+1 = Yi+1|2i−1/

[

Yi|0
Ui|0

] (12)

where

Y p|q = [Yp Y p−1|q Up ⊙Y p−1|q]T ,
Y q|p = [Yq Y q+1|p Uq ⊙Y q+1|p]T ,

Yp = [y(p) y(p+1) · · · y(p+ j)],

for p ≫ q and j ≫ p,q. Up is defined similarly to

Yp. The parameter i should be chosen such that di−1 =

∑
i−1
p=1(m+1)p−1l > n where l is the number of outputs.

2) Compute the singular value decomposition (SVD) of

Oi = (U1 U2)

(

S1 0

0 S2

)(

V T
1

V T
2

)

(13)

where S1 ∈ IRn×(n), and Γi and X̂i are defined as Γi =
U1S

1/2

1 , X̂i = S
1/2

1 V1

3) Calculate the estimated state vector sequence at time

step i+1 as: X̂i+1 = Γ†
i−1 Oi+1, Γi−1 = [γT

l+1 γT
l+2, · · · ]

T

where γ1, γ2,· · · are the rows of Γi

4) Obtain the system matrices by solving the following

linear least squares problem:

(

X̂i+1

Yi|i

)

=

(

A N B

C 0 0

)





X̂i

Ui ⊙ X̂i

Ui



+

(

ρw

ρv

)

(14)

known parameterizations of the matrices A, B, N and

C can be easily handled by solving the above problem

as a constrained linear least squares problem.

The state space models obtained from the subspace algo-

rithm can be written as:

X(k +1) = AX(k)+Nu(k)⊗X(k)+Bu(k)

x(k) = CX(k)
(15)

Where X(k) ∈ IRq× j are the states used in system identi-

fication. The output of system-identification component can

be thought of as linear combination of states, X(k), which

by themselves do not have any physical interpretation. One

important assumption is that the process is noiseless. Even

though this appears to be restrictive we show that feedback

controller designed on the basis of the identified model from

the stochastic simulation algorithm forces the process to

reach the desired set point.

Remark 2.1: We note that if we have previous knowledge

of structure for the system of (1), we can take advantage

of the information in the presented methodology seamlessly

through the use of Lagrange expansions in (3).

III. OUTPUT FEEDBACK CONTROLLER BASED ON

FEEDBACK LINEARIZATION

Once the model for the system of (1) is identified as

illustrated in the previous section, we employ the feedback

linearization technique of [21] to force a linear closed loop

behavior to the system. The relative degree of the model

we obtain from system identification (15) is 1 i.e. the input

affects the output from the system after one time period. We

note that the relative degree of the original system of (1)

need not be 1. The underlying assumption is only that the
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relative degree is finite, which then will be captured by the

proposed representation.

The desired input /output behavior to the closed loop system

is of the form

x(k +1) = (1−λ)xsp +λx(k) (16)

The desired closed loop response is chosen to make the sys-

tem progress towards the desired setpoint smoothly. Clearly

the control action which achieves the above closed loop

behavior is of the form:

u(k) = (CNX +CB)−1(−CAX(k)+λx(k)+(1−λ)xsp)
(17)

where λ is a tuning parameter such that 0 < λ < 1. The error

dynamics of the closed loop system of (16) is given as

e(k +1) = λe(k)

where

e(k) = x(k)− xsp

The choice of the control parameter, λ plays an important

role in deciding how fast the controller forces the processes

towards its setpoint. This can be clearly seen from (16).

For values of λ close to 1, the output converges to the

setpoint slowly. On the other hand, for values of λ close

to 0 the control action is large leading to fast convergence

of the output to the setpoint. However in this case the system

matrices obtained from the system identification will be

ill conditioned, since the bilinear models cannot capture a

rapid change in the process behavior, if the frequency of the

measurements is not appropriately adapted.

IV. ONLINE SYSTEM IDENTIFICATION AND CONTROL

ALGORITHM

We are now ready to present the methodology for iden-

tification and control. The method consists of the following

steps.

• Perturb the system in the neighborhood of the Initial

stationary state using an input sequence (described in

Remark 4.2) excited by a Gaussian noise and obtain

the output sequence.

• Identify a bilinear model of the form in (15) at the initial

stationary state using the system identification algorithm

of subsection II-B.

• Calculate the necessary control action from (17) to force

the system to a new stationary state towards the desired

setpoint.

• Identify the system at the new stationary state by

employing the new input signal obtained using the

calculated control action as carrier signal to obtain an

output sequence.

• Augment the new input/output sequence to the previous

available sequence. Employ a window of size n̂ truncate

older data to obtain a sequence containing n̂ entries

• Repeat steps 2−4 until the desired setpoint is reached.

Remark 4.1: With the addition of the new sequence to the

previous data, the oblique projection matrices need only to

be augmented. Thus some computational savings are gained

Remark 4.2: Since the system identification algorithm as

described in the subsection II-B requires the input to persis-

tently excite the system in the neighborhood of the current

state, we generate the input sequence by perturbing a carrier

signal (which may be our control signal), using a gaussian

white noise.

V. ILLUSTRATIVE EXAMPLE: CO OXIDATION

A. problem formulation

We illustrate the online system identification and control

methodology presented in the section IV on a KMC real-

ization (using the stochastic simulation algorithm [9],[10])

of a simplified reaction model of the form A + 1
2
B2 −→

AB of CO oxidation by O2 on Pt catalytic surface. The

process involves adsorption of A, dissociative adsorption

of B2, and a second-order surface reaction whose products

desorb immediately. The mean-field Langmuir-Hinshelwood

approximation equations for this process in the absence of

adsorbate interaction would consist of a set of two ODES

[2].

d(θA)

dt
= α(1−θA −θB)− γ(θA)−4krθAθB

d(θB)

dt
= 2β(1−θA −θB)2 −4krθAθB

(18)

where θA, θB represent the surface coverage of CO, and

O2, respectively, α, β are the rate constants for adsorption

of CO and O2, respectively, γ is the rate constant for CO

desorption and kr is the reaction rate constant. We employed

β as the manipulated input. The values of these parameters

are taken to be α = 1.6, γ = 0.04 and kr = 1. The above

model exhibits two turning points for the value of parameter

β ≈ 2.5 and 8.49 [2].

This work employs only an atomistic realization of the

above process (18) to identify and control it. The probability

of lattice being at a particular configuration is given by the

master equation [7]

d(P(σ, t))

dt
= ∑

σ′

W (σ′ → σ)P(σ′, t)−∑
σ′

W (σ → σ′)P(σ, t)

(19)

where σ and σ′ are the probabilities of the lattice being

at a particular configuration. KMC provides the numerical

solution to the master equation, by randomly choosing

one among various possible transition events (the transi-

tion events in our case are adsorption, desorption and the

surface reaction at the catalyst surface) depending upon

the event probabilities. These KMC simulations provide

us with the expected behavior of the process and we use

system identification to identify the underlying closed form

model consistent with the realization provided by the KMC

simulation.

Design of controllers based on KMC simulations is chal-

lenging since a closed-form dynamic model is unavailable
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A

Fig. 1. Open loop simulation of KMC for β = 5.6.

and KMC simulations reach the solution by probabilistically

sampling the master equation. A further complication is that

the physical size of the simulated catalytic surface and the

number of times the process is simulated using KMC has

an affect on the variance as well as the expectation of the

output. As the size of the lattice increases the expected

behavior of the stochastic process converges to the expected

behavior described by the ODE system [9]. In this work the

lattice size is chosen such that the discrepancy between the

expected behavior obtained from KMC simulations and the

ODE solutions are negligible [7]. Specifically, we used KMC

with a lattice size of 100×100 sites and an average of 100

runs was used to compute the expected process behavior. The

reporting horizon was chosen to be 0.8 sec.

Figure 1 shows a sample open loop KMC simulation of

the CO oxidation model, with β = 5.6. It is observed that

the KMC simulations are inherently associated with noise.

We show in the next section that even though we do not

explicitly consider noise while designing the controller, the

closed-loop system is ultimately forced by the controller to

reach its desired setpoint.

Remark 5.1: The computational time for each KMC sim-

ulation with an input sequence of length 1000 is 50 sec of

CPU time. CPU time for identification of each bilinear model

is 3 sec. This time can be significantly improved by using

new techniques to compute SVD of the projection matrix Oi.

B. Results and Discussion

Our objective was to dynamically force the system from

an initial stationary state to a desired stationary state. Specifi-

cally, our objective was to increase the surface coverage (θA)

of CO on the catalytic surface from 0.06 to a desired value

of 0.2. To achieve the desired objective we use the online

system identification and control methodology as presented

in section IV. The tunable parameter λ of the controller was

set to 0.96.

It can be observed from figure 2 that the controller

combined with online system identification scheme is able

to drive the system to the desired objective. Specifically, the

controller acted on the error between the desired setpoint

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

time(sec)

θ
A

Fig. 2. Evolution of θA as the system evolves towards the desired stationary
state. The dotted line represents the desired setpoint and the solid line
represents the evolution of the process.

0 500 1000 1500 2000 2500

3

3.5

4

4.5

5

5.5

time(sec)

u

Fig. 3. Control effort that drives the system towards the desired stationary
state.

and the current value of the θA to force the system towards

the desired objective. The fluctuations observed during the

evolution of θA can be attributed to the stochastic nature of

the microscopic system. The increase in the magnitude of

the fluctuations observed in θA in figure 2 (similarly in θB in

figure 4) as the system evolved towards the desired stationary

state is due to the fact that the system is being forced to a

region close to the bifurcation point, where the rate of change

of output with a small change in input is high.

Our aim was to the force θA to reach a particular setpoint;

the change in θB, seen in figure 4 can be attributed to the

coupling in the dynamics of θA and θB, as observed from

the deterministic steady state bifurcation diagram presented

in [2].

Even though the output signal that we obtain from the

KMC simulation and use for the identification contains noise

(due to the stochastic nature of the system), we observe

that the controller achieves forcing the system to the desired

coverage value, even though it is not explicitly designed to

account for noise. This is due to the identification scheme

which filters to a large extend the effects of noise when

computing the system (15). In future work we will employ
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Fig. 4. Evolution of θB as the system evolves towards the desired stationary
state.
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Fig. 5. Evolution of θA after a step disturbance in reaction rate constant

the information by the identification algorithm to design

robust controllers that explicitly account for the noisy signal.

Finally, we studied the robustness of the controller in the

presence of disturbances. Figure 5 presents the regulatory

performance of the controller to a step change in the reaction

rate constant of the reaction, kr from 1 to 2. It can be

observed from the output profile that the effects of this

parametric disturbance are rejected and the output again

converged to the desired value.
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