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Abstract— We introduce a modeling framework for robust-
ness of maneuver-based motion planning algorithms for non-
linear systems with symmetries. Our framework implements
a hybrid controller that robustly combines motion primitives,
which consist of trim trajectories and maneuvers, from a pre-
defined library. The closed-loop system is viewed as a hybrid
system with flows given by a differential equation, jumps given
by a difference equation, and two sets where these dynamics are
allowed. We show that our hybrid controller for implementation
of motion planning algorithms confers to the closed-loop system
robustness properties to a large class of perturbations.

I. INTRODUCTION

Motion planning algorithms are commonly applied in

robotics as a method to solve steering problems. In a real-

world scenario, the motion planning task needs to be ac-

complished in the presence of obstacles, measurement error,

exogenous disturbances, and unmodeled dynamics. To guar-

antee some degree of robustness, motion planning algorithms

are usually blended with feedback control algorithms, which

track the output of the motion planner; see, e.g., [1]–[5].

The motion planning problem itself is typically recast

as an optimal control problem with cost function and con-

straints stemming from the given task to be accomplished

along with its specifications. In complex motion planning

problems, online computation of optimal control policies is

not always feasible. A motion planning technique suitable

in such cases was proposed in [6] for general nonlinear

systems with symmetries. A motion plan in [6] is given

by a concatenation of a finite number of motion primitives

selected from a pre-defined library and implemented in a

maneuver automaton. Motion primitives were defined in [6]

as equivalence classes of trajectories, induced by symmetries

in the system’s dynamics, e.g., invariance with respect to

time, translations, and rotations.

One of the main features of the maneuver-motion based

approach is that each element in the motion primitives library

can be designed off-line subject to particular specifications,

like optimality, state constraints, etc., relaxing in this way

on-line computation requirements; see, e.g., its applications

to robotics in [4], [7], [8]. However, this method combines

motion primitives in an open-loop manner, which restricts

its application to nominal scenarios, that is, those without

perturbations. Moreover, the fact that the trajectories result-

ing from this approach are not necessarily smooth, renders
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the task of robustifying motion plans via feedback control

challenging since standard trajectory tracking control design

techniques are not applicable.

In this paper, we propose a hybrid control algorithm that

executes maneuver-based motion plans and combines state

feedback control laws for nonlinear systems with symme-

tries. The purpose of our hybrid controller is to provide

a control framework for maneuver-based motion planning

featuring robustness properties to perturbations. We show

that this framework results in a hybrid system with imple-

mentable semantics, and hence, useful experimental setups.

This class of hybrid systems has been recently introduced in

[9], [10] motivated by the pursue of robustness of asymptotic

stability. Our control framework for maneuver-based motion

planning also borrows ideas from the techniques in [11]

for robust combination of state feedback and open-loop

controllers, and also from the invariant constructions in [12].

The paper is organized as follows. Section II introduces

notation and basic definitions regarding nonlinear systems

with symmetries, motion primitives and plans, and hybrid

systems. Section III introduces our hybrid control framework

for motion planning, while Section IV states its main prop-

erties.

II. PRELIMINARIES

A. Notation

R denotes the real numbers. R≥0 denotes the nonnegative

real numbers, i.e., R≥0 = [0,∞). N denotes the natural num-

bers including 0, i.e., N = {0, 1, . . .}. N<k (N≤k) denotes

numbers in N from 0 to k−1 (from 0 to k, respectively). R
n

denotes the n-dimensional Euclidean space. B denotes the

open unit ball in a Euclidean space. Given a set S, S denotes

its closure and S◦ denotes its interior. Given sets S1, S2

subsets of R
n, S1 + S2 := {x1 + x2 | x1 ∈ S1, x2 ∈ S2 }.

Given a vector x ∈ R
n, |x| denotes its Euclidean norm.

The equivalent notation [x⊤ y⊤]⊤, [x y]⊤, and (x, y) is

used for vectors. Given a function f : R
m → R

n, its

domain of definition is denoted by dom f ; i.e., dom f :=
{x ∈ R

m | f(x) is defined}. A function α : R≥0 → R≥0

is said to belong to class K∞ if it is continuous, zero at

zero, strictly increasing, and unbounded. PC0(R≥0, R
m) is

the set of all piecewise continuous signals β : domβ → R
m,

domβ ⊂ R≥0.

B. Motion planning for nonlinear systems with symmetries

We consider nonlinear control systems of the form

P : ẋ = f(x, u) (1)
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where f : R
n × R

m → R
n is a locally Lipschitz function,

x ∈ R
n is the state, and u ∈ R

m is the control input. We

focus on a particular subclass of nonlinear systems P , those

satisfying certain symmetry properties. Next, we review and

adapt some of the concepts in [6] for the purposes of this

paper.

1) Nonlinear systems with symmetries: A large class of

mechanical systems are invariant under certain transforma-

tions of their state. These include mobile robots as well as

more general autonomous vehicles, like several helicopters

and airplanes models, among others. General invariant trans-

formations can be characterized with the theory of Lie groups

(see [13] for an introduction to Lie groups and [14] for

applications to mechanics).

Let G be a finite-dimensional Lie group, and let e be its

identity element. It is said that Ψ is a left action of the group

G on R
n if Ψ : G × R

n → R
n is a smooth map such that

Ψ(e, x) = x for all x ∈ R
n and Ψ(g, Ψ(h, x)) = Ψ(gh, x)

for all g, h ∈ G, x ∈ R
n. Let g be the Lie algebra of G.

Definition 2.1: (symmetry of P) The nonlinear system

P is invariant with respect to the left group action Ψ if

for all g ∈ G, x0 ∈ R
n, and µ ∈ PC0(R≥0, R

m), each

solution (in the appropriate sense1) to P starting from x0

with u(t) = µ(t), denoted by t 7→ φ(x0, µ; t), is such that

Ψ(g, φ(x0, µ; t)) = φ(Ψ(g, x0), µ; t) for all t ∈ domφ. �

Definition 2.1 states that P is invariant if the left action Ψ
commutes with the map from initial conditions.

2) Library of motion primitives: Trim trajectories and

maneuvers define our “library” of primitives for motion

planning; see also [6, Section III].

Definition 2.2 (trim): A C1 function x : [0, T ] → R
n is

a trim trajectory for P if there exists ξ ∈ g, called the trim

velocity vector, and µ ∈ R
m, called the trim input, such that

x(t) = Ψ(exp(ξt), x(0)) for all t ∈ [0, T ] , (2)

ẋ(t) = f(x(t), µ) for almost all t ∈ [0, T ]. �

When the right-hand side of P is locally Lipschitz, every

trim trajectory x for P is uniquely defined by its velocity

ξ and initial condition x0. We shall assume the following

property throughout the paper.

Standing Assumption 2.3: The function f : R
n × R

m →
R

n is locally Lipschitz continuous. The nonlinear system P
is invariant under the action of Ψ. �

Then, for the nonlinear system P with symmetry group G,

we store ξ and x0 in the set of trim trajectories, which is

denoted by T (P ,G) ⊂ g × R
n.

Definition 2.4 (maneuver): A C1 function x : [0, T ] →
R

n is a maneuver for P if there exist a function β ∈
PC0(R≥0, R

m), called the maneuver input, such that

ẋ(t) = f(x(t), β(t)) for almost all t ∈ [0, T ] ;

g ∈ G, called the maneuver displacement, satisfying

x(T ) = Ψ(g, x(0)) ;

1This property does not depend on the notion of solution used. It is
required to hold for each (perhaps nonunique) solution to P on its domain.

and trim trajectories x′ : [0, T ′] → R
n, x′′ : [0, T ′′] →

R
n that are compatible with x, i.e., there exist matching

displacements g′, g′′ ∈ G such that

x′(T ′) = Ψ(g′, x(0)), x(T ) = Ψ(g′′, x′′(0)) . �

Remark 2.5: The matching displacements g′ and g′′ in

Definition 2.4 guarantee that trim trajectories and maneuvers

can be concatenated. More precisely, the left action Ψ with

displacement g′ guarantees that the end point of the (left

compatible) trim trajectory x′ can be concatenated with the

initial point of the maneuver x, while the left action Ψ with

displacement g′′ guarantees that the initial point of the (right

compatible) trim trajectory x′′ can be concatenated with the

final point of the maneuver x. �

Maneuver information for P with symmetry group G is

stored in the set M(P ,G). By the regularity properties of

f , a maneuver x for P can be generated by only knowing

the input β applied to P and the initial condition x0. By

construction, the application of β at x0 causes a maneuver

displacement given by g ∈ G.

Following the definitions above, a “library” of motion

primitives for P with symmetry group G is given by

(T (P ,G),M(P ,G)). Let QT , QM ⊂ N be compact and

disjoint sets, and define Q := QT ∪ QM . The set QT

(respectively, QM ) is such that each of its elements is

uniquely associated to a trim trajectory (respectively, to a

maneuver). More precisely, for each q ∈ QT , (ξq, x
0
q) ∈

T (P ,G) defines the trim trajectory xq(t) = Ψ(exp(ξqt), x
0
q)

with xq(0) = x0
q , while for each q ∈ QM , (βq, x

0
q , gq, Tq) ∈

M(P ,G) ⊂ PC0(R≥0, R
m)×R

n ×G×R correspond to the

input to generate the maneuver xq from x0
q , which, after Tq

units of time, results in a displacement given by gq.

3) Motion plan: A motion plan v is denoted by

v := {(q1, Tq1
), (q2, g

′
2, g

′′
2 ), (q3, Tq3

), . . . ,
, . . . , (qk−1, g

′
k−1

, g′′k−1
), (qk, Tqk

)} ,

where k ∈ N≥3 is an odd number and:

• For each odd number j ∈ N≤k, qj ∈ QT .

• For each even number j ∈ N≤k, qj ∈ QM and the

j-th maneuver is compatible with the (j − 1)-th trim

trajectory with matching displacement g′j and with the

(j + 1)-th trim trajectory with matching displacement

g′′j .

• For each odd number j ∈ N<k, Tqj
∈ R≥0 defines the

time to execute the qj-th trim trajectory. The nonneg-

ative constant Tqk
for the last trim trajectory can be

either finite or infinite.

In other words, a motion plan v is given by a se-

quence {vj}
k
j=1, where v2, v4, . . . , vk−1 are such that

q2, q4, . . . , qk−1 ∈ QM define maneuvers and v1, v3, . . . , vk

are such that q1, q3, . . . , qk ∈ QT define (compatible) trim

trajectories. (Alternatively, and without affecting the results

in this paper, motion plans can be defined as in [6].) We

denote by V(P ,G) the set of motion plans for P with

symmetry group G generated from (T (P ,G),M(P ,G)).
Figure 1 depicts a sample trim-maneuver-trim piece of a

motion plan v ∈ V(P ,G).
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nts

t′

t′ + Tqj−1

t′ + Tqj−1
+ Tqj

t′ + Tqj−1
+ Tqj

+ Tqj+1

qj−1

qj

qj+1

Fig. 1. Sequence of entries of a motion plan v: vj−1 = (qj−1, Tqj−1
)

defining trim trajectory xqj−1
, vj = (qj , g′qj

, g′′qj
) defining maneuver xqj

,

and vj+1 = (qj+1, Tqj+1
) defining trim trajectory xqj+1

.

C. Hybrid systems

The hybrid control framework proposed in this paper for

maneuver-based motion planning follows the general model

for hybrid systems in outlined in [9] (see also [10], [15]).

Hybrid systems are dynamical systems with continuous and

discrete dynamics. In [9], a hybrid system H is given by

a flow map, a flow set, a jump map, and a jump set. For

the purposes of this paper, the state of the hybrid system,

denoted by ζ, takes values in R
n, the flow map is given

by a function f : R
n → R

n and the flow set, denoted by

C ⊂ R
n, define the flow equation ẋ = f(x), x ∈ C; while

the jump map is given by a function g : R
n → R

n and the

jump set, denoted by D ⊂ R
n, define the jump equation

x+ = g(x), x ∈ D. Continuous evolution of the solutions

(or flows) to H is permitted only when the solution is in

C and discrete evolution (or jumps) is allowed only when

the solution is in D. Hence, a hybrid system H has data

(f, C, g, D) and can be written as

H : x ∈ R
n

{

ẋ = f(x), x ∈ C

x+ = g(x), x ∈ D .

To define solutions to H, the number of jumps is treated as

an independent variable j and the state is parametrized by

(t, j). A solution is a function defined on subsets of R≥0×N.

A subset E ⊂ R≥0 × N is a compact hybrid time domain if

E =
J−1
⋃

j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 . . . ≤
tJ . It is a hybrid time domain if for all (T, J) ∈ E,

E ∩ ([0, T ]× {0, 1, . . . J}) is a compact hybrid domain.

On each hybrid time domain there is a natural ordering of

points: (t, j) � (t′, j′) if t ≤ t′ and j ≤ j′. A hybrid arc is

a function x : domx → R
n on a hybrid time domain domx

such that x(t, j) is absolutely continuous in t for a fixed j

and (t, j) ∈ domx. It is a solution to the hybrid system H
if x(0, 0) ∈ C ∪ D and

(S1) For all j ∈ N and almost all t such that (t, j) ∈ domx,

x(t, j) ∈ C, ẋ(t, j) = f(x(t, j))

(S2) For all (t, j) ∈ domx such that (t, j + 1) ∈ domx,

x(t, j) ∈ D, x(t, j + 1) = g(x(t, j)).

A concept of closeness of solutions to hybrid systems is as

follows. Two solutions x : domx → R
n, y : dom y → R

n

are (T, J, ε)-close if:

(a) for all (t, j) ∈ domx with t ≤ T , j ≤ J there exists

s such that (s, j) ∈ dom y, |t − s| < ε, and

|x(t, j) − y(s, j)| < ε,

(b) for all (t, j) ∈ dom y with t ≤ T , j ≤ J there exists

s such that (s, j) ∈ domx, |t − s| < ε, and

|y(t, j) − x(s, j)| < ε.

Note that this closeness concept does not require solutions

to be close at jumps at the same hybrid instant (t, j). See

[9] and [10] for more details.

III. A HYBRID CONTROLLER FOR MOTION PLANNING

Given a motion plan v ∈ V(P ,G), our goal is to design a

controller generating a trajectory of P that satisfies the mo-

tion plan specifications given in terms of a finite sequence of

trim trajectories and maneuvers from (T (P ,G),M(P ,G)).
We propose a hybrid controller, denoted by Hc, with:

• logic state q ∈ Q to indicate the system mode: trim

mode when q ∈ QT , maneuver mode when q ∈ QM .

• logic state p ∈ N to select an entry of a given motion

plan v ∈ V(P ,G).
• displacement state z ∈ G to store the overall displace-

ment of the trajectory of P .

• timer state τ ∈ R to keep track of the time in maneuver

mode and to parametrize the reference trajectory during

trim mode.

The output of the controller, that is, the input of P , is

u = κc(x, q, τ) (3)

where κc : R
n ×Q×R → R

m. The input to Hc is the state

x of P .

A. Control strategy

Given a motion plan v ∈ V(P ,G), let q = qj ∈ QT ,

j ∈ N<k. The controller Hc performs the following tasks:

Task 1) Trim Trajectory Tracking: Track the trim trajectory

xq , where xq is defined by (ξq, x
0
q) ∈ T (P ,G) via (2).

Task 2) Maneuver Execution Start: When the state x

is such that the maneuver xqj+1
, which succeeds the trim

trajectory xq , can be executed and the timer elapsed for at

least Tq units of time, update q to qj+1, reset timer τ to zero,

and execute the (j + 1)-th maneuver.

Task 3) Maneuver Execution End: When the state x is

such that the trim trajectory xqj+2
can be executed and the

timer τ has elapsed for at least Tq units of time, update q to

qj+2 and perform Task 1) if j + 2 < k.

Execution of trim trajectories in Task 1 is performed in

closed-loop with a local tracking controller that guarantees

x(t) → xq(t) asymptotically. Maneuvers are started when:

1) the timer has elapsed for at least the duration planned

for the predecessor trim trajectory, and 2) the state reaches

a set from where the maneuver can be executed (the latter
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corresponds to Task 2). The trim trajectory that follows every

maneuver is started as soon as the state x is in the set where

tracking is possible and the timer has elapsed the specified

amount of time for the maneuver.

B. Control design

The following assumption guarantees that Task 1 can be

accomplished.

Assumption 3.1: (tracking of trim trajectories) For each

q ∈ QT , there exists a continuous function κq : R
n×R≥0 →

R
m, a continuously differentiable function Vq : R

n → R≥0,

class-K∞ functions α1
q , α

2
q , and an open neighborhood of the

origin Bq ⊂ R
n such that

α1
q(|e|) ≤ Vq(e) ≤ α2

q(|e|) ∀e ∈ R
n ,

〈Vq(e), f̃(e)〉 ≤ −Vq(e) ∀e ∈ Bq , (4)

where f̃ : R
n → R

n is given by

f̃(e) = f(e + xq(t), κq(e + xq(t), t) − f(xq(t), µq) ,

and defines the time-invariant system ė = f̃(e) invariant

under the action of Ψ, where xq is the trim trajectory

generated by µq .

Remark 3.2: In addition to the invariance property, As-

sumption 3.1 guarantees the existence of a local controller,

with basin of attraction Bq , which accomplishes asymptotic

tracking of trim trajectories. Additionally, each tracking

control law κq is such that, when applied to P , result in

a time-invariant error system with e := x − xq having

the symmetry property. This assumption holds for nonlinear

systems that can be put in feedback linearizable normal form

[16], [17] with error system that is invariant under the action

of Ψ [18]. �

The construction of the flow and jumps sets of Hc follows.

By the continuity properties of maneuvers in Definition 2.4,

for each maneuver xq with input βq and maneuver duration

Tq, q ∈ QM , there exist disjoint and open sets Sq, Lq ⊂
R

n such that for each xq(0) ∈ Sq , xq(Tq) ∈ Lq, ẋq(t) =
f(xq, βq(t)). For each q ∈ QM , pick compact sets Dq such

that Dq ⊂ Sq and x0
q ∈ D◦

q , and define Cq := Rn \ Dq . The

set Dq, q ∈ QM , corresponds to the maneuver’s start set in

Task 2.

We now compute the set of points from where tracking

of trim trajectories is possible. By construction, there exist

ε∗ > 0 such that

ε∗ := argmax
ε>0

{x0
q + εB ⊂ Sq, ∀q ∈ QM} .

Using Assumption 3.1, for each q ∈ QT , define

Dq := {e ∈ R
n | Vq(e) ≤ cq } ,

where cq > 0 is such that

Dq ⊂ (x0
q + δqB) ∩ Bq , δq := (αq

1)
−1(exp(Tq)α

q
2(ε

∗)) ,

and (αq
1)

−1 is the inverse of the function α
q
1. Define Cq :=

Rn \ Dq. This construction yields a constant δq such that

when the trim trajectory xq(t) is tracked from initial condi-

tions in Dq, the state x belongs to a subset of the start set

of each of the maneuvers in M(P ,G) after Tq units of time

have elapsed (Tq is the execution time of the trim trajectory

given in the motion plan).

The following assumption guarantees that maneuvers take

trajectories to points where trim trajectories can be executed.

Assumption 3.3 (nested condition): For every motion

plan v ∈ V(P ,G), every maneuver with associated entry vi

in v and input βqi
, its associated set Lqi

is such that

Lqi
⊂ Dqi+1

,

where Dqi+1
is the set associated with tracking of the trim

trajectory xqi+1
, qi+1 ∈ QT .

Remark 3.4: The condition in Assumption 3.3 assures

that, after a maneuver, the state x is in a set from which

tracking of the trim trajectory succeeding it is possible. This

condition holds by picking small enough landing set Lq when

Assumption 3.1 is in place. However, in order to get practical

robustness results, the landing sets are usually fixed. In such

cases, the tracking law in Assumption 3.1 should be chosen

to have large enough set Dq, q ∈ QT . �

Figure 2 illustrates the sets designed above.

Cq

Dq

Bq

ε∗B

q-th trim

(a) Trim sets.

Cq

Dq

Sq

Lq
xq(Tq)

q-th maneuver

(b) Maneuver sets.

Fig. 2. Sets of the hybrid controller for a trim trajectory and maneuver in
the motion primitive in Figure 1.

C. Hybrid controller

The control logic outlined above is implemented in the

hybrid controller Hc as follows.

1) Jumps: Jumps occur while in trim mode with p < k

(i.e., it is not the last trim trajectory of the motion plan) when

the state x reaches the set of points where the maneuver

xqp+1
can be started and the timer τ has elapsed for Tqp

units of time. The set in the first condition is given by Dqp+1
,

qp+1 ∈ QM , after the left action Ψ with displacement given

by z multiplied by the nominally expected trim trajectory dis-

placement exp(ξqTq) and the matching displacement g′qp+1
.

Then, jumps occur when

q ∈ QT and x ∈ Ψ(z exp(ξqTq)g
′
qp+1

, Dqp+1
) and τ ≥ Tq ,

(5)

with update law

q+ = qp+1, p+ = p + 1, z+ = z exp(ξqτ), τ+ = 0 , (6)

that is, q is mapped to the next mode in the motion plan v,

the motion plan index p is incremented by one, z is updated

with the current total displacement of the motion primitive,

and τ is reset to zero.

While in maneuver mode, jumps occur when the state

reaches the set of points where the trim trajectory xqp+1
can
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be started and the timer state τ has elapsed for at least Tq

units of time. As in the case for jumps during trim mode,

the set in the former condition is given by Dq, q ∈ QM ,

after the invariant operation Ψ with displacement given by z

multiplied by the planned maneuver trajectory displacement,

which is given by gq , and the matching displacement g′′q .

Then, jumps in maneuver mode occur when

q ∈ QM and x ∈ Ψ(zgqg
′′
q , Dqp+1

) and τ ≥ Tq , (7)

with update law

q+ = qp+1, p+ = p + 1, z+ = zgq, τ+ = 0 . (8)

2) Flows: During flows, the controller variables have

dynamics given by

q̇ = 0, ṗ = 0, ż = 0, τ̇ = 1 , (9)

when

q ∈ QT and (x ∈ Ψ(z exp(ξqTq)g
′
qp+1

, Cqp+1
) or τ ∈ [0, Tq]),

(10)

or

q ∈ QM and (x ∈ Ψ(zgqg
′′
q , Cqp+1

) or τ ∈ [0, Tq]). (11)

3) Output: The controller output is the input to P and is

given by u = κc(x, q, τ) where

κc(x, q, τ) =

{

βq(τ) if q ∈ QM

κq(x, τ) if q ∈ QT .
(12)

The function βq is the control input that generates the q-th

maneuver, q ∈ QM . The function κq is the tracking control

law in Assumption 3.1 for the q-th trim trajectory, q ∈ QT ,

which is designed using trim trajectory information.

4) Closed-loop system: We denote the closed-loop system

resulting from controlling P with Hc by Hcl and its state by

ϕ := (x, q, p, z, τ) ∈ X := R
n×Q×N≤k×R

l×R, where the

Euclidean space R
l embeds G. The continuous dynamics are

given by closed-loop plant dynamics ẋ = f(x, κc(x, q, τ))
along with (9), with flow set given by the union of the sets

defined by (10) and (11). The discrete dynamics are given

by the update laws in (6) and (8). The resulting closed-loop

system Hcl can be written in the compact form in (II-C)

using ϕ as the state and appropriately defining functions f̃ , g̃

and sets C̃ and D̃.

IV. MOTION PLAN EXECUTION:

NOMINAL AND PERTURBED CASE

Given a motion plan v and an initial configuration

(x0
v, g0

v) ∈ R
n × G such that x0

v = Ψ(g0
v, x0

q1
), let r :

dom r → R
n describe the desired trajectory of the nominal

motion plan v, that is:

r(t, j) =



































































Ψ(g0
v, xq1

(t))
if t ∈ [0, T1],

and j = 0

Ψ(g0
v exp(ξq1

T1)g
′
1, xq2

(t))
if t ∈ [T1, T2],

and j = 1

Ψ(g0
v exp(ξq1

T1)g
′′
1 , xq3

(t))
if t ∈ [T2, T3],

and j = 2
...

...

Ψ(g0
v exp(ξq1

T1)g
′′
1 . . .

. . . exp(ξqk−1
Tk−1)g

′′
k , xqk

(t))

if

t ∈ [Tk−1, Tk],
and j = k ,

where xq1
is the trim trajectory with (ξq1

, x0
q1

) ∈ T (P ,G),
xq2

is the maneuver with (βq2
, x0

q2
, gq2

, Tq2
) ∈ M(P ,G),

etc. Note that each jump of r corresponds to a change of

motion primitive. For example, for each (t, j) ∈ [0, T1]×{0},

r(t, j) is given by the q1-th trim trajectory, and after the jump

at t = T1, j = 0, and for all (t, j) ∈ [T1, T2] × {1}, r(t, j)
is given by the q2-th maneuver. The duration of the motion

plan v is Tr =
∑

i=1,3,...,k Ti +
∑

i=2,4,...,k−1
Tqi

. When Tr

is finite, dom r is a subset of [0, Tr] × {0, 1, 2, . . . , k − 1},

while when Tr is infinite, dom r is a subset of [0,∞) ×
{0, 1, 2, . . . , k − 1}.

Theorem 4.1: (nominal execution) Let Assumptions 3.1

and 3.3 hold. For each v ∈ V(P ,G) with nominal motion

plan trajectory r and each (x0
v, g0

v) ∈ R
n × G such that

x0
v = Ψ(g0

v, x
0
q1

), (ξq1
, x0

q1
) ∈ T (P ,G), there exists a

unique solution ϕ to Hcl from ϕ(0, 0) = (x0
v, q1, 1, g0

v, 0)
that is bounded and is such that the x component satisfies

x(t, j) = r(t, j) for all (t, j) ∈ domϕ.

Remark 4.2: Theorem 4.1, which follows by construction,

states that every motion plan v ∈ V(P ,G) is properly

executed by Hcl. This result recovers the nominal motion

plan execution property of the hybrid automaton in [6]. �

In addition to the nominal property in Theorem 4.1, the

proposed hybrid control construction guarantees that, under

the presence of perturbations, motion plan execution stay

close to a nominal one. Note that the presence of perturba-

tions in Hcl on the initial conditions, parameters, and/or the

state affects the jump times. In this way, the domain of the

resulting trajectory does not need to coincide with the domain

of the nominal trajectory r associated to v ∈ V(P ,G). The

(T, J, ε)-closeness notion of distance between hybrid arcs in

Section II-C handles such a situation.

Theorem 4.3: (perturbation of initial conditions) Let As-

sumptions 3.1 and 3.3 hold. For each v ∈ V(P ,G) with

nominal motion plan trajectory r and each (x0
v, g0

v) ∈ R
n×G

such that x0
v = Ψ(g0

v, x
0
q1

), (ξq1
, x0

q1
) ∈ T (P ,G), each

ε > 0, each compact set K ⊂ Bq1
, and each (T, J) ∈

R≥0 × N, (T, J) � (Tr, k − 1), there exists δ > 0 such that

every solution ϕδ to Hcl with ϕδ(0, 0) = (x0
δ , q1, 1, g0

v, 0),
x0

δ ∈ K + δB, is bounded and the x component and r are

(T, J, ε)-close.

Remark 4.4: The time horizon (T, J) where the closeness

property in Theorem 4.3 holds can be picked to be equal

to (Tr, k − 1) when Tr is finite. Then, closeness between
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the component x of the solution and r is guaranteed in the

entire duration of the motion plan. The hybrid time domain

of each solution to Hcl can be extended to an unbounded

one without affecting the behavior of the system up to time

(T, J). In addition to the regularity properties of the closed-

loop system (guaranteed by the standing assumption and the

hybrid controller construction), the proof of Theorem 4.3

extends the hybrid time domain to an unbounded one to

enable the application of results in [10] for hybrid systems

with perturbations. �

Under the presence of perturbations, system P controlled

by H can be written as

ẋ = f(x, κc(x + d1(t), q, τ)) + d2(t) , (13)

where d1 corresponds to error in the measurements of x

and d2 models other exogenous disturbances and unmodeled

dynamics. The addition of these perturbations in the closed-

loop system Hcl results in a perturbed hybrid system, denote

as H̃cl, which can be written as

ϕ̇ = f̃(ϕ + d1(t)) + d2(t) ϕ + d1 ∈ C̃

ϕ+ = g̃(ϕ) ϕ + d1 ∈ D̃ ,

The following result asserts that the motion planning is

robust to a class of perturbations. 2

Theorem 4.5: (perturbations) Let Assumptions 3.1 and 3.3

hold. For each v ∈ V(P ,G) with nominal motion plan

trajectory r and each (x0
v, g0

v) ∈ R
n × G such that x0

v =
Ψ(g0

v, x0
q1

), (ξq1
, x0

q1
) ∈ T (P ,G), each ε > 0, each compact

set K ⊂ Bq1
, and each (T, J) ∈ R≥0 × N, (T, J) �

(Tr, k − 1), there exists δ > 0 such that every solution

ϕ̃ to H̃cl with ϕ̃(0, 0) = (x0, q1, 1, g0
v, 0), x0 ∈ K + δB,

|d1(t, j)| ≤ δ and |d2(t, j)| ≤ δ for each (t, j) ∈ domϕ, is

bounded and the x component and the motion plan trajectory

r are (T, J, ε)-close.

Remark 4.6: The proof of this result uses a technique

from [10, Section V] in which a perturbed hybrid system

Hδ
cl is embedded into a set-valued hybrid system. Using the

hybrid time domain extension as in Theorem 4.3, the results

follows from [10, Corollary 5.5]. �

Finally, Figure 3 illustrates a solution to Hcl starting

nearby the motion plan in Figure 1. This corresponds to a

simulation result from a toolbox for robust maneuver-based

motion planning, currently under development.

V. CONCLUSION

We presented a hybrid systems framework for maneuver-

based motion planning algorithms for nonlinear systems with

symmetries. We systematically described the construction of

a hybrid controller and showed its robustness properties for

a large class of perturbations. Our results are built upon

recent tools for robustness of stability for hybrid systems.

Extensions of the hybrid control strategy to situations where

2The exogenous signals d1 and d2 are given on hybrid time domains
(given a hybrid time domain S and an exogenous signal d1(t), we can
define, with some abuse of notation, d1(t, j) := d1(t) for each (t, j) ∈
S.) Solutions to hybrid systems with the perturbations above is understood
similarly to the notion of solution outlined in Section II-C.
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Fig. 3. Motion primitive (dashed) in Figure 1 and simple airplane trajectory
resulting from applying our hybrid control strategy for motion planning.
Tracking control during trims (red pieces) guarantees that solution and trim
trajectory are stay close. Maneuver starts from a point nearby the maneuver
(blue piece) in the library and remains close to it.

bounds on the perturbations are known beforehand follow

from the ideas presented in this manuscript and will be

closely explored in the future.
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