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Abstract— A re-parameterization of a least squares algorithm
proposed for identifying the parameters of 3D shear models is
tested with non-processed data from instrumented buildings.
The linear shear building models consider seismic excitation
in two orthogonal directions and three degrees of freedom for
each story. This new parameterization allows a very important
reduction on the number of calculations involved. The perfor-
mance of the method confirms the possibility of real-time 3D
parameter recovering.

Index Terms— building vibration control, parameter identi-
fication, least-squares identification

I. INTRODUCTION

Application of advanced control techniques to real-time

building vibration control is becoming more important in

regions subject to seismic hazard 1. It is common that the

parameters used for building design are different from the

real ones, due to the natural uncertanties in any construction

process. From a practical point of view this is not a problem,

as the use of safety factors guarantees that structures will re-

sist predicted forces. From a control point of view, however,

it is best to have a mathematical model of the building that

accurately predicts its real dynamic behavior.

Identification methods are useful for recovering the pa-

rameters of buildings’ dynamic models without destructive

testing; it is only necessary to excite the structure and

measure its behavior. If the excitation is an earthquake, then

identification can be executed in real-time and in parallel

with control actions. Although there is a good body of work

related with the identification of building model parameters,

(see, for example, [2], [3], [4], [5]), most of it refers to

planar building models and it is realized off-line. The work

related with real-time identification of more than one degree

of freedom (DOF) per story is scarce, even though it is well

known that torsional effects are important for structures with

non-symmetric stiffness [6], [7], [8].

In [9], authors propose a modified least-square identi-

fication algorithm to recover the model parameters of a

building seismically excited with two horizontal and or-

thogonal components, using for that purpose acceleration

measurements. The algorithm is numerically efficient and can

be applied to non-symmetrical buildings whose construction

is based on planar frames. This work was extended in [10]
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to allow acceleration sensors to be arbitrarily placed on the

building stories. This papers extends the results obtained in

[9], [10] in two important directions. First, the case when

acceleration measurements are only available for a limited

number of structure stories is now considered. This issue

is related with model reduction, as most buildings have

limited instrumentation, and it is important that the obtained

parameters from the reduced model preserve key features

of the dynamic behavior for the full structure. Second, the

algorithm is tested with data obtained from two instrumented

buildings that were taken during an earthquake. Testing

the algorithm proposed in [9] and [10] with non-processed

field data is very important to observe the effect of noisy

measurements in the parameter estimation.

The rest of the paper contains several sections that deal

with the building’s mathematical model, sensor location and

the least-squares algorithm. Identification results with field

data obtained from instrumented building and concluding

remarks are also included.

II. MATHEMATICAL MODEL

The 3D shear model of a building based on planar frames

under the assumption of rigid diaphragm has two displace-

ment coordinates and one torsion coordinate for each story.

The reference system for each story is located at its center

of mass. Fig. 1 shows an equivalent diagram and indicates

the three DOF for each story. It also shows, in the right

hand side, one possible arrangement of sensors in the rigid

diaphragm of each story. Longitudinal displacements are

tagged as x and y and rotation about the vertical axis as

θ. The elastic model for this building is of the form

M Ü + C U̇ + K U = −M Üg, (1)

where U, U̇, Ü ∈ R3n are the displacement, velocity and

acceleration vectors, respectively, for each of the n stories

in the three directions of motion considered x, y and θ ∈
Rn. M = MT > 0, C = CT ≥ 0 and K = KT > 0
are the inertia, damping and stiffness matrices, respectively.

Finally, Üg is the acceleration vector of the ground, that in

this case only considers excitation in x and y directions.

Details about these matrices for buildings constructed with

planar frames can be found in [9]. Although the form of the

model in Eq. (1) is very standard, torsional parameters are

very difficult to calculate for buildings with non-symmetric

stories.

If conventional accelerometers that measure only in one

axis are used, then it is necessary at least to have three
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Fig. 1. Scheme of an instrumented building.

Fig. 2. Scheme of motion.

sensors per story: two in one direction and another in the

orthogonal direction. The two parallel measurements are

used to obtain the rotational variables: θ, θ̇ and θ̈. Fig. 2

shows the diaphragm motion on the plane, that results from

the composition of the ground motion with respect to an

inertial frame (with origin in point O) and a general planar

movement of the diaphragm with respect to the ground, N .

The absolute position of point P is given by

rp = rN + rQ/N + rP/Q, (2)

where rQ/N is the vector of point Q with respect to point

N , and rP/Q is the vector of point P with respect to point

Q. To obtain velocity and acceleration of point P , Eq. (2) is

derived with respect to time to obtain

ṙp =ṙN + ṙQ/N + ṙP/Q + θ̇ × rP/Q (3a)

r̈p =r̈N + r̈Q/N + r̈P/Q + θ̇ × (θ̇ × rP/Q) + θ̈ × rP/Q

+ 2 θ̇ × ṙP/Q (3b)

where θ̇×rP/Q is the tangential velocity, θ̇×(θ̇×rP/Q) is the

normal acceleration, θ̈ × rP/Q is the tangential acceleration

and 2 θ̇× ṙP/Q represents the Coriolis acceleration. Because

of the rigid diaphragm hypothesis, the relative position of

any point P with respect to point Q is constant, therefore,

ṙP/Q = 0 and r̈P/Q = 0, and the absolute velocity and

acceleration of point P are

ṙp =ṙN + ṙQ/N + ṙP/Q + θ̇ × rP/Q (4a)

r̈p =r̈N + r̈Q/N + θ̇ × (θ̇ × rP/Q) + θ̈ × rP/Q (4b)

Rotational variables θ, θ̇, θ̈ are recovered by writing

separately coordinates x and y in Eqs. (2) and (4) and

applying trigonometrical relations to yield2

senθ =
xA − xB

yB/A
, (5a)

θ̇ =
ẋA − ẋB

yB/A cosθ
, (5b)

θ̈ =
ẍA − ẍB + θ̇2 yB/A senθ

yB/A cosθ
. (5c)

III. LEAST SQUARES IDENTIFICATION

A recursive least-squares algorithm with normalization

and forgetting factor is used for recovering the parameters

[11] with a convenient reparameterization that allows an

important reduction in the order of the covariance matrix

[9]. From Eq. (1)

Z =Ü + Üg ∈ R3n x 1,

Φ =
[

M−1K M−1C
]

∈ R3n x 6n,

Υ =
[

−U −U̇
]T

∈ R6n x 1,

where n is the number of stories and Φ is the real parameters

matrix such that

Z =Φ Υ. (6)

Let Φ̂ be the estimated parameters of system 1, such that

Ẑ = Φ̂ Υ, (7)

then the algorithm given by

Ṗ =δ P − P
Υ ΥT

h2
P, (8)

˙̂
ΦT =P Υ εT , (9)

where P = PT > 0 ∈ R6n× 6n is the covariance matrix,

P (0) > 0, δ ≥ 0 ∈ R is the forgetting factor and h =
1 + ΥT Υ ∈ R satisfying Υ/h ∈ L∞, guarantees that the

output estimation error

ε =
Z − Ẑ

h2
→ 0 where t → ∞.

Note that, converse to the standard least squares formu-

lation, in Eq. (6) a matrix of parameters and a regressor

vector are used. This allows to reduce the size of the

covariance matrix from P ∈ R18n2 x 18n2

to P ∈ R6n x 6n.

The regressor vector is reduced from Υ ∈ R3n x 18n2

to

Υ ∈ R3n x 6n. This size reduction is critical for the algorithm

to be executed in real time.
The proof of algorithm convergence can be found in [9].

2A detailed derivation is included in [10].
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IV. TORSION CENTER RECOVERY

An important hypothesis to verify in this research was

related to torsion center recovering for each story, using

for that purpose the parameters obtained as a result of

the identification. Assuming that the mass of one story is

known, then it is possible to recover the stiffness matrix.

The structure of this matrix is

K =





kxx kxy kxθ

kyx kyy kyθ

kθx kθy kθθ



 ∈ R3n x 3n, K = KT > 0,

(10)

Using Eq. (10), the coordinates of the center of torsion for

all stories can be computed using the following equation [8]

xct = F−1

y

{

kθx

[

kyx − kyy k−1

xy kxx

]

−1

+ (11a)

kθy

[

− k−1

xy kxx

(

kyx − kyy k−1

xy kxx

)

−1
]

}

Fy ,

yct = −F−1

x

{

kθy

[

kxy − kxx k−1

yx kyy

]

−1

+ (11b)

kθx

[

− k−1

yx kyy

(

kxy − kxx k−1

yx kyy

)

−1
]

}

Fx,

where Fx y Fy are arbitrary test loads, that in this case are

taken as unit forces.

This calculation is independent of the precise knowledge

of the mass that was assumed known. A detailed analysis

of Eq. (11) shows that the value of the center of torsion

does not change when the stiffness matrices included in

the equation are premultiplied and postmultiplied by a non-

singular diagonal positive definite matrix, as it is the case

of the matrix of masses. This result was corroborated by

simulations in [10].

V. SIMULATION RESULTS WITH REDUCED

MEASUREMENTS AVAILABILITY

For testing the algorithm in Eqs. (8) and (9), a six-story

building was simulated. Two cases were simulated. In the

first one, all the stories were equipped with accelerometers,

while in the second, only acceleration measurements from

the first, second and last story were available. The aim of

the second test was to show that, for the model identified in

the reduced measurement case, it was possible to recover the

most significant vibration frequencies of the building. This

approach has a similar goal that what it is pursued when the

“condensation method” is used [6]. Fig. 3 shows a scheme

of the building with complete and reduced instrumentation,

under the assumption that there are three acceleration mea-

surements for each story.

Fig. 4 shows the output estimation error norm for the six-

story building for the cases of full and reduced measure-

ments, respectively. Note that for the full measurement case,

the output estimation error approaches zero in finite time,

implying that the estimated output Ẑ is equal to the real

output Z . Parameters converge to their real value in a finite

Fig. 3. Building scheme with complete and reduced measurements.

time, as it is shown in Fig. 5, that illustrates the case of two

parameters time evolution.

For the case of reduced measurements (Fig. 4.b), it can

be noted that the output estimation error does not converge

to zero, although it remains within small bounds. This hap-

pens because the output measurement contains information

about vibration modes that can not be described with the

reduced model. This is clear if the last part of the plot in

Fig. 4.b is analyzed. At about 43 s there is a change in the

characteristics of the ground motion that excites again the

identification process. This change has no effect in the full

measurement case, that properly identifies the parameters,

and has some effect on the reduced measurement case.

It should be noted, however, that the size of the output

estimation error is relatively small, even when the ground

motion changes. Nevertheless, with this reduced model it is

possible to recover the most significant natural frequencies

of the building. Table I, shows the real and estimated

frequencies for the building after 50 seconds of identification.

It can be observed that the match is very good for the full

measurement case, as expected from previous results [10].

For the reduced measurement case, the match is excellent

for the first five natural frequencies and there is a small

error for the sixth frequency. The other three frequencies

do not correctly match those of the building. It is important

to mention that identifying the first three natural frequencies

is considered enough, from a civil engineering point of view,

and to remark that the identified parameters for the reduced

measurement case are different from the parameters of the

full measurement case, so there is no reference value for

them in the plots.

VI. IDENTIFICATION RESULTS FROM INSTRUMENTED

BUILDINGS

To verify the identification algorithm performance beyond

simulated buildings, records from two instrumented buildings

in Los Angeles, California were used. The first building is a

54-story office building and the second a 7-story hospital

building. Records consisted of acceleration measurements
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Fig. 4. Output estimation error norm, full measurements case. (a) full
measurements case. (b) reduced measurements case.

TABLE I

REAL AND ESTIMATED FREQUENCIES [rad/s]

real estimated
full reduced

12,815 12,815 12,815
12,867 12,867 12,846
22,295 22,295 22,294
38,367 38,367 38,053
39,203 39,203 39,101
61,158 61,158 65,565
61,512 61,512 73,398
67,669 67,668 77,237
80,311 80,310 123,500
81,393 81,392
94,205 94,189
95,206 95,197
104,38 102,700
106,28 104,530

of selected building stories taken during the Northridge

earthquake on January 1994 [12]. Acceleration records were

integrated off-line to produce velocity and displacement

records. As the number of instrumented stories is smaller

than the number of stories in both buildings, identification

corresponds to reduced measurements availability in both

cases.

Fig. 6 shows a scheme of the 54-story building. It has

four instrumented stories: 20th, 36th, 46th, and 54th, with

two accelerometers in one coordinate and another in the

orthogonal coordinate for each one of these stories. There

were two additional measurements at the basement that

were used as ground acceleration during the earthquake.

Therefore, the building was reduced to a four stories building

for identification purposes. The output estimation error norm,

‖ε‖2, obtained after applying the identification algorithm in

Eqs. (8) and (9) is shown in Fig. 7. It can be observed that

error decreases with time. Fig. 8 shows the measured and

estimated accelerations for the three DOF of the 3th reduced

story (46th real story). The difference between two curves

can not be appreciated.
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Fig. 5. Time evolution of parameters for the full measurement case. (a)
element (M−1K)1,13. (b) element (M−1C)1,2 .

Fig. 6. Scheme of 54-story office building (dimensions in m).

Fig. 9 shows two examples of parameters identification

time evolution. The first one corresponds to a stiffness

parameter and other to a damping parameter.

Finally, Table II contains the location of the identified

torsion centers for the 54th stories office building. The origin

of the coordinate reference systems was at the geometric

center of each story. The identification algorithm places

the torsion centers of this symmetrical building just a few

millimeters away of its ideal center position.

TABLE II

54-STORY BUILDING. TORSION CENTER ESTIMATION.

Story Coordenate x Coordinate y
1 (20th) 0.002881 0.00010074
2 (36th) 0.0018028 0.0043115
3 (46th) 0.0075868 -0.0065229
4 (54th) 0.0042167 0.0024028

Fig. 10 shows a scheme of the hospital building. Although

it has seven stories, only three of them are completely

instrumented with two accelerometers in the y direction and

another in the x direction. This building is considered as a 3-
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Fig. 7. 54-story building. Output error norm: ‖ε‖2
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Fig. 8. 54-story building. Measured and estimated accelerations of 3th
reduced story (46th real story).

story building for identification purposes. Fig. 11 shows the

hospital output estimation error norm obtained after applying

the identification algorithm in Eqs. (8) and (9). Note that

this error also decreases with time, confirming asymptotic

stability of output estimation errors [9].

Fig. 12 shows the measured and estimated accelera-

tions,for the three DOF of the first reduced story of the

hospital building. Tracking is very good. Fig. 13 shows two

examples of parameter identification time evolution. Table

III contains the estimated torsion center. Reference of the

coordinate system is illustrated in Fig. 10. Again in this case,

the torsion center estimation is properly placed.

TABLE III

HOSPITAL BUILDING. TORSION CENTER ESTIMATION

Story Coordenate x Coordinate y
1 (4th) 0.00018689 0
2 (6th) 0.0019449 -0.001631
3 (7th) 0.0044356 -0.002464

Table IV contains the estimated natural frequencies for the

54th stories office building and hospital building.

Its is convenient to recall that for this field data there is no

reference value for the parameters. There is not, also, a direct
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Fig. 9. 54th stories building. Time evolution of parameters. (a) element
(M−1K)5,5. (b) element (M−1C)2,1 .

Fig. 10. Scheme of hospital building (dimensions in m).

way to recover torsion terms in the stiffness and damping

matrices. Beyond the almost perfect match in acceleration

estimation, the only analysis that can be performed with the

avaiable acceleration data is to obtain its Fourier transform.

However, this spectra can not be directly related to the

natural frequencies of the structure as it hides all interaction

effects. Processing this data is equivalent to a reduced model

estimation of only one degree of freedom, that is insufficient

for 3D identification purposes.

VII. CONCLUSION

A least squares identification algorithm for real-time re-

covering of the parameters of a building elastic model, seis-

mically excited with two orthogonal horizontal components

was presented. The parameters were recovered by using

measurements of accelerometers arbitrarily arranged on each
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Fig. 11. Hospital building. Output error norm: ‖ε‖2
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Fig. 12. Hospital building. Measured and estimated accelerations, 1st story.

story. The mathematical model considers 3 DOF for each

story, two displacements and one torsion. Simple expressions

for recovering the kinematics of the center of mass of each

story with the available measurements were found. The

least squares algorithm introduced, includes an efficient re-

parameterization that greatly improves numerical calculation

speed and allows real-time identification. Simulation results

show convergence in finite time in the parameter identifica-

tion process and very good agreement between theoretical

and identified natural frequencies, for both full instrumented

and partially instrumented buildings. An important finding

was the fact that the algorithm allows to recover the center

of torsion for each story.

The algorithm was also tested with field data obtained

from instrumented buildings. Even though this data was

not pre-processed, output convergence was excellent and

parameter convergence was good. Experimental work with

small scale models and the use of observers to improve

velocity and displacement estimation is on-going work.
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