
 

  

Abstract— The design of sophisticated control systems have led in 
the past ten years to the necessity of satisfying more than one design 
criterion. Thus, it is natural to think that those criteria can be met in 
an optimal manner. If several criteria have simultaneously to be opti-
mized, one is in presence of a Multi-Objective Optimization problem. 

In this paper, many efforts to design the most popular control 
strategies, i.e. PID and MPC, by using multi-objective optimization 
techniques are reviewed. Both control strategies have dissimilar 
optimization characteristics and therefore, they can be considered as 
representative of two different multi-objective optimization problems, 
which are described including definitions, possible solutions, 
algorithms and available software implementations. 

I. INTRODUCTION 
N control engineering, Multi-Objective Optimization (MOO) 
has been used for a long time (pioneer works are for example 
[24], [40], and the references herein). However, MOO has 

intensively been applied to obtain optimal control systems in the 
last ten years. An excellent review of MOO applications in 
control engineering can be found in [41]. A recently update is 
given in [19]. 
 PID control or PI control (Proportional, Integral and Derivative) 
and MPC (Model Predictive Control) can be considered the 
most popular control strategies as one can infer from the vast 
available literature. In the case of PID control, a small sample of 
books is for example [3], [13], [33], [62], [58] and [48]. Well-
known books on model predictive control are for instance [9], 
[27], [29], [39], [42] and [55]. However, none of these books treat 
the multi-objective control problem. Only in [9] and [42], MOO 
ideas are shortly mentioned. In [41], it is treated the MOO-PID 
control but not the MOO-MPC. 

In spite of the absence of MOO in the literature, MOO has 
been applied to design control systems based on PID as well as on 
MPC strategies in several opportunities. This is, for instance, the 
case of PI and PID controller design described in [30] as a MOO 
problem. A simplified goal-attainment formulation of MOO 
problem is used to tune PI and PID controllers in [37]. The design 
problem of a robust PID controller with two degrees of freedom 
based on the partial model matching approach is treated in [35]. 
In [8], a design procedure for tuning PID controller parameters to 
achieve a mixed H 2/H ∞ optimal performance using genetic algo-
rithms is described. All mentioned MOO problems deal with 
several objective functions that have to be satisfied by only one 
controller (SISO or MIMO) in a mono-loop control system. MOO 
methods for the simultaneous parameter optimization of PID 
controllers in several interacting control loops can be found for 
example in [20] and [63] for continuous-time systems and [21] 
for the discrete-time case. 

A MOO framework for MPC has been proposed in [36]. The 
approach is based on a lexicographic algorithm taking advantage 
about the fact that for this method, objective functions can be or-
dered according to pre-established priorities. Another MOO-
MPC approach is presented in [65], where the performance 
index is formulated as MOO problem and the goal attainment 
method is used to obtain the solution. In [34], a similar approach is 
used to solve a nonlinear MPC problem by using a NARX model. 
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 In the current paper, controller design for MPC and PID 
strategies based on MOO techniques is reviewed including the 
most used MOO algorithms and software implementations. In 
Section II, optimal PID and MPC based on a unique performance 
index are shortly summarized. Section III is dedicated to present 
the essentials of MOO, i.e. definitions and most relevant methods. 
Available software for MOO is the subject of Section IV. In 
Section V, some works on MOO-PID and MOO-MPC are 
compared. Finally, Section VI is devoted to draw conclusions.  

II. OPTIMAL CONTROL SYSTEM DESIGN 
Control design based on the minimization of performance indices 

is an well established area in control engineering (see e.g. [6] and 
references herein). Conventional optimal control systems are 
obtained by optimization of a single performance index, which in 
general is defined as 
 0 0[ ( ), , ( ), ( ), , ( ), ]J J k k k k= e e u u α , (1) 
subject to constraints 
 0 0[ ( ), , ( ), ( ), , ( ), ] 0eg k k k k =e e u u α  or (2) 
 0 0[ ( ), , ( ), ( ), , ( ), ] 0ieh k k k k ≤e e u u α , (3) 
where e(·) is the control error, u(·) is the control or decision 
vector (controller’s outputs) and α is a parameter vector (normally 
containing controller parameters). 

According to which argument J is optimized, two different 
optimization problems can be considered: (a) if J is optimized with 
respect to the parameter vector α, i.e. 
 o

0 0( ( ), ( ), ) min [ ( ), , ( ), ( ), , ( ), ]J k k J k k k k=
α

e u α e e u u α , (4) 
one is in presence of a parameter optimization problem and (1) is 
a cost function; (b) on the contrary, J can also be optimized with 
respect to the function u(k), i.e. 
 o

0 0( )
( ( ), ( ), ) min [ ( ), , ( ), ( ), , ( ), ]

k
J k k J k k k k=

u
e u α e e u u α . (5) 

This is a problem of calculus of variations (or multi-stage optimi-
zation problem). That is a dynamic optimization problem, where (1) 
is now a cost functional and uo(k) is the optimal control law. Some-
times optimization problems can be solved analytically leading to 
an elegant closed solution, but in general optimization problems 
with constraints can only be solved numerically. Numerical 
methods to solve parameter optimization problems can be used in 
a repetitive fashion to solve problems of dynamic optimization. 
The most important limitation here is that the optimization must 
normally be carried out on-line. In this case, the problem is also 
subject to time constraints given by the sampling time. 

The optimal PID controller design belongs to the first class of 
optimization problems, while MPC is a typical case of the second 
one. In the following subsections, standard approaches for optimal 
PID and MPC are shortly summarized. 

A. Parameter-optimized PID Controllers 
The idea of choosing PID controller parameters by minimizing 

an integral square cost function is not new. It is already proposed in 
[54] for a discrete-time adaptive PID controller. The continuous-
time case is analogous. The problem then is to find parameters for 
the digital PID controller so that the performance index 
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or equivalently (according to the Parseval’s theorem) 

 1 1 11 [ ( ) ( ) ( ) ( )]
2

J e z e z u z u z z dz
j

− − −= + Δ Δ∫ λ
π

 (7) 

is minimized. 
The parameter λ is referred to a Lagrange multiplier and it can 

be exactly determined. However, it is usually assumed that λ is a 
free design parameter by mean of which control signal amplitudes 
can be softly limited. Thus, the index (6) can be seen as a weighted 
sum objective function. The digital PID control law is given by  
 1 1( ) ( )  ( ) ( )P z u z Q z e z− −= , (8) 

where P and Q are the polynomials  
 1 1( ) 1P z z− −= −  and 1 1 2

0 1 2( ) Q z q q z q z− − −= + + . (9) 
Variable e(z) is the control error e(z) = r(z) − y(z). Moreover, the 
coefficients qi must satisfy the inequality (see [31] for details) 
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in order to hold the step response characteristic of a continuous-
time PID controller. If it is assumed that the plant is modelled by 
 ( ) ( ) ( ) ( )A z y z B z u z=  (11) 
and the controller design is carried out for a step setpoint 1 1( ) 1/(1 )r z z− −= − . 
Hence, e(z) and Δu(z) are given by  

1

( )( )
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− +
 and 1

( ) ( )( )
(1 ) ( )  ( ) ( )

A z Q zu z
z A z Q z B z−Δ =

− +
 (12) 

respectively. The unknown coefficients of Q, q = [q0, q1, q2]T 
are obtained by using a numerical optimization algorithm as e.g. 
Fletcher-Powell or Hooke-Jeeves. The index (7) can be evaluated 
by using the algorithm given in [2] (see [18] for the evaluation of 
this and other square criteria). Parameter λ is normally difficult 
to select and therefore chosen by trial and error. 

B. Model Predictive Control 
Model Predictive Control (MPC) comprises a family of control-

lers signed by the same design philosophy and similar characteris-
tics (see e.g. [9], [42] and [55]). The design is based on three 
main steps: (i) the use of a model to predict the output vector y, N 
step in the future, (ii) the optimization of a quadratic performance 
index during a finite period of time delimited for the control error 
by the prediction horizon N and by Nu for the control action, i.e.  
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(where S = ST and Q = QT are positive semidefinite matrices and 
R = RT is a positive definite matrix; 2 T|| || =Mp p M p , e(·) = r(·)-y(·), 
Δu(·) = u(·) – u(· -1). y ∈ 

m
, r ∈ 

m
 and u ∈ 

l are the output 
vector, reference vector and input vector, respectively) and 
(iii) the application of the receding horizon principle, i.e. all control 
signals u(k) … u(k+Nu) are calculated and only u(k) is applied, in 
the next step the sequence is calculated again taking into account  
new values for y and r and again, only the new u(k) is used and 
so on. The solution of the unconstrained problem is given by  

T 1 T( ) [ ][ ] ( )e e ek −Δ = + −u I 0 0 R G Q G G Q r f . (14) 

where Qe = diag (S, Q, …, Q), Qe = diag (R, …, R), G is a 
Toeplitz matrix containing the step response coefficients of the 
plant, T[ ( ) ( )]k k N= +r r r and f contains terms of the free 
response of the predictor and depends on the used model. 

One of the most important advantages of MPC is the ability to 
handle explicitly constraints in the optimization process, but in this 

case the optimization cannot be carried out analytically. The solu-
tion has numerically to be found on-line at every time step.  

III. MULTI-OBJECTIVE OPTIMIZATION 
A. General Definitions 

Multi-objective optimization (also known as multi-performance, 
multi-criteria or vector optimization) was introduced by V. Pareto 
([49]) and it can be defined as the problem of finding a vector of 
decision variables (or parameters), which satisfies constraints and 
optimizes a vector field, whose elements represent objective func-
tions. In general, the MOO problem can be formulated as follows: 

 Find  u = [u1 … ul]T or α = [α1 … α np]T 
 to optimize J(u,α) = [J1(u,α) … Jnf(u,α)]T  
  with respect  to u or to α 
 subject to gi(u,α) ≤ 0 and hj(u,α) = 0, 
 for  i = 1,…, ng,  j = 1, …, nh, 
where J∈ϑ ⊂ nf is the objective vector field, u∈U ⊂ l is a 
vector of decision variables, α∈Λ ⊂ np is a vector of fixed 
parameters, nf is the number of objective functions, ng is the 
number of inequality constraints and nh is the number of 
equality constraints. Optimize means here either minimize or 
maximize depending on the application. If all Ji are convex, all 
inequality constraints gi are convex and all equality constraints hj 
are affine, the vector optimization problem is also called convex. 

Contrary to single-objective optimization (SOO), there is for 
MOO no single global solution and it is often necessary to deter-
mine a set of points that all fit a predetermined definition for the 
optimum. Usually, it is accepted as multi-objective optimality the 
definition given by Pareto ([49]), which is stated as follows: 
Definition 1: A point, u°∈U ⊂ l, is Pareto optimal with respect 
to U iff there does not exist another point, u∈U, such that 
J(u,α) ≤ J(u°,α) and Ji(u,α) < Ji(u°,α) for at least one function, 
i.e. there is no way to improve upon a Pareto optimal point 
without increasing the value of at least one of the other 
objective functions. Notice that the definition given above can be 
applied to the parameter vector α instead of the vector of decision 
variables u and this is also valid for the next definitions. 

Sometimes, it is useful to have a definition for a suboptimal 
point that is easier to be reached by the algorithms and simultane-
ously is sufficient ‘good’ for practical applications. This is obtained 
e.g. from the Weakly Pareto Optimality: 
Definition 2: A point, u°∈ U ⊂ l, is weakly Pareto optimal iff 
there does not exist another point u∈U, such that J(u,α) < J(u°,α). 

In other words, a point is weakly Pareto optimal if there is 
no other point that improves all of the objective functions simul-
taneously. Hence, Pareto optimal points are weakly Pareto optimal, 
but weakly Pareto optimal points may not be Pareto optimal. 
For any given problem, there may be an infinite number of Pareto 
optimal points, which constitute the Pareto optimal set, i.e. 

{ }| , ( , ) ( , ) : ( , ) ( , )l
i i i iiJ J i J J℘ °∈ ⊆ ¬∃ ∈ ∀ ≤ ° ∧∃ < °u U u U uα u α uα u α .(15) 

The Pareto optimal set ℘ ⊂ U has an image in the criterion 
space ϑ, which is denoted here as ℘f and is called Pareto front. 
Definition 3: For a given vector objective function J(u,α) and a 
Pareto- optimal set℘, the Pareto front is defined as follows:  

 { }( , ) | ,nf
i if i℘ ∈ ⊆ ∈℘ ∀J u α uϑ , (16) 

An important point in the criterion space is the utopia point, 
which is defined in the following: 
Definition 4: A point, J° is a utopia point iff °=min ( , )i iJ J u α  
with respect to u for each i = 1,…, nf . 
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 The set of Pareto-optimal solutions is also called non-inferior, 
non-dominated, admissible, or efficient solutions. When the non-
dominated vectors are collectively plotted in the criterion space, they 
constitute the Pareto front. Fig. 1 illustrates with a three/two dimen-
sional example all concepts introduced above. 
 u3 

J1

J2 

Pareto front

Utopia point 

Criterion 
space  

ϑ ⊂ 2 

J2°

J1° 
J:U→ϑ 

u2 

Solution 
space  

U ⊂ 3 u1 

Threat 
point c

Fig. 1. Evaluation mapping of the multiobjective problem 

B. Decision Making and Control Performance  
 All points of the Pareto front are equally acceptable solution of 

the vector optimization problem. However, it is necessary to obtain 
only one point in order to be able to implement the controller. This 
selection is carried out by a decision maker. Although decision 
making is a crucial aspect in the design, it seldom mentioned in the 
MOO control literature. However, decision making is a world of 
its own and therefore only a general idea is given here. 

The decision making can be undertaken from two different 
points of view: i) by including additional criteria such that at the 
end only one point satisfies all of them, and ii) by considering one 
point that represents a fair compromise between all used criteria. 

 The first option allows introducing additional criteria that could 
be oriented to improve the control performance. For example, if 
the Pareto front corresponds to J = (JISE, JISC), eq. (19), the final 
solution can be obtained for the point that leads to the minimum 
overshoot or the maximum rise time. It is also possible to start a 
min-max optimization problem with domain in the Pareto set in 
order to find the solution for the maximum rise time and the 
minimum overshoot. In [64], it is selected the point whose parame-
ters minimize the structured singular value μ such that the obtained 
controller is the most robust contained within the Pareto set. 

 The second option does not introduce more information for the 
decision making and only a fair point for all indices is searched. 
The ideal case would be to reach the utopia point. However, it is 
difficult to optimize all individual objective functions independently 
and simultaneously. Moreover, the utopia point J° is normally 
unattainable and it is not in ϑ. Thus, it is only possible to find a 
solution that is as close as possible to the utopia point. Such 
solution is called compromise solution (CS) and is Pareto optimal. 

Two more efficient procedures to select a fair point are coop-
erative negotiation ([22]) and bargaining games ([61]). Solutions 
of a bargaining game lead to some practical procedure for choos-
ing a unique point (see Fig. 2). For example (see [61]), the Nash 
solution of the game (NS) corresponds to a point of the Pareto set 
which yields the largest rectangle (c, B, NS, A), the Kalai-
Smorodinsky solution (KS) is situated at the intersection of the 
Pareto front and the straight line, which connects the threat point 
and the utopia point, and the egalitarian solution (ES) yields 
the point given by the intersection of the Pareto front and a 45°-
line through the threat point. 

However, the complexity due to the large number of objective 
functions and temporal deadlines, within which the optimization 
must normally be accomplished, reduce the applicability of 
classical game theory techniques to design optimal bargaining 
models for decision making. 

C. Most Important MOO Methods 
At the present, a very huge number of methods to solve MOO 

problems can be found in the specialized literature. Broad reviews 
can be found e.g. in [1] and in [43]. In this work, only the 
most important methods, which have been used to solve 
PID/MPC control problems, will be included for sake of space. 

Methods to solve MOO problems can be classified according to 
a wide spectrum of characteristics (see [44]). In Fig. 3, a classifica-
tion based on [14] is given. The two main groups are: (a) 
Scalarization methods and (b) the Pareto methods. 

Scalarization methods require the formation of an overarching 
objective function aggregating contributions from all components 
of the objective vector, normally by using coefficients, exponents, 
constraint limits, etc. and then methods for single objective opti-
mization are used to find a unique solution. They are very efficient 
and fast to find a unique solution. On the other hand, they do not 
always give acceptable solutions because of interest conflicts 
of design objectives. Moreover, these methods can converge to a 
local optimum and therefore they are not able to find the global 
solution. Finally, it is not always clear for the user, how to express 
the preferences for the scalarization process. 

 Pareto methods first find the optimal solutions space and then a 
unique optimal solution from the Pareto optimal set is chosen 
by a decision maker. Thus, these methods keep the elements of the 
objective vector separate throughout the optimization process 
and use the concept of dominance to distinguish between inferior 
and non-inferior solutions. The advantage of Pareto methods con-
sists in the fact that the preferences can be expressed once the 
optimization is already carried out, keeping the different objective 
functions separately. Therefore, they are able to take care of all 
conflicting design objectives individually but compromising them 
concurrently. However, the search process requires a very high 
computation burden and the convergence can be very slow. 
 MOO 

Methods 

Scalarization Methods 
(a priori articulation of preference) 

Pareto Methods 
(a-posteriori articulation of preference) 

NBI 
(Normal Boundary Intersection) 

MOEA 
(Multi-Objective Evolutionary Alg. 

WSA 
(Weighted Sum Approach) 

GAM 
(Goal Attainment Method) 

Lexicographic Method 

Evolutionary 
Algorithms 

Non-evolutionary 
Algorithms 

MOGA 
(Multi-Objective Gen. Alg.) 

NSGA, NSGA-II 
(Non-dominated Sorting Gen. Alg.) 

SPEA, SPEA2 
(Strengthen Pareto Evolutionary Alg.)

NPGA 
(Niched Pareto Gen. Alg.)

VEGA
(Vector Evaluating Gen. Alg.)

Non-Pareto, non-scalarization 
Methods 

ε-constraint Method 

Fig. 3.  General classification of MOO solving methods. 

Remark: In addition, it is possible to find methods without 
articulation of preference and methods with progressive articula-
tion of preference, also called iterative methods (see [1] for details). 

In general, it is difficult to recommend a particular method and 
the choice mostly depends on the application. As a rule, some 
authors ([43]) suggest to select first methods, which guarantee nec-
essary and sufficient conditions for Pareto optimality. Then, meth-
ods those guarantee only sufficient conditions and finally other ones. 

1) Weighted Sum Approach 
This is probably the most widely used MOO method. It consists 

in assigning a non-negative weight γi to each of the i objective 
functions, so that the overarching scalar objective function can be 
expressed as 

J1 

J2 

Pareto 
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NS A 
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Fig. 2. Different criteria for the decision making 
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 T ( , )J = γ J u α , (17) 
where T

1[ ]nfγ γ=γ is the weight vector. The other variables were 
already defined in Subsection A. Weights are chosen in such a 
form that | | 1iγ∑ = . Moreover, the objective functions have to 
be normalized since not all objectives have the same range of 
values. The optimal solution is given by 
 T( , ) min ( , )J J° = ° =

u
u α γ J u α . (18) 

The most important advantage of this method is the transforma-
tion of the vector objective function in a single-objective function, 
such that traditional optimization methods can be used. The prob-
lem is the setting of the weights: On one hand, results are sensitive 
to weights ratio and they are difficult to be chosen. On the other 
hand, weights indicate the relative importance of the corresponding 
objective function but they do not mean priorities. Hence, if the 
optimization process cannot be completed for all objective 
functions, the method does not indicate, in which sequence 
objective functions may be discarded. Moreover, the method 
presents difficulties in case of non-convex problems. 

2) Goal Attainment Method ([23]) 
This method is formulated as follows: 
 find  u, ξ 

 to minimize ξ 
 subject to Ji(u,α) − γi ξ ≤ gi, for i = 1, …, nf, 
where Ji(u,α) are objective functions, γi are weights indicating 
the relative importance of each objective function, gi are the 
goals, which have to be reached, and ξ is an unrestricted scalar. 

This method presents similar properties as the weighted sum 
approach, where the most important difficulty is to select the 
weights, which, in turn, do not correspond to priorities. 

3) Lexicographic method ([4]) 
In this method, objective functions are arranged in order 

of importance by the user. The optimum solution u° is then 
obtained by minimizing the objective functions, starting with 
the most important one and proceeding according to the order of 
importance assigned to the objectives. Thus, the following opti-
mization problems are solved one at a time: 
 minimize Ji(u,α) respect to u∈U 
 subject to Jj(u,α) ≤ Jj(uj°,α),  
 for  j = 1, 2, …, i-1, i > 1, i = 1, 2, …, nf. 

The subscript i represents here not only the objective function 
number but also the priority assigned to the objective, and 
Jj(uj°,α) represents the optimum of the jth objective function, 
found in the jth iteration. Notice that after the first iteration 
Jj(uj°,α) is not necessarily the same as the independent minimum 
of Jj(u,α), because of the introduction of new constraints. 

The advantage of this method is that there is only one optimum 
for a given lexicographic order and it is very easy to implement 
because of the sequential optimization. Its disadvantage is that 
normally objectives with lower priorities will not be satisfied. 
Thus, priority assignment, which has to be done a priori, is crucial 
in order that the methods would be successful. 

4) Multiobjective Evolutionary Algorithms 
Evolutionary optimization algorithms simulate the survival 

of the fittest in biological evolution by means of algorithms. The 
renewal of a population (entire set of variables that represent 
a group of potential solution points) is based on the so called 
‘genetic operators’: recombination (out of two points of the popu-
lation picked out so that a new point is generated, e.g. by averag-
ing), mutation (single, randomly selected digits of a newly gener-
ated point are substituted by a realization of a random variable) and 
selection (out of the union of the original population and the newly 
generated points, which are taken over into the new population 
with the best fitness). There are many algorithms to implement this 
functions (see [38] and [66] for comparative reviews).  

Evolutionary algorithms can be applied to solve SOO problems 
as well as MOO problems. The MOO case was first studied in 
[26]. Today, there are many MOEAs distinguished mainly by the 
algorithms for the population ranking in the fitness assignment. 
The most important are: MOGA (Multiple Objective Genetic 
Algorithm, [17]), NSGA-II (Non-dominated Sorting Genetic 
Algorithm, [15]), SPEA2 (Strength Pareto Evolutionary Algo-
rithm, [67]), NPGA-II (Niched Pareto Genetic Algorithm, [16]). 

A very important advantage of the MOEAs is that they do not 
need information about the objective-functions derivatives and 
they can solve non-convex problems. Moreover, the algorithms are 
relatively robust and they do not require solving a sequence of 
single-objective problems and it is a parallel search technique. 
However, Pareto optimality is not a concept embedded in the 
fundaments of evolutionary algorithms. Consequently, it could be 
that a Pareto optimal solution born and then, by chance, also it dies 
out. An additional drawback is the intensive computational burden 
required until the solution is obtained. 

5) Other Algorithms 
Finally, the NBI method (Normal Boundary Intersection) was 

proposed in [12]. It is a very fast Pareto method that does not 
belong to the family of evolutionary algorithms. The VEGA 
(Vector Evaluated Genetic Algorithm, [56]) is also an algorithm 
for MOO based on a genetic algorithm but it is neither a scalari-
zation nor Pareto based algorithm. 

IV. AVAILABLE SOFTWARE IMPLEMENTATIONS 

In order to be able to implement multi-objective optimal 
control systems it is reasonable to ask about the state of the 
art of the development of software for such task. A short review 
about available software can be found in [44]. Updated informa-
tion is also given in the web (for example in [11] and [45]). 

Because the MATLABTM software system is a very common 
environment for control engineers and students and also for 
the sake of space, this review is limited to code available for 
this package. Available toolboxes for MOO can be divided 
in two groups: commercial code and free code. Both will be 
presented in the following two subsections without intending 
to be exhaustive because this field changes dynamically. 

A. Commercial Code for MOO Problems 
Matlab itself bring support for MOO by means of its Optimi-

zation ToolboxTM ([5]). It includes the weighted sum method, the 
ε-constraint method and the goal attainment method. Another 
general purpose development environment in Matlab for optimiza-
tion problems is TOMLAB ([28]). Its support for MOO is given 
through FORTRAN routines that are acceded by means of a 
MEX interface. However, this software does not support Pareto 
methods. Implemented methods are e.g. weighted sum, ε-con-
straint, hierarchical optimization, min-max and global criterion. 
In [32], the software package MOPS (Multi-Objective Parameter 
Synthesis) is presented. The MOO support is based on min-max 
MOO, which is solved by reformulating it as a non-linear pro-
gramming problem. Matlab is also supported by a MEX interface. 

A comprehensive implementation of evolutionary algorithms 
in Matlab is given by the GEA Toolbox (GEATbx, [51]), 
where multi-objective ranking of MOGA ([17]) and goal attain-
ment are completely implemented. 

B. Free Code for MOO Problems 
Free Matlab code for MOO problems, which is not genetic-

algorithm based, is difficult to find. In fact, only the NBI Toolbox 
([12]) could be found by the author. However, this toolbox 
needs the Optimization Toolbox and therefore it cannot be 
considered completely free. 
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On the contrary, several free toolboxes for MOO are available 
for evolutionary algorithms. In [57], a small but complete 
package that implements the NSGA-II algorithm and some 
examples is available. Moreover, a complete package named 
SGALAB including many algorithms (SPEA2, NSGA-II, VEGA, 
MOGA, etc.) is currently being developed. A beta version can be 
downloaded from [10]. The drawback of this software consists 
in the fact that the Matlab source code is not available with 
exception of the examples. In addition, a small package 
based on NSGA is available in [53]. 

Finally, the MOEA toolbox described in [60] is no longer 
available either on the web or by writing to the author. 

V. MULTI-OBJECTIVE CONTROL SYSTEM DESIGN 
The controller design based on the optimization of performance 

indices (6) and (13) is actually the solution of a MOO problem 
since (6) and (13) can be considered as weighted sums of objective 
functions. The a-priori selection of weights yields a unique 
solution like a method with a-priori articulation of preferences. If 
the weighted sums are decomposed in its components, the vector 
performance indices  
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are obtained, revealing the multi-objective nature of the problem. 
Moreover, the MPC with constraints can also be analyzed as a 
MOO problem because constraints can normally be formulated 
as additional objective functions with priorities. The aim of this 
Section is to describe some works, where MOO techniques are 
used for a particular goal. The summery is presented in Table I. 

A. Multi-objective PID Control 
Maybe one of the most important contributions in the field of 
MOO-PID is presented in [50], where several classic measures in 
time domain (overshoot, rise time, settling time) together with 
IAE index (Integral absolute error) are simultaneously optimized 
by using an evolutionary algorithm. A similar approach is pre-
sented in [30] but the solution is obtained by using a gradient 
MOO algorithm. In [59], the idea was just to eliminate weighting 
factors by using a two-objective optimization problem for the 
continuous time case. The solution is then found by using a genetic 
algorithm. In [52], a similar approach for the continuous-time case 
but for an objective function based on |u| is proposed. 

Finally, a PI controller is optimized in [37] by using special 
objective functions (Weighted Integral Square Error, WISE, 
gain and phase margins), which are derived for first order 
plus delay time (FOPDT) models and integrator plus delay 
time (IPDT) models. The MOO problem is solved by using 
the Goal Attainment Method.   

B. Multi-objective Predictive Control  
A MOO framework for MPC has been proposed in [36] and 

applied in [47]. The approach is based on a lexicographic algorithm 
taking advantage about the fact that for this method, objective 
functions can be ordered according to pre-established priorities. As 
example, three objective functions are given in addition to the 
standard cost index J4 given by (13): the size of the largest 
constraint violation 
 1 1 2( ) max{0; ( , ); ( , );  ; ( , )}ngJ g g gg u x u x u x , (21) 

where g models the constraints, x is the vector of state variables 
and u the control vector, the weighted sum of constraint violations 
 T T

2 ( ) ( , ) ( , ) ( , )J + + ++g g u x M g u x ν g u x , (22) 

with ( , ) max{0, ( , )}ig+g u x u x , M > 0 and ν > 0, and the largest 
element in index set of violated constraints 
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 This MOO approach for MPC contributes to improve the 
feasibility of the algorithm since constraints can be relaxed 
according to on-line assignable priorities when their satisfaction is 
not strictly necessary. The cost, which must be paid for this 
advantage, is an increased computational burden. This topic has 
still to be studied. Other approaches of MOO-MPC are given 
in [7] and in [65] in order to implement a control system for 
nonlinear system; in [25] to obtain robustness and in [46] to 
satisfy objectives with different priorities. 

VI. CONCLUDING REMARKS AND FINAL DISCUSSION 
In this paper, a short overview about MOO methods and their 

application to PID and MPC is presented. In general, the 
multi-objective formulation of control problems seems to be a 
very attractive approach in order to improve control systems 
in many directions and it appears as a promising methodology 
for the near future. However, the state of the art of algorithms 
for MOO allows concluding that at the present time not all optimal 
control problems can be formulated as a MOO problem: Multi-
objective parameter optimization problems can efficiently be 
solved by the existing algorithms since the optimization is 
habitually carried out off-line. This is, for example, the case of 
parameter optimization of PID controllers. 

TABLE I 
SHORT SUMMERY ABOUT THE MOST IMPORTANT APPLICATION OF MOO IN CONTROL ENGINEERING 

MOO-PID 
REFERENCES AIM FOR USING MOO MOST IMPORTANT OBJECTIVE FUNCTIONS USED MOO REAL-TIME

[50] Stabilize the system + minim. performance measures Overshoot, rise time, settling time, IAE NSGA-II yes 
[52] Control of a non-linear plant with a fixed-gain PID ISE + ISC SPEA2 yes 
[30] Simultaneously satisfaction of many objectives Overshoot, rise time Gradient  No 
[37] Simultaneously satisfaction of many objectives Gain and phase margins, WISE Goal Attainment No 
[59] Elimination of weighting factors ISE +  ISDC MOGA yes 

MOO-MPC 
[36], [47] Fault tolerant control Duration of constraint relaxations, square norm of 

deviations, size of largest constraints violation Lexicographic No 

[7] Alternative to a multi-model control scheme Eq. (13) for each neural network (nonlinear system) WARGA, NSGA No 
[46] To satisfy objectives with different priorities Absolute values of deviations of outputs and control signals  Not mentioned No 
[65] Control of nonlinear systems with linear controllers Sum of square errors, sum square of Δu Goal Attainment No 
[34] Solving a problem of application Energy consumption, filtration time of pulse jet fabric filters Goal Attainment No 
[25] Robust control system Eq. (13) for each linearized model of the nonlinear system Weighted sum  No 
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On the contrary, controllers, which calculate the control 
action on-line like MPC, can today use MOO techniques in 
case of systems with slow dynamic as many applications of 
process control. Electromechanical as well as mechatronical 
systems will probably have to wait for more powerful hardware 
and more efficient algorithms. 

Thus, the real-time use of MOO algorithms is, in general, 
not possible at the moment. Moreover, decision making for 
control applications is also a field that needs more ideas and 
considerable more research. 
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