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Abstract— Many concepts of linear control theory can be
extended to the nonlinear domain provided one restricts
oneself to a neighborhood of the equilibrium. But what
happens beyond that neighborhood? The paper addresses
this question for the special case of a system defined on a
compact boundaryless manifold.

I. INTRODUCTION

An extensive literature exists on both the theoretical

and the practical aspects of global nonlinear control,

see e.g. [1] and [2]. A recent book chapter [3] reviews

and discusses the strengths and the limitations of neural

networks for the control of complex systems. One of the

conclusion of the authors is that a coherent theory of

nonlinear control with strong implications on practical

control design is missing to date. Is it that the theory is

too involved or are we still missing some theory which

would unify the concepts developed so far? The objective

of this paper is to review some of the concepts developed

in geometric control theory, and, in fact, to point out

a new geometric aspect. To be precise, this aspect is

geometric in the sense that it deals with topological prop-

erties of a geometric object, a manifold, and algebraic

in that it uses a tool from algebraic topology to describe

these properties.

We begin by characterizing the natural state space of a

nonlinear dynamic system. What is the essential differ-

ence between linear and nonlinear systems, from a geo-

metric viewpoint? The state space R
n of a linear system

is “flat” in the sense that it expands to infinity along the

direction given by the vectors of a basis of R
n. The space

of nonlinear systems, on the other hand, is curved and is

defined as the manifold M , where a point p ∈M if there

exists an open neighborhood U of p and a homeomorphic

map ϕ : U → ϕ(U) ⊂ R
n, called the (local) coordinate

chart of M . In other words, the manifold “looks” locally

like R
n. This simple fact has an important consequence:

Many coordinate systems may be needed to describe

the global evolution of a nonlinear dynamic system.

While the manifold is an abstract geometric object, the

coordinate system is the physical handle on that object

through which we have to interact with the system when
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we control it. It is important to keep this in mind when

designing global nonlinear controllers. There is extensive

literature on the (global and semi–global) control of

specific systems having manifolds as their state–spaces,

e.g [4], [5]. Also, the question of global controllability

has created an important strand of literature (see e.g. [6],

[2]) which, however is not addressed in this paper. We

simply assume, that any point of the manifold can be

reached from any other point in finite time through a

suitable choice of the controls.

II. CONTRACTIBLE SPACES

A first hint of the importance of geometrical properties of

the state space for the study of global nonlinear control

is the following well known fact: Global asymptotic

stabilization is impossible if the state space X is not

a contractible to the origin.

A space X is said to be contractible to a point x∗ ∈
X if the identity function on X is homotopic to the

constant function which maps all of X into x∗. We use

here a notion from algebraic topology, homotopy, which

provides us with a precise meaning of a continuous

deformation of one function into another. Two maps fi :
X → Y , i = 0, 1 are homotopic if there exists a family

of continuous maps ft : X → Y , t ∈ [0 1], varying

continuously from f0 to f1. Two spaces X and Y have

the same homotopy type if there exist maps f : X → Y
and g : Y → X such that the composites g ◦f : X → X
and f ◦ g : Y → Y are homotopic to the identity map

of X and Y respectively. Being of the same homotopy

type is weaker than being homeomorphic since for the

latter we require that g ◦ f and f ◦ g are actually equal

to the identity map.

An important special case is when Y ⊂ X . f : X → Y
is a retraction of X onto Y if f |Y = idY . If, at the same

time, f is also homotopic to the identity map idX on X ,

then Y is a deformation retract of X . This means that

Y is the result of a continuous deformation of X which

leaves all points already in Y invariant. These concepts

can be transferred to a familiar situation encountered in

the phase space of a dynamical system. The region of

attraction A ⊆ X of an asymptotically stable fixed point
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x∗ ∈ A is continuously deformed into x∗ while x∗ itself

remains invariant. The deformation retraction is given

by the flow, i.e. let φt : A → A be the usual one–

parameter family of maps φt(x0) = x(t) from initial

state x0 to the state x(t) reached at time t (under the

flow). Then, for any fixed t ≥ 0, φt(x
∗) = x∗ and φt is

also homotopic to the identity map φ0 on A, where the

homotopy h : A× [0 1] → A is given by

h(x, t) = φ[ 1

t
−1](x) (1)

This is true since φt(x) is continuous in t. It follows

that any asymptotically stable fixed point x∗ may be

seen as a deformation retract of its region of attraction.

In particular, let the retraction be given by the flow at

infinity: φ∞ : A→ A is a constant map transferring any

state to x∗. Hence, φ∞ is a contraction of A to x∗. We

conclude that a necessary condition of A to be the region

of attraction of x∗ is that A is contractible.

III. DYNAMICS ON A CELL COMPLEX

In the following we will view the state space, which

we know is curved in general, slightly differently. We

assume that it can be constructed from a set of base

spaces of increasing dimensionality. The space is parti-

tioned into cells where a cell of dimension n is just a

“copy” of the Euclidean space R
n, more formally, an

n−cell, denoted en is the interior Dn − ∂Dn of the n–

dimensional disk and as such homeomorphic to R
n.

The Dn disk itself is called a closed n– cell ēn. We speak

of a CW complex if the space X can be partitioned in

such a way that any n–cell is attached to the (n − 1)–

skeleton formed by the union of cells of dimension ≤ n.

In other words, X is a CW complex if it is obtained from

0–cells by attaching closed cells one after another in

ascending order of dimensions of cells. This construction

is quite intuitive as the following example shows. If we

delete a point pt (a closed 0–cell ē0) from the sphere

S2 and unfold the resulting object to make it “flat”

we obtain a 2–disk (a closed 2–cell). The boundary of

the 2–cell is a circle and we may define the attaching

map h : ∂D2 → pt which collapses the circle back

to the point, an operation which forms the sphere. We

summarize:

A cell complex X is a union of cells (without boundary)

X =
⋃

p,q

ep
q (2)

An attaching map hq : ∂Xq → Xp identifies all points

x on the boundary of a cell complex ∂Xq with a point

h(x) of Xp where p < q. It may be that cells of

some dimensions are missing but the boundary ∂Xq

must always be attached to some subcomplex Xp. We

have seen how the gluing of the boundaries changes the

topological nature of the space. A single chart will not

be sufficient to describe the entire space (as a manifold).

Example: A circle is obtained by gluing together the end

points of a closed 1–cell:

S1 = ē0 ∪h1
ē1 (3)

i.e. the boundary of ē1 is attached to a point pt. While

ē1 = D1 may be described quite naturally as a subspace

of R, the construction in (3) cannot be identified with a

subspace of the flat Euclidean space. At least to charts

a needed to capture the geometry of S1: A candidate

chart ϕ−1 : R → S1, ϕ−1(θ) = [cos θ sin θ]
T

is a

homeomorphism on (−π, π) but not on [−π, π] since

in the latter case it is not one-to-one (θ = −π and θ = π
are mapped to the same point on the manifold). Hence we

have to exclude 2π-periodic points in the definition of the

neighborhood on which the chart is defined. We define

N1 = (−π/4; π+π/4) and N2 = (−π−π/4; π/4). We

obtain the coordinate charts (N1, ϕ
−1) and (N2, ϕ

−1)
which together show that S1 is indeed a 1-manifold.

The number of neighborhoods U necessary to describe

the manifold provides a rough measure of its geometric

complexity.

IV. ONE STEP FURTHER: HOMOLOGY THEORY

There is also a purely algebraic means of characterizing

the geometric complexity of spaces. In doing so, one

focuses on the connectivity of the space. It turns out that

the set of arc–wise connected components of X provides

a basis of a certain Abelian group associated with X . A

homology theory assigns to any topological space a se-

quence of Abelian groups H0(X),H1(X), . . . ,Hn(X)
and to any continuous map f : X → Y a sequence

of homomorphisms f∗ : Hn(X) → Hn(Y ), n ∈ N.

The structure of the groups Hn(X) depends only on the

topological type of X . If f is a homotopy equivalence

then f∗ is an isomorphism. Thus, it is the homotopy type

of X that determines the structure of Hn(X). H0(X)
has a basis in one–to–one correspondence with the arc

components of X . Similarly, Hn(X), n > 0, expresses

what may be called the higher connectivity properties of

X [7].

In order to see how such an algebraization may be

realized we define an orientation on each cell contained

in X (i.e. the corresponding Euclidean space has an
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Fig. 1. Combination of two vectorfields on S1

ordered basis). We may consider a formal sum with

integer coefficients of these cells:

c = a1〈e
q
1〉 + a2〈e

q
2〉 + · · · + am〈eq

m〉 (4)

is called a q− chain of X . The set of all q–chains of X
forms a free abelian group Cq(X) ∼= Z⊕Z⊕· · ·⊕Z (m
copies of Z). Next, we define a boundary homomorphism

∂q : Cq(X) → Cq−1(X) (5)

Let 〈ēq
i 〉 be an oriented q–cell in X . This cell is attached

to the cell complex Y of (at least) one dimension less

than X by an attaching map

h : ∂ēq
i → Y (6)

If X does not contain a (q−1)–cell, then Cq(X) = {0}.

A sequence consisting of chain–groups of a cell complex

X and boundary homomorphisms

· · · → Cq+1(X)
∂q+1
−→ Cq(X)

∂q

−→ Cq−1(X)
∂q−1

−→ (7)

· · ·
∂1−→ C0(X) → 0

is called a chain complex of X . Finally we define the

q–dimensional homology group

Hq(X) = Zq(X)/Bq(X) (8)

Zq(X) = ker ∂q is called the cycle group and contains

all “closed” chains with no boundary ∂c = 0. Bq(X) =
Im ∂q+1, in turn, is the boundary group of X which

contains all chains of dimension q that are the boundary

of some chain of dimension q + 1 i.e. if there is a c′ ∈
Cq+1(X) such that ∂c′ = c then c is in the boundary

group of X . The cell complex is constructed in such a

way that every boundary is also a cycle, i.e. we have

∂q−1 ◦ ∂q = 0 (9)

Homology measures how many q–dimensional cycles

exist which are not the boundary of a higher–dimensional

cell. Let us refer to these cycles as proper cycles. The

homology groups Hq(X) of a (finite) cell complex X
are finitely generated Abelian groups and, hence, can be

written as

Hq(X) ∼= Z
p ⊕ ZT1

⊕ ZT2
⊕ · · · ⊕ ZTN

(10)

T1, T2, . . . , TN are the orders of the subgroup generators

of Hq(X) also referred to as the torsion coefficients

–for the elements of Hq(X) of finite order form its

torsion subgroup. The elements of infinite order form the

free part whose rank p is called the q–dimensional Betti

number of X . We will see that these formal definitions

have geometric interpretations. In particular, the order

of the cyclic generators of Hq(X) may be thought of as

the number of rounds one can take along a cycle without

bounding a region of higher dimension. This will have

a direct consequence on the way a global stabilizer can

be defined on the manifold represented by X .

V. GLOBAL CONTROL DESIGN

The job of the control designer is to make sure that

an asymptotically stable flow (with the origin being a

fixed point) can live on a given manifold. If we speak of

local control, it is quite straightforward –at least from

this abstract perspective– to define a controller using

the “usual toolset” provided by linearization. This is

because, apart from possible constraints due to non–

controllability (that we assume away in this paper) one

does not look beyond the boundaries of a local chart and,

as a consequence, one does not encounter the limitations

that the global analysis brings about. A vector field on a

manifold M is a smooth assignment of a vector tangent

to M at any point. Our objective is to define a vector–

field on the manifold which has a single singular point

at zero and provides a covering of the manifold with

tangent vectors which –loosely speaking– all point to

the remaining fixed point at zero.

It is a well–known fact that the existence of a smooth

vector–field on a compact boundaryless manifold implies

the existence of a certain number of critical points. As an

example, the number of equilibrium points on a surface

depend on the genus (number of holes) of the surface.

A surface of genus k has one source, one sink, and 2k
saddles. This is a consequence of the fact that the vector–

field has to be compatible with the geometry of the space

on which it is defined. The celebrated Poincaré–Hopf

theorem is a much deeper statement of this basic fact

[8].
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Fig. 2. The open–loop vector–field on the torus in local coordinates.
The space covered by the neighborhoods is [0, 2π] × [0, 2π]

The appearance of other equilibria is of course against

our goal of globally stabilizing a single equilibrium point

x∗ on M . A key realization is that the complication arises

when attaching the boundary of the highest–dimensional

cell to a subcomplex which itself is attached to yet a

smaller dimensional subcomplex and so on. Because of

the gluing, it is no longer possible to “move away” a

point on the former boundary and approach it to x∗.

In the language of dynamical systems, the set of image

points of the attaching map h is invariant.

Let us consider a cell en before the attachment. Since

it is homeomorphic to R
n it can be contracted. In other

words, the whole cell can be shrunk to a point inside the

cell (assume that this point is the origin) under the action

of the flow generated by the closed–loop system. On the

boundary of the closed cell ēn, all tangent vectors point

inside. When attaching the cell to em where m < n, the

boundary gets mapped onto a lower–dimensional space

and disappears. The vectors at the missing boundary

point in opposite directions. During the construction of

the cell–complex, cells having no boundaries (cycles)

play an important role since they may appear as the

boundary of a higher–dimensional cell. If this boundary

disappears (due to some further gluing) the cycle still

remains and becomes proper cycle in the sense defined

above. These proper cycles are what concerns the control

theorist since the spaces in which they appear cannot be

contracted.

The only place where the direction of the vectors of a

field may undergo a radical change is the neighborhood

of an equilibrium point. If we want the equilibrium point

to disappear and still realize the directional change of

the tangent vectors we need more than just one vector–

field. In order to design a globally stabilizing controller,

switching among multiple vector fields becomes neces-

ē1(1)ē1(1)

ē1(2)

ē1(2)

ē0 ē0

ē0 ē0

x∗x∗

Fig. 3. Cell decomposition and closed–loop vector field on S1
×S1

sary. The minimum number of such vector fields can

be determined from the homology groups of the space

X on which the dynamics takes place. We explore

this point further by considering two basic examples of

compact, connected 2–manifolds. It will be seen that the

information relevant to the design of a global stabilizer is

contained in the first homology groups of these manifold.

A. The torus T 2

A torus may be represented as the union of two closed

one–cells ē1(1) and ē1(2) which bound a closed 2–cell ē2

but are itself attached to a zero–cell ē0:

T 2 :
(

ē0 ∪h1
(ē1(1) ∪ ē

1
(2))

)

∪h2
ē2 (11)

Figure (3) displays this construction where ē2 corre-

sponds to the familiar square that results after cutting

the torus twice. The fact that all cell boundaries are

ultimately attached to the zero–cell ē0 shows that the

resulting space, is in fact boundaryless. The homology

theory of the torus is given by [9]

H0(T
2) ∼= Z, H1(T

2) ∼= Z ⊕ Z, H2(T
2) = Z.

We focus on the first homology group H1(T
2) since this

describes the way the space is attached to the skeleton

of lower–dimensional cells. H1(T
2) is a free Abelian

group of rank 2 which, in geometric terms, means that

there exist two proper one–dimensional cycles. One may

go round each one these cycles an infinite number of

times without bounding a region of higher dimension.

This comes as no surprise as it is well known that the

torus may be represented as the product of two circles

T 2 = S1 × S1.

We first examine the situation on a single circle S1. Us-

ing the coordinate charts defined previously the system
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Fig. 4. The open–loop vector–field on the projective plane in local
coordinates. The space covered by the neighborhoods is [0, π] ×
[−π

2
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can be described on a subspace of R.

φ̇ = − sinφ+ u (12)

where φ ∈ [−π, π]. It is easily seen that the origin

is asymptotically stable by itself (i.e. for u = 0), but

the point φ∗ = ±π is excluded from the region of

attraction in A ⊂ S1. In order to make this (unstable)

invariant point disappear, we simply choose a controller

u = −φ which “extends” the vector–field beyond φ∗. At

first sight, there is nothing special about this control law

which is even linear. The important point to note, how-

ever, is that the effect of u is quite different depending

on the coordinate chart one operates in. When the chart

(N1, ϕ
−1) is applied, the flow follows the right arc of the

circle and for (N2, ϕ
−1) the left arc. In a neighborhood

of φ∗, the charts overlap and this creates a discontinuity

since a decision has to be made which of the two charts

to applied.

On the torus, the situation is slightly more involved, but

the arguments are the same. First, observe that –having

genus 1– (Euler characteristic 0), there is either none (as

in the case of a Hamiltonian system) or 4 equilibria. A

dynamical system that is consistent with the geometry

of the torus may be described in local coordinates by:

φ̇ = − sinφ+ u1 (13)

ψ̇ = cosψ + sinφ+ u2 (14)

where φ, ψ are both contained in the interval [0, 2π].
The system is obviously globally controllable. The open–

loop system has four equilibria x∗1: locally asymptotically

stable, x∗2: saddle, x∗3: unstable and x∗4: saddle displayed

in figure 2. In order to make x∗ = (0, π) (chosen

arbitrarily) the only invariant point, and moreover, a

stable and globally attracting one, we may define a

vectorfield as in figure 3. The same figure also indicates

ē1ē1

ē1

ē1

ē0 ē0

ē0 ē0

x∗x∗

Fig. 5. Cell decomposition and closed–loop vector field on P 2(R)

the construction of the torus from a square: opposite

sides having the same orientation are identified. While

the identification of the two vertical sides does not

cause any discontinuities (the sides form an invariant

set for the closed–loop flow) the horizontal sides cannot

be identified without interrupting the vector–field. From

the geometry it is clear that another discontinuity is

needed in order to orient all tangent vectors towards the

equilibrium point x∗. This discontinuity is defined along

the diagonal of the square in figure 3. We see that the two

ways of going round the torus on a one–cycle are each an

independent source of discontinuity in the vector–field of

the global stabilizer. The one–dimensional Betti–number

(= 2) of the torus determines the number of cuts that have

to be made in order to contract the whole state space to

x∗.

B. The real projective plane P 2(R2)

Suppose a symmetric rigid body (e.g. a handle) has to be

oriented in space R
3 then a natural state–space is given

by the rotation group SO(3) modulo the antipodal map

contained in O(1). In other words, only the angles of

the body are controlled and any points that lie on the

same line through the origin of R
3 are identified — we

obtain the real projective plane P 2(R) ∼= SO(3)/O(1).
Its topology can be understood by noting that each

such a line intersects the unit sphere S2 in a pair of

diametrically opposite points. The projective plane is

obtained from S2 by subtracting the southern hemisphere

and identifying opposite points on the equator. This

results in a Möbius strip being sewed to the edge of the

upper hemisphere thereby closing the resulting space.
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The cell complex reflects this situation:

P 2(R) :
(

ē0 ∪h1
ē1

)

∪h2
ē2 (15)

The attaching map h2 : ∂ē2 ∼= S1 →
(

ē0 ∪h1
ē1

)

∼=
S1 sends the boundary ∂ē2 of the 2–cell around the 1–

cycle
(

ē0 ∪h1
ē1

)

twice. This is exactly the nature of the

boundary of the Möbius strip which after two rounds

comes back to the starting point. An algebraization of

this construction is given by the homology theory of the

projective plane (see e.g. [9]):

H0(P
2(R)) ∼= Z, H1(P

2(R)) ∼= Z2, H2(P
2(R)) = 0

As before, we focus on the first homology group

H1(P
2(R)) ∼= Z2 = Z/2Z which is a torsion subgroup

with coefficient 2. As in the case of the torus, the

manifold contains a boundaryless curve but after two

rounds this curve bounds a higher–dimensional region,

namely the 2–cell corresponding to the upper hemisphere

in the above construction. H1(P
2(R) is a finite group

since 1 + 1 (mod) 2 = 0, or “two times the antipodal

map gives the identity map”. More importantly, we find

that there is only a single independent way to go round

the projective plane. This has an important consequence

on the design of a global stabilizer. A dynamical system

on the projective plane may assume the following form

in local coordinates:

φ̇ = 0.1ψ · sinφ+ u1 (16)

ψ̇ = − sin(φ− π/2) + u2 (17)

where φ ∈ [0, π] and ψ ∈ [−π
2 ,

π
2 ]. Again, the

system is trivially controllable. Its open–loop equilibrium

is at x∗1 = (π
2 , 0). Figure 4 displays the open–loop

vector–field together with the cells contained in the cell–

complex of the projective plane. Notice the reversed

orientations of the sides (one–cells). When identifying

opposite sides, one of them must be twisted in order

to make the orientations coincide. If the same closed–

loop dynamics is defined as in the example of the torus

the discontinuity at the horizontal side of the square

disappears. Figure 5 displays the closed–loop vector–

field on the projective–plane. It has the exact same

form (in local coordinates) than the one on the torus,

except that there is only a single discontinuity along

the diagonal. This is reflected by the fact that the first

homology group has only a single (finite) generator.

Figures 3 and 5 contain the main statement of the

paper. They demonstrate in very simple geometric terms

that the number of vector–fields required to define a

global stabilizer on a compact manifold depends on the

underlying cell–complex. Figures 6 displays a sample

Fig. 6. Global stabilization of an equilibrium point (marked by a +)
on the projective plane. The open–loop equilibrium is marked as o.

trajectory of the closed–loop system on the projective

plane using an embedding in R
3 (the corresponding

situation on the torus is visualized easily by thinking

of a doughnut).

VI. CONCLUSION

The paper introduces homology to the study of global

nonlinear control problems. Multiple vector fields are

required to cover a compact boundaryless state space

globally. In the examples provided, the minimum number

of such vector–fields is given by the number of (finite or

infinite) generators of the first homology groups.
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