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Abstract— The potential operation of a tokamak fusion reac-
tor in a highly-efficient, steady-state mode is directly related to
the achievement of certain types of radial profiles for the cur-
rent flowing toroidally in the reactor. The time evolution of the
toroidal current profile is related to the poloidal magnetic flux
profile evolution, which is modeled in cylindrical coordinates
using a nonlinear partial differential equation (PDE) usually
referred to as the magnetic diffusion equation. In this paper,
we propose a framework to solve a closed-loop, finite-time,
optimal tracking control problem for the poloidal magnetic
flux profile via diffusivity, interior, and boundary actuation.
The proposed approach is based on reduced order modeling via
proper orthogonal decomposition (POD) and successive optimal
control computation for a bilinear system. Simulation results
illustrate the performance of the proposed controller.

I. INTRODUCTION

A tokamak is a toroidal nuclear fusion reactor where

magnetic fields are used to confine a high-temperature (∼ 108

K) ionized gas or plasma (Fig. 1). At this temperature, the

nuclei of two light atoms such as hydrogen have enough

kinetic energy to overcome the Coulomb barrier (both nuclei

carry positive charges), to fuse into a heavier nuclei, and to

release energy E due to the amount ∆m of matter “lost” in the

process according to Einstein’s famous equation E = ∆mc2

(c denotes the speed of light).

The magnetic field lines twist their way around the toka-

mak to form a helical structure. It is possible to use the

poloidal component Bpol of the helicoidal magnetic lines

to define nested toroidal surfaces corresponding to constant

values of the poloidal magnetic flux. The poloidal flux ψ at

a point P is the total flux through the surface S bounded by

the toroidal ring passing through P, i.e., ψ =
∫

BpoldS. The

dynamics of the poloidal flux ψ is governed in normalized

cylindrical coordinates by a nonlinear parabolic partial dif-

ferential equation (PDE) usually referred to as the magnetic

diffusion equation, where the spatial coordinate corresponds

to the minor radius of the torus. The magnetic diffusion

equation allows three types of control mechanisms: interior

control, boundary control, and diffusivity control. Each one

of these control inputs is a combination of three physical

actuators: the plasma total current, the non-inductive power,

and the average plasma density.
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Fig. 1. Scheme of a tokamak device. The toroidal field (TF) coils are
wrapped “poloidally” around the torus (the short way, going through the
center hole), while the poloidal field (PF) coils are wrapped “toroidally”
(the long way) around the torus. Current flowing in these conducting coils
as well as in the plasma (inductively generated by the central solenoid)
produces the helical magnetic field that confines the plasma. Source: PPPL.

Setting up a suitable current profile, which is proportional

to the spatial derivative of the poloidal flux profile, has been

demonstrated to be a key condition for one possible advanced

scenario with improved confinement and possible steady-

state operation [1]. One approach to current profile control

is to focus on creating the desired current profile during the

plasma current ramp-up and early flattop phases with the

aim of maintaining this target profile during the subsequent

phases of the discharge. Since the actuators that are used to

achieve the desired target profile are constrained, experiments

have shown that some of the desirable target profiles may not

be achieved for all arbitrary initial conditions. In practice,

the objective is to achieve the best possible approximate

matching at time t f = T during the early flattop phase of

the total plasma current pulse, as shown in Fig. 2. Thus,

such matching problem can be formulated as a finite-time

optimal control problem for the magnetic diffusion PDE.

Our previous and current work includes the investiga-

tion of the use of extremum seeking [2] and nonlinear

programming [3] to achieve an open-loop solution for this

optimal control problem. The work is aimed at saving long

trial-and-error periods of time currently spent by fusion

experimentalists trying to manually adjust the time evolutions

of the actuators to achieve the desired current profile at some

prespecified time. However, the reproduction of the nominal

initial conditions is usually challenging for the operators,

who can only guarantee that the real initial conditions are

within a neighborhood of the nominal ones. Therefore, in this

work we propose a closed-loop optimal control law aimed at

eliminating the effect of the disturbances in initial conditions

by tracking the open-loop optimal control trajectory.
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Fig. 2. Current Evolution.

Optimal feedback control design for nonlinear PDE sys-

tems is very challenging and usually unfeasible due to

the high dimensionality of the problem. In this paper, we

use proper orthogonal decomposition (POD) and Galerkin

methods to obtain a low dimensional dynamical model for

the nonlinear PDE system. The POD method is an efficient

approach to extract the dominant dynamics from the infinite

dimensional systems and to obtain low-dimensional ordinary

differential equation (ODE) dynamical models from data

ensembles arising from numerical simulation or experimental

observation. The method has been widely and successfully

used, particulary in the area of fluid dynamics (e.g., [4], [5],

[6], [7]). Fundamental aspects of the POD method applied

to parabolic problems, such as error estimates for the POD-

Galerkin model reduction method applied to both linear and

nonlinear systems, are discussed in [8].

Due to the presence of the diffusivity control term in the

magnetic diffusion equation, the low dimensional dynamical

model obtained turns to be bilinear. To track the open

loop control trajectory for any initial condition, minimize

the control effort, and match a target profile as closely as

possible at a prespecified time t f , a closed-loop finite-time

optimal tracking control problem for a finite-dimensional

bilinear system must be solved. The two-point boundary

value (TPBV) problem arising from the optimality conditions

for the bilinear system is solved using a convergent scheme

based on the successive quasi-linear approximation approach

proposed in [9], [10], [11].

This paper is organized as follows. In Section II, an

infinite-dimensional dynamic model for the poloidal flux ψ
is introduced. Section III describes the control objectives

during the different phases of the tokamak discharge, and

states the control problem. In Section IV, we discuss the

POD method as well as the Galerkin projection method based

on a test function set composed by dominant POD modes.

After obtaining a low dimensional bilinear system, we derive

the optimality conditions in Section V. In Section VI, we

propose an iterative convergent scheme, based on the quasi-

linear approximation method, to compute the optimal control.

A simulation study showing the effectiveness of the proposed

feedback controller is presented in Section VII. Conclusions

and identified future work are presented in Section VIII.

TABLE I

DESCRIPTION OF PARAMETERS

Parameters Description

ψ poloidal flux
ρb effective radius of last closed flux surface
ρ̂ normalized radius ρ/ρb

η(Te) plasma resistivity
Te electron temperature

j̄NI non-inductive source of current density

B̄ toroidal magnetic field
<> flux-surface average

µo = 4π ×10−7 ( H
m

) vacuum permeability

Bφ ,o = 1.85 T reference toroidal magnetic field at Ro

Ro = 1.668 (m) reference point for Bφ ,o

(e.g., geometric center of plasma Rgeo)

F̂ , Ĝ, Ĥ Geometric factors (functions of ρ̂) [12]
I total plasma current
Ptot total power applied
n̄ spatially averaged density

II. CURRENT PROFILE EVOLUTION MODEL

We let ρ be an arbitrary coordinate indexing the magnetic

surface. Any quantity constant on each magnetic surface

could be chosen as the variable ρ . We choose a geometric

radius of the magnetic surface for the variable ρ , defined by

πBφ ,oρ2 = Φ, where Φ is the toroidal magnetic flux enclosed

within the surface. The variable ρ̂ denotes the normalized

radius ρ/ρb, and ρb is the effective radius of the last closed

flux surface. The evolution of the poloidal flux in normalized

cylindrical coordinates is given by the magnetic diffusion

equation [12] (all the parameters are defined in Table I),

∂ψ

∂ t
=

η(Te)

µoρ2
b F̂2ρ̂

∂

∂ ρ̂

(

ρ̂F̂ĜĤ
∂ψ

∂ ρ̂

)

−RoĤη(Te)
<< j̄NI · B̄>

Bφ ,o
.

(1)

The boundary conditions of (1) are given by

∂ψ

∂ ρ̂

∣

∣

∣

∣

ρ̂=0

= 0,
∂ψ

∂ ρ̂

∣

∣

∣

∣

ρ̂=1

=
µo

2π

Ro

Ĝ
∣

∣

ρ̂=1
Ĥ

∣

∣

ρ̂=1

I(t), (2)

where I(t) denotes the total plasma current.

During “Phase I” (see Fig. 2), mainly governed by the

ramp-up phase, the plasma current is mostly driven by

induction. In this case, it is possible to decouple the equation

for the evolution of the poloidal flux from the evolution equa-

tions for the temperature Te(ρ̂, t) and the density ne(ρ̂, t).
Highly simplified models for the temperature and non-

inductive toroidal current density are chosen for this phase.

The profiles are assumed to remain fixed. The responses to

the actuators are simply scalar multiples of the reference

profiles T
pro f ile

e (ρ̂) and j
pro f ile
NI par (ρ̂). These reference profiles

are taken from a DIII-D tokamak discharge [12].

The resistivity η scales with the temperature Te as

η(ρ̂, t) = ke f f Ze f f /T
3/2

e (ρ̂, t), where Ze f f = 1.5, and ke f f =
4.2702 ·10−8 (Ωm(kev)3/2). The temperature is assumed to

follow

Te(ρ̂, t) = kTeT pro f ile
e (ρ̂)

I(t)
√

Ptot

n̄(t)
, (3)

where kTe = 1.7295 · 1010 (m−3A−1W−1/2), Ptot is the total

power of the non-inductive current sources (Electron Cy-

clotron Heating (ECH), Neutral Beam Heating (NBH), etc.),

and n̄(t) is the spatially averaged density.
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The non-inductive toroidal current density is assumed to

follow

< j̄NI · B̄ >

Bφ ,o
=kNI par j

pro f ile
NI par (ρ̂)

I(t)1/2Ptot(t)
5/4

n̄(t)3/2
, (4)

where kNI par = 1.2139 ·1018 (m−9/2A−1/2W−5/4).
We consider n̄(t), I(t), and Ptot(t) as the physical actuators

of the system.

III. CONTROL PROBLEM DESCRIPTION

The control objective, as well as the dynamic models

for current profile evolution, depend on the phases of the

discharge (Fig. 2). During “Phase I” the control goal is to

drive the current profile from any arbitrary initial condition

to a prescribed target or desirable profile at some time

T ∈ (T1,T2) (here T1 = 1.2s and T2 = 2.4s) in the flat-top

phase of the total current I(t) evolution. However, since the

available actuators during “Phase I” differ from those used

during “Phase II,” and are constrained, the prescribed target

profile is not an equilibrium profile during “Phase I”. During

“Phase II” the control goal is to regulate the current profile

using as little control effort as possible because the actuators

are not only limited in power but also in energy. For this

reason, the goal during “Phase I,” and the focus of this work,

is to set up an initial profile for “Phase II” as close as possible

to its desired profile.

It is worth to note that we can rewrite the equation for the

evolution of the poloidal flux (1) as

1

f1(ρ̂)

∂ψ

∂ t
=u1(t)

1

ρ̂

∂

∂ ρ̂

(

ρ̂ f4(ρ̂)
∂ψ

∂ ρ̂

)

+ f2(ρ̂)u2(t)
1

f1(ρ̂)
(5)

with boundary conditions

∂ψ

∂ ρ̂

∣

∣

∣

∣

ρ̂=0

= 0,
∂ψ

∂ ρ̂

∣

∣

∣

∣

ρ̂=1

= k3u3(t), (6)

and where

f1(ρ̂) =
ke f f Ze f f

k
3/2
Te µoρ2

b

1

F̂2(ρ̂)(T pro f ile
e (ρ̂))3/2

(7)

f2(ρ̂) = −ke f f Ze f f RokNI par

k
3/2
Te

Ĥ(ρ̂) j
pro f ile
NI par (ρ̂)

(T pro f ile
e (ρ̂))3/2

(8)

k3 =
µo

2π

Ro

Ĝ
∣

∣

ρ̂=1
Ĥ

∣

∣

ρ̂=1

= 1.0817 ·10−7 (9)

f4(ρ̂) = F̂ĜĤ, (10)

and u1(t) =
(

n̄(t)
I(t)

√
Ptot

)3/2

, u2(t) =

√
Ptot (t)

I(t) , u3(t) = I(t).

It is important to note that the magnetic diffusion equation

(5) admits control not only through u2(t) (interior control)

and u3(t) (boundary control) but also through u1(t), what we

name diffusivity control in this paper. Although interior (see,

e.g., [13] and references therein) and boundary control [14]

of parabolic diffusion-reaction PDE equations such as (5)

have been extensively studied, diffusivity control has been

rarely considered.

IV. MODEL REDUCTION USING POD/GALERKIN

A. POD Modes

The set V = span{y1, · · · ,yn}⊂R
m refers to a data ensem-

ble consisting of the snapshots {y j}n
j=1 obtained from the

simulation of the system (1) on the grid Qi j = (xi, t j), where

i, j are integers with 1 ≤ i ≤ m;1 ≤ j ≤ n (y j(i) = ψ(xi, t j)).
Let {φk}d

k=1 be the orthonormal basis of the data ensemble

V , where d = dimV ≤ m. The goal of the POD method is to

find a subset of l eigenfunctions of the basis {φk}d
k=1 such

that for some predefined 1 ≤ l ≤ d the following average

index is minimized

min
{φk}l

k=1

1

n

n

∑
j=1

∥

∥

∥

∥

∥

y j −
l

∑
k=1

(y j,φk)φk

∥

∥

∥

∥

∥

2

,

subject to (φi,φ j) = δi j,1 ≤ i ≤ l,1 ≤ j ≤ i,

(11)

where (·, ·) denotes the inner product and ‖y‖ =
√

yT y. The

solution of (11) can be found in the literature, e.g., [4], [8].

B. Galerkin Projection

Let V =
{

z|z, dz
dx

∈ L2(ρ̂)
}

, and φ(ρ̂) ∈ V be a test func-

tion, where ρ̂ ∈ [0,1]. By multiplying both sides of (5) by

ρ̂φ(ρ̂), integrating by parts over the spatial domain [0,1],
and taking into account the boundary conditions, we obtain

the weak form (F ′ = ∂F
∂ ρ̂ )

∂

∂ t

∫ 1

0
ρ̂

1

f1(ρ̂)
φ(ρ̂)ψ(ρ̂, t)dρ̂

= u1(t)u3(t)φ(1) f4(1)k3

+u2(t)
∫ 1

0
ρ̂φ(ρ̂) f2(ρ̂)

1

f1(ρ̂)
dρ̂

−u1(t)
∫ 1

0
f4(ρ̂)φ ′(ρ̂)ψ ′(ρ̂, t)ρ̂dρ̂,

(12)

Let VPOD = span{φ1,φ2,φ3,φ4, ...,φl} ⊂ V be a space

consisting of the POD modes from the model reduction

process, and substitute ψ(ρ̂, t) ≈ ψ l(ρ̂, t) = ∑l
k=1 αk(t)φk(ρ̂)

in (12), where φk(ρ̂)∈VPOD, k = 1,2, ..., l. Using the notation

M jk = < φk,φ j

1

f1
>=

∫ 1

0
φk(ρ̂)φ j(ρ̂)

1

f1(ρ̂)
ρ̂dρ̂

K jk = < f4φ ′
k,φ

′
j >=

∫ 1

0
f4(ρ̂)φ ′

k(ρ̂)φ ′
j(ρ̂)ρ̂dρ̂

Pj = < φ j,
f2

f1
>=

∫ 1

0
φ j(ρ̂) f2(ρ̂)

1

f1(ρ̂)
ρ̂dρ̂

Q j = f4(1)k3φ j(1),

(13)

and redefining the control vector as u = (v1,v2,v3)
T =

(u1,u2,u1u3)
T , we obtain a matrix representation for the

reduced order model

M
dx

dt
= −Kxv1(t)+Pv2(t)+Qv3(t), (14)

where x(t) = (α1, ...,αl)
T ∈ R

l , M,K ∈ R
l×l , P,Q ∈ R

l

and vi(t) ∈ R
1 (i = 1,2,3). The vector x(t) is the finite

dimensional approximation, with respect to the obtained

POD modes, of ψ(ρ̂, t). The components of the initial state

are given by xi(t0) = xi
0 = (ψ(t0),φi), i = 1, . . . , l, where

x0 ∈ R
l×1 and φi, for i = 1, . . . , l, are the POD modes.
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V. OPTIMAL TRACKING CONTROL DESIGN

By inverting the matrix M, we can write the equation (14)

as follows

dx

dt
= −M−1Kxv1(t)+M−1Pv2(t)+M−1Qv3(t). (15)

We let vo(t) = [vo
1 vo

2 vo
3]

T be a set of open-loop control

trajectories, which are computed off-line, and xo(t) be the

open-loop state trajectory associated to the open-loop control

vo(t), with a nominal initial state xo
0. The open-loop state

trajectory satisfies

dxo

dt
= −M−1Kxovo

1(t)+M−1Pvo
2(t)+M−1Qvo

3(t), (16)

with initial condition xo(t0) = xo
0.

Let us define e(t) = x(t)−xo(t), vc(t) = v(t)−vo(t), where

v(t) = [v1 v2 v3]
T is the total control inputs and vc(t) =

[vc
1 vc

2 vc
3]

T is the to-be-designed closed-loop control, which

is appended to the open-loop control vo(t). Then, we can

write
de

dt
= A(t)e+B(e)u(t) (17)

where, A(t) = −M−1Kvo
1(t) ∈ R

l×l , B(e) = [−M−1K(e +
xo) M−1P M−1Q]∈R

l×3, u(t) = vc(t) = [vc
1 vc

2 vc
3]

T ∈R
3×1.

We state the optimal control problem for the reduced order

ODE system (17) as

min
u

J =
1

2
eT (t f )Se(t f )

+
1

2

∫ t f

t0

eT (t)Ω(t)e(t)dt +uT (t)R(t)u(t)dt, (18)

where S and Ω are symmetric positive semi-definite matrices

and R is a symmetric positive definite matrix.

By introducing the lagrange multiplier λ (t) ∈ R
l×1, we

can define the Hamiltonian

H(e,u,λ ) =
1

2
eT (t)Ω(t)e(t)+

1

2
uT (t)R(t)u(t)

+λ T (t)[A(t)e(t)+B(e)u(t)].
(19)

By invoking the principle of optimality, ∂H
∂u

= 0, we obtain

the optimal control

u∗(t) = −R−1(t)BT (e)λ (t). (20)

The optimal solution is characterized by the following sets

of differential equations for the state e and costate λ (two-

point-boundary-value problem)

ė =
∂H

∂λ
= A(t)e+B(e)u(t) (21)

λ̇ =−∂H

∂e
=−Ω(t)e−A(t)T λ (t)−uT (t)

∂BT (e)

∂e
λ (t). (22)

The boundary conditions are

e(t0) = e0 = x0 − xo
0, λ (t f ) = Se(t f ). (23)

VI. QUASI-LINEAR APPROXIMATION

The solution of the nonlinear TPBV problem is usually

computationally demanding. In this section, we propose a

successive approach based on the Quasi-linear approxima-

tion [9], [10], [11] to solve the two-point boundary value

problem on-line. By expanding our problem (17) up to first-

order around the previous iteration trajectories ek(t) and

uk(t), the system takes the form

ėk+1 = A(t)ek+1 +Bk(t)uk+1(t), (24)

where k is the iteration number and

Bk(t) = B(e)|ek(t), (25)

with initial condition ek+1(0) = e0. The new cost function

Jk+1 =
1

2
(ek+1)T Sek+1 +

1

2

∫ t f

t0

(ek+1)T (t)Ω(t)ek+1(t)

+(uk+1)T (t)R(t)uk+1(t)dt.

(26)

For each iteration, we have now a standard linear quadratic

optimal control problem defined by (24) and (26) with the

approximate optimal control law given by

uk+1(t) = −R−1(t)(Bk)T (t)λ k+1(t). (27)

At each iteration, the two-point boundary value problem

(21)-(22) reduces to

ėk+1 =A(t)ek+1 +Bk(t)(−R−1(t)(Bk)T (t)λ k+1(t))

λ̇ k+1 =−Ω(t)ek+1(t)−A(t)T λ k+1(t),
(28)

along with the boundary condition

ek+1(t0) = e0, λ k+1(t f ) = Sek+1(t f ). (29)

Let us propose the solution form,

λ k+1(t) � sk+1(t)ek+1(t), (30)

where sk+1(t) is a l × l symmetric matrix. Substituting (30)

into the equation of (28), we can obtain the following Riccati

matrix differential equation

ṡk+1 = −AT sk+1 − sk+1A−Ω+ sk+1BkR−1(Bk)T sk+1, (31)

with terminal condition

sk+1(t f ) = S.

Then, the closed-loop system becomes

ėk+1 = (A−BkR−1(Bk)T sk+1)ek+1, (32)

with the initial condition ek+1(t0) = e0.

The open-loop state trajectories xo(t) are used to evaluate

(25) and start the iterations. The iterative procedure is

stopped when convergence is achieved under given error

tolerance. Finally, by using the convergent solution of the

Riccati equations (31), we obtain the following feedback

control law

u∗(t) = −R−1(t)BT (e)s(t)e(t). (33)

To satisfy the magnitude constraints of the actuators, we can

always increase the values of the elements of the weight

matrix R.
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VII. SIMULATION STUDY

In this section, we present simulation results showing the

effectiveness of the proposed optimal control algorithm in a

disturbance rejection problem. For this simulation study we

consider the time interval [t0 = 0, t f = T = 1.2s].

The nominal initial poloidal flux ψini shown in Fig. 4 has

been considered for the synthesis of an open-loop optimal

controller via Extremum Seeking [2]. The time evolution of

the open-loop control inputs vo(t) obtained from the off-

line Extremum Seeking optimization procedure are shown

in Fig. 3. Fig. 5-(a) illustrates the space-time evolution of

the poloidal flux ψ(t, ρ̂) as determined by the original PDE

system (1) for the nominal initial poloidal flux ψini and the

Extremum-Seeking-based open-loop control inputs vo(t).

By simulating the original PDE system (1), a data en-

semble is created with snapshots of ψ(t, ρ̂). We then extract

POD modes from the created data ensemble. The four most

dominant POD modes are shown in Fig. 5-(b). With these

four POD modes, we construct a low dimensional dynamical

system governed by the ordinary differential equation (ODE)

system (15). Before computing the closed loop control based

on the reduced-order model, we assess the effectiveness of

the reduced-order model in approximating the original PDE

system. Fig. 5-(c) shows the approximation error as function

of time and space. The order of the error demonstrate that

the reduced-order model based on only four POD modes can

successfully approximate the PDE system.

For the cost functional (18), we choose Ω(t)≡ Ω = I
l×l (I

is an identity matrix, l = 4), S(t)≡ S = diag {20, 5, 0.1, 0.1},

and R(t) ≡ R = diag

{

1

max(vol
1 )

, 50

max(vol
2 )

, 1

max(vol
3 )

}

, where

max(vo
i ) stands for the maximum value of the open-loop

control vo
i (t). We use the proposed quasi-linear approxima-

tion scheme to compute the optimal control. After the first

iteration k = 1, the solution of the Riccati matrix equation

converges, and the feedback controller is implemented ac-

cording to (33).

We consider now a disturbed initial profile ψini, as shown

in Fig. 4, and compare the performances of both open-

loop and closed-loop controllers in the presence of this

disturbance. In the case of the open-loop controller, the

control input trajectories shown in Fig. 3, and computed for

the nominal initial profile, are used. In the case of the closed-

loop controller, the control input trajectories are shown in

Fig. 6. Fig. 7 shows the differences between the final-time

profiles ψ(t f , ρ̂) obtained with the open-loop and closed-loop

controllers and the desired target profile ψd . Both final-time

profiles are obtained using the disturbed initial profile. It is

possible to note from Fig. 7 that the closed-loop controller

can reduce the matching error caused by the disturbance

in the initial flux profile. It is also possible to note that

the matching by the closed-loop controller is not perfect.

However, this does not imply a limitation of the closed-loop

controller but a consequence of the imposed constraints for

the actuators (the matrix R was selected to keep the actuator

trajectories within physical ranges).

VIII. CONCLUSIONS AND FUTURE WORKS

In this paper, we consider a simplified dynamic model

describing the evolution of the poloidal flux during the

inductive phase of the tokamak discharge. Using this PDE

model, and the POD/Garlekin technique, we derive a low

dimensional dynamical system which preserves the domi-

nant dynamics of the original parabolic PDE system. We

propose a convergent successive scheme based on the quasi-

linear approximation to compute an optimal tracking control

for the reduced order system. The simulation study shows

that the proposed controller overcome to some extent the

disturbances in the initial poloidal flux profile.
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From the point of view of this fusion application, future

work includes reformulating the optimal control problem in

order to set as the primary goal not the matching of a desired

target profile for the poloidal flux but the matching of a

desired target profile for its spatial derivative. In addition

to magnitude constraints, it is also necessary to consider

constraints in the rate and in the inital/final values of the

actuators. Finally, the experimental validation of this con-

troller at the DIII-D tokamak is also part of our future work.
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