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Abstract— We present results for motion planning and track-
ing for flexible beams with Kelvin-Voigt damping, when the goal
is to track sinusoidal reference signals for the displacement and
deflection angle at the free-end of the beam using only actuation
at the base. We present the solution to the motion planning
problem for the string model, and a method of leveraging
the string solution with PDE backstepping theory to solve
the motion planning problem for the shear beam. We then
present state-feedback boundary controllers that stabilize their
respective systems around the motion planning solution.

I. INTRODUCTION

Motion planning results for strings and flexible structures

without internal/material damping have been presented in [1],

[3], [12], [13], [14], [15]. We consider systems with Kelvin-

Voigt damping since they are physically relevant, and note

that the damping terms make the trajectory generation prob-

lem more difficult. The system models we consider are the

wave equation (string and target system) and the shear beam

model. The goal is to find motion planning solutions for

sinusoidal free-end reference signals, using only actuation at

the base. Figure 1 shows a graphical representation of that

goal. A string is a single-input-single-output system, with

the displacement at the base (x = 1) as the input, and the

same quantity at the free-end (x = 0) as the output. A beam

is a two-input-two-output system with the displacement and

deflection angle at the base as the inputs, and the same

quantities at the free-end as outputs. Motivation for this

set-up comes from a particular shake table control problem

where the table provides boundary actuation to a structure,

modeled here as a flexible beam, in order to impart a desired

reference trajectory at some point near its free-end.

The motion planning problem for the string is solved using

a method based on postulating the solution as the infinite sum

of the products of powers of the spatial variable and time

dependent coefficients. This method has been discussed and

implemented in [1], [2], [3], [4], [11], [12], [13], [14], [15]. A

PDE backstepping approach is then used to obtain the shear

beam motion planning solution, which is rather complicated,

using the relatively simple solution for the string model.

The PDE backstepping approach also allows for the com-

bination of the open-loop reference solutions with feedback

to achieve exponential convergence to the reference trajec-

tories. There are two main concepts in the control design.

First a target system is chosen such that it has desirable
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Fig. 1. Figure depicting a string/beam. The goal is to generate and track
a reference trajectory at x = 0. The arrows at x = 1 represent actuation,
and the circle at x = 0 represents the desired reference trajectory.

performance characteristics, and such that it is analytically

tractable (in particular, such that its motion planning and

stabilization problems are easily solvable). The target system

is the wave equation with a spring at one end and a damper

at the other. Second a state transformation, mapping the

plant state into the target state, is used to find conditions

under which the application of boundary control produces a

closed-loop system that emulates the target system. Details

for the design of stabilizing boundary controllers for the

wave equation, and shear beam can be found in [7], [8],

and [5], [6], [9], [10] respectively.

Section II presents the string, target system, and shear

beam models with Kelvin-Voigt damping. Section III

presents the motion planning solutions for the string, target

system, and shear beam. Section IV presents backstepping

boundary controllers which stabilize the string and shear

beam around their respective reference trajectories. Section

V presents simulation results for string and shear beam.

II. PLANT MODELS

A. String

The string model with Kelvin-Voigt (KV) damping is

given by the wave equation

εutt = (1 + d∂t)uxx (1)

ux(0, t) = 0 , (2)

where u(x, t) is the displacement along 0 ≤ x ≤ 1 at time

0 ≤ t < ∞, with initial conditions u0(x) = u(x, 0) and

u̇0(x) = ut(x, 0), d is the KV damping coefficient, and ε

is the inverse of the string stiffness. The boundary condition

at x = 0 represents a free-end. The boundary input ux(1, t)
will be used as a control input.
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B. Target System

The model for the target system is given by the wave

equation

εwtt = (1 + d∂t)wxx (3)

wx(0, t) = c0w(0, t) (4)

wx(1, t) = −c1wt(1, t) , (5)

where w(x, t) is the displacement along 0 ≤ x ≤ 1 at time

0 ≤ t < ∞, with initial conditions w0(x) = w(x, 0) and

ẇ0(x) = wt(x, 0). The parameters c0 and c1 are design gains

representing the spring stiffness and damping coefficient of

the spring and damper located at opposite ends of the string.

The spring stiffness c0 should be large to emulate a pinned

boundary condition at x = 0, and the damping coefficient c1

should be chosen near
√

ε to emulate a tuned damper at the

end x = 1 [5], [6], [7], [8], [9], [10].

C. Shear Beam

The shear beam model with KV damping is given by

a second-order-in-time, second-order-in-space PDE coupled

with a second-order-in-space ODE

εutt = (1 + d∂t) (uxx − αx) (6)

0 = εαxx + a (ux − α) . (7)

where u(x, t) and α(x, t) denote the displacement the de-

flection angle along 0 ≤ x ≤ 1 at time 0 ≤ t < ∞,

with initial conditions u0(x) = u(x, 0), u̇0(x) = ut(x, 0),
α0(x) = α(x, 0) and α̇0(x) = αt(x, 0). The parameter a is

proportional to the nondimensional cross-sectional area, and

the parameter ε is inversely proportional to the nondimen-

sional shear modulus. We consider a beam which is free at

the end x = 0, i.e.,

ux(0, t) = α(0, t) (8)

αx(0, t) = 0 , (9)

and actuated at the end x = 1 through the boundary inputs

ux(1, t) and α(1, t).

III. MOTION PLANNING

Direct and inverse PDE backstepping transformations re-

lating the string and shear beam to the target system are used

to relate the motion planning solution of the string (easiest

to find) to the motion planning solution for the target system

and ultimately the shear beam.

Motion planning is done for sinusoidal tip reference tra-

jectories since they are interesting functions in the context

of shake table control (where reference signals tend to be

periodic), and they form the basis for more complicated

periodic reference trajectories. Note that the method used

to find the string solution along with the PDE backstepping

techniques used to find the target system and shear beam

solutions can be used for reference trajectories other than

sinusoids.

The motion planning solution for the string is found

by postulating the reference solution as the infinite sum

of time dependent coefficients and scaled powers of the

spatial variable, i.e., ur(x, t) =
∑

∞

i=0 ai(t)
xi

i! . Examples of

applications of this approach can be found in [1], [4], [11],

[15].

Theorem 1: The string model (1), (2) is satisfied by the

state reference trajectory

ur(x, t) =
Au

2

[

eβ̂(ωu)x sin (ωut + β(ωu)x)

+e−β̂(ωu)x sin (ωut − β(ωu)x)
]

, (10)

where the functions β(n), and β̂(n) are defined as

β(n) = n
√

ε

√√
1 + n2d2 + 1

2 (1 + n2d2)
(11)

β̂(n) = n
√

ε

√√
1 + n2d2 − 1

2 (1 + n2d2)
. (12)

The output of the system satisfies the reference trajectory

ur(0, t) = Au sin(ωut) , (13)

where Au and ωu are the amplitude and frequency respec-

tively. The open-loop Dirichlet control ur(1, t) can be found

by evaluating (10) at x = 1. The expression for the open-

loop Neumann control input ur
x(1, t) is given by the partial-

derivative-with-respect-to-x of (10) evaluated at x = 1.

Proof: The motion planning solution (10) evaluated at

x = 0 satisfies the desired reference trajectory (13). Equation

(10) substituted into (1) and (2) satisfies the string PDE and

free-end boundary condition.

The string model and the target system are related through

the direct backstepping transformation

w(x, t) = u(x, t) + c0

∫ x

0

u(y, t) dy , (14)

which satisfies (3), (4). Therefore, the target system reference

solution can be found by substituting (10) into the transfor-

mation

wr(x, t) = ur(x, t) + c0

∫ x

0

ur(y, t) dy . (15)

Theorem 2: The target system (3), (4) is satisfied by the

state reference trajectory

wr(x, t) =
Au

2

[

eβ̂(ωu)x sin (ωut + β(ωu)x)

+e−β̂(ωu)x sin (ωut − β(ωu)x)
]

−c0Au

2

{

γ(ωu)
[

eβ̂(ωu)x

× cos (ωut + β(ωu)x)

−e−β̂(ωu)x cos (ωut − β(ωu)x)
]

−γ̂(ωu)
[

eβ̂(ωu)x sin (ωut + β(ωu)x)

−e−β̂(ωu)x sin (ωut − β(ωu)x)
]}

, (16)
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where the functions β(n), and β̂(n) are defined in (11), (12),

and γ(n), and γ̂(n) are defined as

γ(n) =
1

n
√

ε

√√
1 + n2d2 + 1

2
(17)

γ̂(n) =
1

n
√

ε

√√
1 + n2d2 − 1

2
. (18)

The output of the system satisfies the reference trajectory

wr(0, t) = Au sin(ωut) . (19)

An open-loop Dirichlet control input wr(1, t) can be found

by evaluating (16) at x = 1. The expression for the open-

loop Neumann control input wr
x(1, t) is given by the partial-

derivative-with-respect-to-x of (16) evaluated at x = 1.

Proof: The motion planning solution (16) evaluated at

x = 0 satisfies the reference trajectory (19). Equation (16)

substituted into (3) and (4) satisfies the target system PDE

and x = 0 boundary condition.

The solution to the motion planning problem for the shear

beam model (6)—(9) can be found by using a backstepping

transformation from the target to plant state. The inverse

transformation is

u(x, t) = w(x, t) − r(x, t)

+

∫ x

0

l(x, y) (w(y, t) − r(y, t)) dy , (20)

where l(x, y) is the inverse transformation gain kernel, and

r(x, t) is the state of an auxiliary system required to satisfy

the transformation from target to plant when the motion

planning solution for the tip deflection angle is introduced

into the design. The inverse transformation can be used to

write the shear beam motion planning solution ur(x, t) in

terms of the target system solution wr(x, t).

Theorem 3: The shear beam model (6)—(9) is satisfied

by the state reference trajectory

ur(x, t) = wr(x, t) − r(x, t)

+

∫ x

0

l(x, y) (wr(y, t) − r(y, t)) dy, (21)

where wr(x, t) is given in (16),

r(x, t) = Aα

(

f1(x)

−
∫ x

0

f1(x − y)Φ(y) dy

)

sin(ωαt)

+Aα

(

f2(x)

−
∫ x

0

f2(x − y)Φ(y) dy

)

cos(ωαt) (22)

with

f1(x) = γ(ωα) sin (β(ωα)x) cosh
(

β̂(ωα)x
)

+γ̂(ωα) cos (β(ωα)x) sinh
(

β̂(ωα)x
)

(23)

f2(x) = −γ(ωα) cos (β(ωα)x) sinh
(

β̂(ωα)x
)

+γ̂(ωα) sin (β(ωα)x) cosh
(

β̂(ωα)x
)

(24)

Φ(x) = −b sinh(bx) + b

∫ x

0

k(x, y) sinh(by)dy,(25)

where β(ωα), β̂(ωα), γ(ωα), γ̂(ωα) are given in (11), (12),

(17), (18), and l(x, y) satisfies

lxx = lyy − b2l − b3 sinh b(x − y)

−b3

∫ x

y

sinh b(x − ξ)l(ξ, y) dξ (26)

l(x, x) = −b2

2
x − c0 (27)

ly(x, 0) = c0l(x, 0) − b2 cosh bx , (28)

with b =
√

a
ε . The outputs of the system satisfy the tip

displacement and deflection angle reference trajectories

ur(0, t) = Au sin(ωut) (29)

αr(0, t) = Aα sin(ωαt) , (30)

where Au, Aα, ωu, ωα are the amplitudes and frequencies

respectively.

The open-loop control inputs are given by

ur
x(1, t) = wr

x(1, t) − rx(1, t)

+l(1, 1) (wr(1, t) − r(1, t))

+

∫ 1

0

lx(1, y) (wr(y, t) − r(y, t)) dy (31)

αr(1, t) = cosh(b)αr(0, t) + b sinh(b)ur(0, t)

−b2

∫ 1

0

cosh (b(1 − y))ur(y, t) dy , (32)

where wr(1, t) is given by (16) evaluated at x = 1, wr
x(1, t)

is given by the partial-derivative-with-respect-to-x of (16)

evaluated at x = 1, r(1, t) is given by (22) evaluated at

x = 1, and rx(1, t) is given by the partial-derivative-with-

respect-to-x of (22) evaluated at x = 1.

Proof: Substituting (21) into the “strict-feedback

shear beam model for motion planning” [(6), (8) with

α(x, t) substituted by α(x, t) = cosh(bx)αr(0, t) −
b
∫ x

0 sinh (b(x − y)) uy(y, t) dy] satisfies the PDE and free-

end boundary condition. The motion planning solution (21)

evaluated at x = 0 satisfies the reference trajectory (29).

The expression for α(x, t) evaluated at x = 0 satisfies the

reference trajectory (30).

IV. REFERENCE TRACKING

Definition 1: The reference trajectory ur(x, t) is said to

be exponentially stable if there exist positive constants M
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and m such that

[

‖u(t) − ur(t)‖2 + ‖ut(t) − ur
t (t)‖2

]1/2

≤ Me−mt
[

‖u0 − ur
0‖2 + ‖u̇0 − u̇r

0‖2
]1/2

, (33)

where ‖·‖ denotes the norm of v, ‖v‖ =
(

∫ 1

0 v (x)
2

dx
)1/2

,

and u0(x) = u(x, 0), ur
0(x) = ur(x, 0), u̇0(x) = ut(x, 0),

u̇r
0(x) = ur

t (x, 0).

Theorem 4: The state feedback controller

ux(1, t) = −c0u(1, t) − c1ut(1, t) − c0c1

∫ 1

0

ut(y, t) dy

+wr
x(1, t) + c1w

r
t (1, t) , (34)

exponentially stabilizes the string system (1), (2) about the

state reference trajectory (10).

Proof: The expression for the boundary controller (34)

is found by writing the stabilizing boundary controller in [7],

[8] in terms of the reference tracking error ũ(x, t) = u(x, t)−
ur(x, t), where wr

x(1, t)+c1w
r
t (1, t) = ur(1, t)+c0u

r(1, t)+

c1u
r
t (1, t) + c0c1

∫ 1

0 ur
t (y, t) dy .

By Theorem 1 the string reference solution (10) sat-

isfies the string model with boundary control (34), and

is therefore governed by the same PDE and bound-

ary conditions. The tracking error dynamics then resem-

ble (1), (2), (34) [with wr
x(1, t) and wr

t (1, t) set to

zero]. The direct and inverse backstepping transformations

w̃(x, t) = ũ(x, t)+ c0

∫ x

0 ũ(y, t) dy, and ũ(x, t) = w̃(x, t)−
c0

∫ x

0 e−c0(x−y)w̃(y, t) dy relate the tracking error dynamics

and the exponentially stable tracking error target system

εw̃tt = (1 + d∂t) w̃xx (35)

w̃x(0, t) = c0w̃(0, t) (36)

w̃x(1, t) = −c1w̃t(1, t) . (37)

The state of the tracking error system ũ(x, t) can be bounded

by the state of the tracking error target system w̃(x, t) by

‖ũ(t)‖ ≤ (1 + c0) ‖w̃(t)‖ , and the same is true for the time

derivatives, therefore the closed-loop system (1), (2), (34) is

exponentially stable around the reference solution (10).

Theorem 5: The state feedback controllers

ux(1, t) = k(1, 1)u(1, t) +

∫ 1

0

kx(1, y)u(y, t) dy

−c1ut(1, t) + c1

∫ 1

0

k(1, y)ut(y, t) dy

+wr
x(1, t) + c1w

r
t (1, t)

−rx(1, t) − c1rt(1, t) (38)

α(1, t) = cosh(b)αr(0, t) + b sinh(b)u(0, t)

−b2

∫ 1

0

cosh (b(1 − y))u(y, t) dy , (39)

where k(x, y) satisfies the partial-integro-differential equa-

tion

kxx = kyy + b2k − b3 sinh (b(x − y))

+b3

∫ x

y

k(x, ξ) sinh (b(ξ − y)) dξ (40)

k(x, x) = −b2

2
x − c0 (41)

ky(x, 0) = −b2 cosh(bx)

+b2

∫ x

0

k(x, y) cosh(by) dy , (42)

b =
√

a
ε , exponentially stabilize the shear beam (6)—(9)

about the state reference trajectory (21).

Proof: The expression for the boundary con-

troller (38) is found by expressing the target system

boundary condition (5) in terms of the tracking error

[wx(1, t) − wr
x(1, t)] = −c1 [wt(1, t) − wr

t (1, t)], then ex-

panding wx(1, t) and wt(1, t) using the direct backstepping

transformation w(x, t) = u(x, t) −
∫ x

0
k(x, y)u(y, t) dy.

By Theorem 3 the shear beam reference solution (21)

satisfies the “strict-feedback shear beam model for motion

planning” and therefore has the same dynamics. The tracking

error dynamics can then be written as

εũtt = (1 + d∂t)
(

ũxx + b2ũ − b2 cosh (bx) ũ(0, t)

+b3

∫ x

0

sinh (b (x − y)) ũ(y, t) dy

)

(43)

ũx(0, t) = 0 (44)

ũx(1, t) = k(1, 1)ũ(1, t) +

∫ 1

0

kx(1, y)ũ(y, t) dy

−c1ũt(1, t) + c1

∫ 1

0

k(1, y)ũt(y, t) dy , (45)

which resemble the closed-loop “strict-feedback shear beam

model” dynamics. The direct and inverse backstepping trans-

formations w̃(x, t) = ũ(x, t) −
∫ x

0
k(x, y)ũ(y, t) dy, and

ũ(x, t) = w̃(x, t) +
∫ x

0
l(x, y)w̃(y, t) dy relate the track-

ing error dynamics (43)–(45) to the exponentially stable

tracking error target system (35)–(37). The state of the

tracking error system ũ(x, t) can be bounded by the state

of the tracking error target system w̃(x, t) by ‖ũ(t)‖ ≤
(1 + ‖l(1, y)‖∞) ‖w̃(t)‖ , and the same is true for the time

derivatives. Therefore the closed-loop system (6)—(9), (38),

(39) is exponentially stable around the solution (21).

V. SIMULATION RESULTS

Simulations are computed in Matlab. Finite-differences are

used to resolve partial derivatives in space, and the Crank-

Nicolson method is used to march the equations in time.

A. String

Simulation results are shown for the string (1), (2)

in closed-loop with the boundary controller (34), when

the goal is to track the reference trajectory ur(0, t) =
Au

[

sin (ωut) + sin
(√

2ωut
)]

. Tracking of two sinusoids

is achieved by implementing the boundary controller as a

function of the linear combination of the reference generation

solutions for each frequency.

4026



0 0.2 0.4 0.6 0.8 1

−1

0

1

0 ≤ t ≤ 1.2

u(x,t)

u
r
(0,t) = A

u
[sin(ω

u
t) + sin(2

1/2
ω

u
t)]

0 0.2 0.4 0.6 0.8 1

−1

0

1

1.2 ≤ t ≤ 2.4

0 0.2 0.4 0.6 0.8 1

−1

0

1

2.4 ≤ t ≤ 3.6

0 0.2 0.4 0.6 0.8 1

−1

0

1

3.6 ≤ t ≤ 4.8

0 0.2 0.4 0.6 0.8 1

−1

0

1

4.8 ≤ t ≤ 5.7

0 0.2 0.4 0.6 0.8 1

−1

0

1

5.7 ≤ t ≤ 6.6

(a)

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

Time, t

T
ip

 D
is

p
la

c
e

m
e

n
t

 

 

u
r
(0,t)

u(0,t)

(b)

Fig. 2. String simulation results showing (a) the string state as snapshots
in time, and (b) a comparison of the string tip displacement and reference
trajectory.

The spatial and temporal step sizes used in simulation

are ∆x = 1
100 and ∆t = 1

100 . The string parameters are

d = 0.08, and ε = 5. The controller parameters are chosen

as c0 = 100 and c1 = 0.99
√

5. The reference trajectory

parameters are Au = 1
2 and ωu = π. The string begins with

zero initial displacement and velocity.

Figure 2(a) shows the evolution of the string state u(x, t)
on 0 ≤ x ≤ 1 as a sequence of snapshots in time, with

increasing darkness corresponding to increasing time in each

sequence. The reference trajectory at the corresponding time

is represented by a circle at x = 0 of the same shade. Figure

2(b) compares the tip displacement with the reference tra-

jectory. The frequencies ωu and
√

2ωu are incommensurate,

and therefore ur(0, t) never repeats itself.
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Fig. 4. Shear beam controller gains (a) k(1, y), and (b) kx(1, y).

B. Shear Beam

Simulation results are shown for the shear beam model1

(6)–(9) in closed-loop with the state feedback controllers (38)

and (39), when the goal is to track the reference trajectories

ur(0, t) = Au sin(ωut) and αr(0, t) = Aα sin(ωαt).
The spatial and temporal step sizes used in simulation are

∆x = 1
100 and ∆t = 1

50 . The beam parameters are a = 5,

d = 0.1, ε = 20 and µ = 0.02. The controller parameters

are c0 = 100 and c1 = 0.99
√

20. The reference trajectory

parameters are Au = 1
2 , ωu = π

3 , Aα = 1
4 and ωu = π. The

beam is initialized with an initial displacement u (x, t0) =
− 1

10 (1 − x)2, initial deflection angle α (x, t0) = 1
5 (1 − x),

and zero initial velocity.

Figures 3(a) and (b) show the evolution of the beam

states u(x, t) and α(x, t) for the simultaneous tracking of the

sinusoidal tip reference trajectories ur(0, t) = Au sin(ωut)
and αr(0, t) = Aα sin(ωαt). Figures 4(a) and (b) show the

control gains k(1, y) and kx(1, y) on the interval 0 ≤ y ≤ 1.

The curves are relatively simple and can be approximated by

quadratic and a linear functions respectively.

VI. CONCLUSION

We have presented motion planning solutions for the

string model, target system, and shear beam with Kelvin-

Voigt damping, along with results for the combination of

the motion planning solutions with exponentially stabiliz-

ing tracking controllers. The beam design combines PDE

boundary backstepping methods with classical trajectory

generation methods to simplify the problem from solving the

motion problem for more complicated systems described by

a PDE coupled with an ODE, to finding the motion planning

solution for a target system with fewer spatial derivatives.

Simulation results have been provided to highlight the per-

formance of the tracking boundary controllers when applied

to the string and beam.

While this work has focused on motion planning for

periodic trajectories, our approach extends to a far broader

class of temporal waveforms, that includes polynomials,

exponentials, sinusoids, and products thereof as special cases.

With a slight modification one can obtain motion planning

1Simulations are done for the more complicated Timoshenko beam
model with KV damping, which reduces to the shear beam model via a
singular perturbation (where µ, the small parameter, is proportional to the
nondimensional moment of inertia of the beam). Shear beam results apply
approximately—modulo an O (µ) tracking error—to the Timoshenko beam
for small µ.
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Fig. 3. Shear beam simulation results showing snapshots of the beam states (a) u(x, t), and (b) α(x, t) for simultaneous reference tracking.

solutions for all output reference trajectories that can be writ-

ten in the form ur(0, t) = CX(t) where X(t) is a solution

of the autonomous linear ‘exosystem’ Ẋ = AX for a given

initial condition X(0). For example, if the reference output is

ur(0, t) = te−t sin t, we would choose the parameters of our

exosystem as C = [1 0 0 0], A =









0 1 0 0
0 0 1 0
0 0 0 1
−4 −8 −8 −4









,

X(0) = [2 2 0 0]T, and proceed to find the motion planning

solution using the matrix exponentials of A.
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