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Abstract— This paper proposes a new analysis technique
called “ISS regulator approach” to show that a simple causal
PD controller plus feedforward using only position measure-
ments solves the global output feedback tracking control
problem of robot manipulators with arbitrarily small damping.
To this end, we first show that a causal PD regulator leads
to a global input-to-state stable system with respect to a
bounded input disturbance. Then, using this fact we prove
that the addition of a feedforward compensation renders the
overall error system uniformly globally asymptotically stable.
In addition, we present a possible extension of the proposed
method to other classes of Euler-Lagrange systems.

I. INTRODUCTION

The design of a global output feedback tracking controller

for robot manipulators has attracted the attention of the

robotics community for many years. The pioneering works

[1], [2], [3] have shown that global regulation can be guaran-

teed without using joint velocities. Since then, several authors

have tried to derive similar output feedback controllers for

the tracking problem. Unfortunately, most of them have been

limited to local or semi-global results (see [4] for a literature

review).

In [5], Loria developed a model-based controller that ren-

ders the one degree-of-freedom (DOF) Euler-Lagrange (EL)

systems uniformly globally asymptotically stable. Unfortu-

nately, this approach could not be extended to the general

n-DOF case. To address this issue Zhang et al. proposed in

[6] an output feedback adaptive controller composed by a

feedforward term plus a nonlinear feedback term coupled to

a dynamic nonlinear filter. This controller produces global (in

the tracking initial errors) asymptotic link position tracking.

Recently, closer results to global stability were achieved

in [7], [8], [9], where the initial conditions of the dynamic

extensions must belong to a constrained set. In [7], using

a new dynamic-kinematic model for EL-systems, which is

linear in the unmeasurable velocities, a model-based con-

troller was proposed. In [8], exploiting a separation result

related with some stabilizability by state feedback and some

detectability property, a model-based dynamic controller was

proposed for EL-systems. In [9], a robust controller, which

resembles the one presented in [6], was proposed.

On the other hand, exploiting the robot natural damping,

global stability of output feedback tracking controllers were

proven in [10], [11]. However, the results are guaranteed only

if large enough viscous friction is present in the robot joints.
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In this paper, we show that the well known causal PD

controller with feedforward compensation can provide global

tracking, under the only requirement of the existence of the

robot natural damping, no matter how small, which seems

to be a quite realistic assumption. To this end, we propose a

new method called “ISS Regulator Approach” which consists

in first proving that the robot controlled by a causal PD

regulator is globally input-to-state stable (ISS) [12] with

respect to a bounded input disturbance and then showing

that such causal PD controller plus a feedforward compen-

sation renders the overall error system uniformly globally

asymptotically stable. In addition, we suggest extensions of

the proposed analysis technique to deal with uncertain robot

manipulators and to consider a broader class of nonlinear

systems that encompasses other classes of EL systems.

II. PRELIMINARES

A. Notation and Basic Concepts

In what follows, all κ’s denote positive constants. |·| stands

for the Euclidean norm for vectors, or the induced matrix

norm for matrices. λM (·) (λm(·)) denotes the largest (small-

est) eigenvalue of a matrix. For any measurable function

u : [t0,∞) → IRm, ||u|| denotes ess sup{|u(t)| , t ≥ t0}.

Classes K, K∞, KL functions are defined as usual [13].

B. Basic Definitions

Definition 1: The system ẋ = f(t, x) is said to be uni-

formly globally asymptotically practically stable (UGApS),

if there exist β ∈ KL and a nonnegative constant R, such

that for all t0 ≥ 0, x(t0) and t ≥ t0

|x(t)| ≤ β(|x(t0)| , t − t0) + R (1)

When (1) is satisfied with R = 0, system ẋ = f(t, x) is said

to be uniformly globally asymptotically stable (UGAS).

Definition 2: The system ẋ = f(x, u) is said to be input-

to-state stable (ISS), if there exist β ∈ KL and γ ∈ K, such

that for all x(t0), u ∈ L∞ and t ≥ t0 ≥ 0

|x(t)| ≤ β(|x(t0)| , t − t0) + γ(||u||) (2)

Definition 3: A continuous function V : IRn → IR is a

storage function if there exist α, α ∈ K∞ such that α(|x|) ≤
V (x) ≤ α(|x|), ∀x ∈ IRn (V is positive definite and proper).

Definition 4: A smooth storage function V : IRn → IR is

an ISS-Lyapunov function [13] for system ẋ = f(x, u), if

there exist α ∈ K∞ and σ ∈ K∞, such that for all x, u

V̇ (x) ≤ −α(|x|) + σ(|u|) (3)

The existence of an ISS-Lyapunov function is an equiva-

lent condition for ISS [13].
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III. DYNAMIC MODEL

The dynamic model for an n-DOF rigid robot with revo-

lute joints can be described by [14]:

M(q)q̈ + C(q, q̇)q̇ + ζFv q̇ + g(q) = τ (4)

where q(t), q̇(t), q̈(t) ∈ IRn denote the joint position,

velocity and acceleration, respectively; M(q) ∈ IRn×n is the

symmetric positive definite inertia matrix; C(q, q̇)q̇ ∈ IRn is

the vector of Coriolis and centrifugal torques; ζ is a generic

positive constant, and ζFv ∈ IRn×n denotes the constant,

diagonal and positive definite matrix of viscous friction;

g(q) ∈ IRn is the vector of gravitational torques; and τ ∈ IRn

is the vector of torques acting at the joints. The centrifugal-

Coriolis matrix is defined using the Christoffel symbols.

The dynamic system (4) exhibits the following properties

(see e.g. [4], [14], [15]):

(P1) λm(M) |x|2 ≤ xT M(q)x ≤ λM (M) |x|2 , ∀x ∈ IRn,

where λm(M) := minq∈IRn λm(M(q)) and λM (M) :=
maxq∈IRn λM (M(q));
(P2) |M(x)z − M(y)z| ≤ cM |x − y| |z| , ∀x, y, z ∈ IRn;

(P3) Ṁ(q) = C(q, q̇) + CT (q, q̇), ∀q, q̇ ∈ IRn;

(P4) xT
(

1
2Ṁ(q) − C(q, q̇)

)

x = 0, ∀x ∈ IRn;

(P5) |C(x, z)w−C(y, v)w|≤c1 |z−v| |w|+c2 |z| |x − y| |w|,
∀x, y, z, v, w ∈ IRn

(P6) Y (q, q̇, q̈)θ = M(q)q̈ + C(q, q̇)q̇ + ζFv q̇ = τ̄ , where

Y (q, q̇, q̈) ∈ IRn×l is the regression matrix, θ ∈ IRl is a

constant vector of parameters, and τ̄ = τ − g(q);
(P7) |C(q, q̇)| ≤ c1 |q̇| , |g(q)| ≤ c3, |θ| ≤ c4.

The constants cM , c1, c2 are defined in [15].

IV. REVISITING THE REGULATION PROBLEM USING ONLY

POSITION MEASUREMENTS

In this section, we consider the problem of global output

regulation to a desired constant set point qr, using only

position measurements. The objective is to show that the

robot controlled by a causal PD with gravity compensation is

ISS with respect to a bounded input disturbance and to ensure

that, in the absence of the input disturbance, the regulation

error q̃ :=q − qr tends asymptotically to zero.

Since it is assumed that only joint position measurements

are available, the joint velocities could be estimated by means

of a lead filter described by:

ϑ̇ = − 1

µ
ϑ − 1

µ2
q, ν̂ = ϑ +

1

µ
q (5)

where µ is a generic positive constant. However, when

enhanced precision is required µ should be made small

enough (c.f. Section V).

Considering that system (4) is perturbed with a bounded

input disturbance d(t), the causal PD regulator with gravity

compensation is given by:

τ = −Kpq̃ − Kdν̂ + g(q) + d(t) (6)

where Kp and Kd are symmetric positive definite matrices.

A. Stability Analysis

In order to take into account the possibility of a small

natural damping, we consider that ζ may be an arbitrarily

small parameter. Defining the state of the closed-loop system

(4)(5)(6) as xT :=
[

q̃T q̇T ν̂T
]

, one has:

d

dt







q̃

q̇

ν̂






=







q̇

M(q)−1[d−C(q, q̇)q̇−ζFv q̇−Kpq̃−Kdν̂]

− ν̂
µ + q̇

µ






(7)

Consider the following ISS-Lyapunov function candidate:

V1(x)=
1

2
q̇T M(q)q̇+

1

2
q̃T Kpq̃+

1

2
µν̂T Kdν̂+ε1

q̃T M(q)q̇
√

1+q̃T q̃
(8)

Proposition 1: If ε1 satisfies (12), then V1(x) is a smooth

storage function and can be upper and lower bounded by:

α1(|x|) = κ1 |x|2 ≤ V1(x) ≤ κ2 |x|2 = α1(|x|) (9)

κ1≤
1

4
min{λm(M), λm(Kp), 2µλm(Kd)}; (10)

κ2≥
λM (P1)

2
, P1 =





λM (M) ε1λM (M) 0
ε1λM (M) λM (Kp) 0

0 0 µλM (Kd)





(11)

ε1 ≤
√

λm(M)λm(Kp)

2λM (M)
(12)

Proof: see Appendix A

Deriving V1 with respect to time, it follows that

V̇1 = q̇T d−ζq̇T Fv q̇ − ν̂T Kdν̂ + ε1
q̇T M(q)q̇
√

1 + q̃T q̃

+ε1

(

q̃T Ṁ(q)q̇
√

1+q̃T q̃
+

q̃T d
√

1+q̃T q̃
− q̃T (C(q, q̇)+ζFv) q̇

√

1+q̃T q̃

)

−ε1

(

q̃T Kpq̃
√

1+q̃T q̃
+

q̃T Kdν̂
√

1+q̃T q̃
+

(q̃T M(q)q̇)(q̃T q̇)

(1+q̃T q̃)
3/2

)

where Property P4 was used. From Properties P1, P3 and

P7, one can conclude that:

V̇1 ≤ − 1
2ζq̇T Fv q̇− 1

2 ν̂T Kdν̂−ε1
q̃T Kpq̃√

1+q̃T q̃
+ε1

|q̃|√
1+q̃T q̃

|d|

+ε1

(

λM (M)+c1|q̃|√
1+q̃T q̃

+ λM (M)|q̃|2

(1+q̃T q̃)3/2

)

|q̇|2

−
[

1
4ζλm(Fv) |q̇|2 − ε1

ζλM (Fv)|q̃|√
1+q̃T q̃

|q̇|
]

−
[

1
2λm(Kd) |ν̂|2 − ε1

λM (Kd)|q̃|√
1+q̃T q̃

|ν̂|
]

−
[

1
4ζλm(Fv) |q̇|2−|d| |q̇|

]

After completing the squares on the bracketed terms and

since |q̃| /
√

1+|q̃|2 ≤ 1, |q̃|2/
(

1+|q̃|2
)3/2

≤ 1, ∀q̃∈ IRn, it

can be verified that for a sufficiently small ε1, one has:

V̇1≤−1

4
ζq̇T Fv q̇− 1

2
ν̂T Kdν̂−

1

2
ε1

q̃T Kpq̃
√

1+q̃T q̃
+κ3

(

|d|+|d|2
)
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where: κ3 = max

{

ε1,
1

ζλm(Fv)

}

; (13)

ε1 <min















λm(Kp)λm(Fv)λm(Kd)

2ζλ2
M (Fv)λm(Kd) + λ2

M (Kd)λm(Fv)
,

ζλm(Fv)

4(2λM (M) + c1)















(14)

The function V̇1 can be further upper bounded as follows:

V̇1(x) ≤ −α1(|x|) + σ1(|d|) (15)

where α1(r)=κ4r
2/
√

1+r2∈K∞, with

κ4 ≤ 1

2
min

{

1

2
ζλm(Fv), λm(Kd), ε1λm(Kp)

}

(16)

and σ1(r)=κ3(r+r2)∈K∞. Thus, if ε1 is chosen such (12)

and (14) hold, then, according to Definition 4, V1(x) is an

ISS-Lyapunov function for system (4)(5)(6), which implies

that the closed-loop system is ISS with respect to d(t).
We summarize the results in the following Theorem.

Theorem 1: Consider the robot system described by (4).

If the control law is defined as in (5)(6), then the closed-

loop system with state x =
[

q̃T q̇T ν̂T
]T

is globally ISS

with respect to a bounded input disturbance d(t). Moreover,

if d(t)≡0, then x tend asymptotically to zero.

Remark 1: Since g(q) is bounded by a constant, the

gravity compensation term is not relevant to conclude that a

robot controlled by a causal PD is ISS.

V. GLOBAL OUTPUT TRACKING USING ONLY POSITION

MEASUREMENTS

In this section, the global output tracking problem of

robot manipulators with dynamic model described by (4) is

considered. It is assumed that only position measurements

are available. The tracking error e(t) ∈ IRn is defined as:

e(t) = q(t) − qd(t) (17)

where qd(t) is the desired trajectory. The signals qd, q̇d, q̈d

are assumed to be continuous and bounded by |qd|M , |q̇d|M
and |q̈d|M , respectively. The objective is to design a control

law such that the tracking error tends asymptotically to zero.

To simplify the controller design and analysis the following

assumption is made:

Assumption 1: The robot dynamic model (4) is assumed

as being known, which means that the constant parameter

vector θ, presented in Property P6, is known.

To solve the tracking problem the following feedforward

compensation is added to the control signal:

Y (qd, q̇d, q̈d)θ = M(qd)q̈d + C(qd, q̇d)q̇d + ζFv q̇d

As in [16], [15], [9], the regression matrix Yd =Y (qd, q̇d, q̈d)
is a function of the desired trajectory signals.

The signal ė can be estimated by the following lead filter:

ϑ̇ = − 1

µ
ϑ − 1

µ2
q − 1

µ
q̇d, ν̂e = ϑ +

1

µ
q (18)

The control law is designed as follows:

τ = −Kpe − Kdν̂e + g(q) + Ydθ (19)

A. Stability Analysis

From (18), it is possible to conclude that:

ν̂e = ν̂ + ν̂d (20)

where ν̂ is defined in (5) and ν̂d corresponds to the output

of (18) with q ≡ 0. Thus, the control law defined in (19) can

be rewritten as:

τ = −Kpq − Kdν̂ + g(q) + Kpqd − Kdν̂d + Ydθ (21)

Note that (21) is equivalent to (6) with q̃ = q (qr = 0) and

d = Kpqd −Kdν̂d + Ydθ. Since ||ν̂d(t)|| ≤ Ke−at + ||q̇d(t)||,
for some positive scalars a, K and ∀t, the following upper

bound for d(t) that is independent of µ can be derived

|d(t)|≤λM (Kp)|qd|M +λM (Kd)(|q̇d|M +K) + c1 |q̇d|2M
+λM (M)|q̈d|M + ζλM (Fv) |q̇d|M ≤ Cd (22)

According to Theorem 1, the system (4)(18)(19) with state

x=
[

qT q̇T ν̂T
]T

is UGApS. From (15) and (22), it follows

that V̇1(x) < 0, if |x| > α−1
1 ◦σ1(Cd). Therefore, V̇1(x) is

negative outside a ball of radius R := α−1
1 ◦ σ1(Cd). Thus,

selecting a Lyapunov surface V1(x) = α1 ◦α−1
1 ◦σ1(Cd) :=

CR such that BR :=
{

x ∈ IR3n; |x| ≤ R
}

is in the interior of

the set DR :=
{

x ∈ IR3n; V1(x) ≤ CR

}

, one can conclude

that the state x globally converges to the compact and

invariant set DR in a finite time TD.

Remark 2: From (11), (13), (16), (22) and since µ is a

sufficiently small parameter the constant CR is independent

of µ. Actually, the value of this constant is determined by

the robot parameters and the desired trajectory signals, being,

O(1/ζ2), where ζ may be a small parameter related to the

robot natural damping.

From (8), it is possible to show that

V1(x)≥ 1

4
λm(Kp)|q|2+

1

4
λm(M)|q̇|2+

1

2
µλm(Kd)|ν̂|2

Within DR the following upper bounds can be established:

|q(t)| ≤
√

4CR

λm(Kp)
, |q̇(t)| ≤

√

4CR

λm(M)
, ∀t ≥ TD (23)

|ν̂(t)| ≤
√

2CR

µλm(Kd)
, ∀t ≥ TD (24)

In order to improve the tracking performance µ should be

chosen sufficiently small. However, as can be seen in (24),

this leads to the, generally called, peaking phenomena, which

consists of large peak amplitudes in the estimation variable ν̂
during the initial transient. Fortunately, this phenomena has

a short duration allowing us to find an upper bound for ν̂
that is independent of µ, after some short finite time interval.

Indeed, from (7) the following upper bound for ν̂ (inde-

pendent of µ) valid for all t ≥ TD + Tp can be derived:

|ν̂(t)| ≤
√

2CR

λm(Kd)
+

√

4CR

λm(M)
(25)

where Tp = −µ ln(
√

µ). The results obtained in this section

are formally stated in the following Theorem.
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Theorem 2: Consider system (4). If the control law is

defined as in (18)(19), then the closed-loop system with

state x=
[

qT q̇T ν̂T
]T

is globally uniformly asymptotically

practically stable. Moreover, after a finite time an upper

bound for x that is independent of µ can be obtained.

B. Convergence Analysis

In this section, we provide an analysis of the convergence

properties guaranteed by the controller (19).

Defining the lead filter estimation error ǫe ∈ IRn as:

ǫe(t) = ν̂e(t) − ė(t), (26)

the estimation error dynamics can be described by:

ǫ̇e = − 1

µ
ǫe − ë (27)

Using (26) the control law (19) can be rewritten as:

τ = −Kpe − Kdė − Kdǫe + g(q) + Ydθ (28)

Substituting the control law (28) into (4), one has:

ë=M−1(q)[−C(q, q̇)ė−ζFv ė−Kpe−Kdė−Kdǫe−h(e, ė)]
(29)

where h(e, ė) = [M(q)−M(qd)] q̈d+[C(q, q̇)−C(qd, q̇d)] q̇d

can be upper bounded by: (see [15])

|h(e, ė)| ≤ c1 |q̇d|M |ė| + chsat

( |e|
∆h

)

(30)

with ∆h = 2(λM (M) |q̈d|M + c1 |q̇d|2M )/ch and ch =

cM |q̈d|M +c2 |q̇d|2M Now, defining the error state as:

xe =
[

zT
e ǫT

e

]T
, ze =

[

eT ėT
]T

, (31)

the error system dynamics can be described by (27) and (29).

From the results obtained in Section V-A the error system

is UGApS and the system trajectories are globally driven to

the compact set DR.

In order to analyze the convergence properties of the error

system we first show that the ze-subsystem defined in (29)

is ISS with respect to the input ǫe. To this end, we consider

the following ISS-Lyapunov function candidate:

V2(ze) =
1

2
ėT M(q)ė +

1

2
eT Kpe + ε2f

T (e)M(q)ė (32)

where ε2 is a sufficiently small positive constant and the

function f(e) : IRn → IRn is defined by

f(e) = ch

√

1

η2
+ ∆2

h

ηe
√

1 + η2eT e
(33)

where 0 < η ≤ 1 is a suitable chosen small positive constant.

Proposition 2: If ε2 satisfies (37), then V2(ze) is a smooth

storage function and can be upper and lower bounded by:

α2(|ze|) = κ5 |ze|2 ≤ V2(ze) ≤ κ6 |ze|2 = α2(|ze|) (34)

κ5≤
1

4
min{λm(M), λm(Kp)}; (35)

κ6≥
1

2
λM (P2), P2 =

[

λM (Kp) χ1

χ1 λM (M)

]

(36)

χ1 = ε2λM (M)ch

√

1 + η2∆2
h

ε2 ≤ 1

2

√

λm(M)λm(Kp)

λM (M)ch

√

1 + η2∆2
h

(37)

Proof: the proof follows the same steps presented in

Appendix A.

The following Lemma shows that the ze-subsystem is ISS

with respect to ǫe, if Kp and Kd are properly chosen.

Lemma 1: If the control gains Kp and Kd are selected

such that

λm(Kd) ≥ χ2 (38)

λm(Kp)≥2ch

√

1+η2∆2
h

[

1+
χ2

3

4ε2(λm(Kd)−χ2)

]

(39)

with χ2 and χ3 defined as:

χ2 :=c1 |q̇d|M+2ε2λM (M)ch

√

1+η2∆2
h+ε2c1ch

√

1

η2
+∆2

h

χ3 := 1 + ε2 (ζλM (Fv) + λM (Kd) + 2c1 |q̇d|M ) ;

then, the ze-subsystem defined in (29) is ISS w.r.t ǫe.

|ze(t)| ≤ βz(|ze(t0)| , t − t0) + γz(||ǫe||) (40)

where βz ∈KL and γz ∈K∞. Moreover, within DR the ISS

gain γz(r)=κzr, where κz is independent of µ.

Proof: see Appendix B

Now, considering the ISS-Lyapunov function candidate

V3(ǫe) =
1

2
ǫ2e, (41)

the following Lemma proves that for a sufficiently small µ
the ǫe-subsystem (27) is ISS with respect to the input ze.

Lemma 2: If µ is chosen such that

µ ≤ λm(M)

4λM (Kd)
, (42)

then, the ǫe-subsystem defined in (27) is ISS w.r.t. ze

|ǫe(t)| ≤ βǫ(|ǫe(t0)| , t − t0) + γǫ(µ ||ze||) (43)

where βǫ∈ KL and γǫ ∈ K∞. Moreover, within DR the ISS

gain γǫ(µr) = µκǫr, where κǫ is independent of µ.

Proof: see Appendix C

From Lemmas 1 and 2, it follows that within DR the

composite gain γǫ ◦ γz(r) = µκzκǫr. Thus, if µ satisfies

µ ≤ 1

κzκǫ
(44)

then, uniform global asymptotic stability of the error system

with state xe follows from the nonlinear generalized small-

gain theorem [17], [18]. The results obtained in this section

are formally stated in the following Theorem.

Theorem 3: Consider the robot system described by (4).

If the control law is defined as in (18)(19), then the error

system (27)(29) with state xe =
[

eT ėT ǫT
e

]T
is uniformly

globally asymptotically practically stable. Moreover, if the

control gains Kd and Kp are selected such that (38) and (39)

hold and, in addition, the lead filter parameter µ is chosen
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such that (42) and (44) are satisfied, then the closed-loop

error system is uniformly globally asymptotically stable.

Remark 3: High gain control can be used in case the

robot parameters are only known “nominally”. In this case

our analysis predicts that the close-loop system would still

be globally stable and in addition arbitrarily small residual

errors could be achieved selecting the control gains Kp and

Kd sufficiently large and setting µ sufficiently small.

VI. EXTENSIONS

A. Uncertain Robot Manipulators

From the above results, a control strategy can be derived

for the uncertain case achieving global exact tracking. The

idea is to use the recently proposed global robust exact

differentiator (GRED) [19], [20] and to add an unit vector

term in the control law to cope with the unknown parameters

of the feedforward compensation. Another possibility which

is being investigated is to adapt the unknown parameters of

the feedforward compensation to also achieve exact tracking.

B. Broader Class of Nonlinear Systems

Although, in the previous analysis a linear damping was

considered, the proposed approach can deal with nonlinear

damping (e.g |q̇| q̇). Considering this type of damping, it is

easy to see that in the regulation case the system would

still be global ISS with respect to a bounded input distur-

bance. In the tracking analysis instead of using Fv q̇d in

the feedforward compensation, now we would use |q̇d| q̇d.

Noting that ėT (|q̇| q̇ − |q̇d| q̇d) ≥ 0 and using the fact that

(|q̇| q̇ − |q̇d| q̇d) ≤ (|ė| + 2 |q̇d|) |ė|, it is possible to prove

global output feedback tracking for this class of systems.

Since this kind of damping can represent the hydro-

dynamic damping of an underwater vehicle, the proposed

analysis can be extended to a broader class of nonlinear

systems that encompasses other classes of EL systems.

VII. CONCLUSION

In this paper, a new analysis technique called “ISS Regu-

lator Approach” was proposed in order to show that a robot

controlled by the well known causal PD controller with

a feedforward compensation can provide global tracking,

requiring only the existence of the robot natural damping,

which can be arbitrary small. The main idea was to first

prove that the robot controlled by a causal PD regulator

is globally input-to-state stable with respect to a bounded

input disturbance and then use this result to show that

such causal PD controller plus a feedforward compensation

yields uniform global asymptotic stability for the general n-

DOF case. We have also provided suggestions to extend the

proposed approach to a broader class of nonlinear systems

and to consider uncertain robot manipulators.
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APPENDIX

A. Proof of Proposition 1

From Property P1, it follows that V1 ≥ 1
2λm(Kp) |q̃|2 +

1
2µλm(Kd) |ν̂|2 +

[

1
2λm(M) |q̇|2− ε1λM (M)|q̃||q̇|√

1+|q̃|2

]

. By com-

pleting the squares on the bracketed term and using the

fact that |q̃| /(1 + |q̃|2) ≤ |q̃|, it can be verified that for

ε1 ≤
√

λm(M)λm(Kp)/2λM (M), it follows that V1 ≥
1
4λm(M) |q̇|2 + 1

4λm(Kp) |q̃|2 + 1
2µλm(Kd) |ν̂|2. Therefore,

V1(x) ≥ α1(|x|), where α1(r) = κ1r
2 ∈ K∞ and κ1 is

defined in (10). The function V1(x) can be upper bounded

by V1 ≤ x̄T P1x̄, where x̄T = [|q̃| |q̇| |ν̂|], P1 is defined in

(11). Thus, V1(x)≤α1(|x|), where α1(r)=κ2r
2 ∈ K∞ and

κ2 is defined in (11). Therefore, from Definition 3, it follows

that V1(x) is a smooth storage function.

B. Proof of Lemma 1

The time derivative of V2 is given by:

V̇2 = −ζėT Fv ė − ėT Kdė − ėT Kdǫe − ėT h(e, ė)

+ε2ḟ
T (e)M(q)ė + ε2f

T (e)CT (q, q̇)ė

−ε2ζfT (e)Fv ė − ε2f
T (e)Kpe − ε2f

T (e)Kdė

−ε2f
T (e)Kdǫe−ε2f

T (e)h(e, ė) (45)

where Property P3 and P4 were utilized.

The function f(e) defined in (33) satisfies the following

inequalities, for all e ∈ IRn (I1) |f(e)| ≥ chsat (|e| /∆h);

(I2)

∣

∣

∣
ḟ(e)

∣

∣

∣
≤ 2ch

√

1+η2∆2
h |ė|; (I3) |f(e)| ≤ ch

√

1
η2 +∆2

h;

(I4) |f(e)|2≤ch

√

1+η2∆2
hfT (e)e.

From (30) and I1, it is possible to show that

−ėT h(e, ė) ≤ c1 |q̇d|M |ė|2 + |ė| |f(e)|. Using I2, one

has that ε2ḟ
T (e)M(q)ė ≤ 2ε2λM (M)ch

√

1+η2∆2
h |ė|2.

From I3 and Property P7, the following result can

be obtained ε2f
T (e)CT (q, q̇)ė ≤ ε2c1 |q̇d|M |ė| |f(e)| +

ε2c1ch

√

1
η2 +∆2

h |ė|2. Using (33) and I4 it can be verified

that −ε2f
T (e)Kpe≤− 1

2ε2λm(Kp)ch

√

1+η2∆2
h

|e|2√
1+η2|e|2

−
1
2ε2

λm(Kp)

ch

√
1+η2∆2

h

|f(e)|2. From (30) and I1, it follows that

−ε2f
T (e)h(e, ė) ≤ ε2c1 |q̇d|M |ė| |f(e)| + ε2 |f(e)|2. Thus,

the function V̇2(ze) can be upper bounded as follows:

V̇2 ≤ −ζėT Fv ė− 1

2
ėT Kdė−

[

1

2
ėT Kdė−λM (Kd) |ė||ǫe|

]

+(c1|q̇d|M +2ε2λM (M)ch

√

1+η2∆2
h)|ė|2+|ė||f(e)|

+ε2(λM (Kd)+2c1|q̇d|M + ζλM (Fv)) |ė| |f(e)|

+ε2c1ch

√

1

η2
+∆2

h |ė|2− 1

4
ε2

λm(Kp)

ch

√

1 + η2∆2
h

|f(e)|2

−
[

1

4
ε2

λm(Kp)

ch

√

1+η2∆2
h

|f(e)|2−ε2λM (Kd)|f(e)||ǫe|
]

−1

2
ε2λm(Kp)ch

√

1 + η2∆2
h |e|2

√

1 + η2 |e|2
+ ε2 |f(e)|2 (46)
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Completing the squares on the bracketed terms, one has:

V̇2 ≤ −1

2
ε2λm(Kp)ch

√

1+η2∆2
h

|e|2
√

1+η2 |e|2

− [|ė| |f(e)|] Q
[

|ė|
|f(e)|

]

+
λ2

M (Kd)

2λm(Kd)
|ǫe|2

+
ε2ch

√

1 + η2∆2
hλ2

M (Kd)

λm(Kp)
|ǫe|2 (47)

where Q =







1
2λm(Kd)−χ2 −χ3

2

−χ3

2 ε2

(

λm(Kp)

4ch

√
1+η2∆2

h

− 1

)







If Kp and Kd are chosen such that (38) and (39) hold,

then Q is positive definite. From (47) and since
|e|2√

1+η2|e|2
≥

|e|2√
1+|e|2

, the function V̇2 can be further upper bounded by:

V̇2(ze) ≤ −α2(|ze|) + σ2(|ǫe|) (48)

where α2(r)=κ7r
2/
√

1 + r2, σ2(r)=κ8r
2∈K∞ with

κ7 =min

{

λm(Q),
1

2
ε2λm(Kp)ch

√

1+η2∆2
h

}

κ8 =
λ2

M (Kd)
(

λm(Kp)+2ε2ch

√

1+η2∆2
hλm(Kd)

)

2λm(Kd)λm(Kp)

Thus, from Definition 4, V2(ze) is an ISS-Lyapunov

function for the ze-subsystem. Moreover, from Definition 2,

follows (40), where γz(r)=α−1
2 ◦ α2 ◦ α−1

2 ◦ σ2(r)∈K∞ .

From (17), (23) and (31), it is possible to conclude that

supt≥Td
|ze(t)| ≤ Cz . Thus, α2(|ze|) in (48) can be redefined

as α2(r)= κ̄7r
2, with κ̄7 =κ7/

√

1+C2
z . Hence, within DR,

the ISS gain γz(r) = κzr, where κz =
√

(κ6κ8)/(κ5κ̄7).

C. Proof of Lemma 2

From (29), (27) and (41), using (30) and Properties P1

and P7, the time derivative of V3 can be upper bounded by:

V̇3 ≤ − 1

4µ
|ǫe|2−

[

1

8µ
|ǫe|2−

λM (Kp)+ch

λm(M)
|e| |ǫe|

]

−
[

1

8µ
|ǫe|2−

2c1|q̇d|M +ζλM (Fv)+λM (Kd)

λm(M)
|ė||ǫe|

]

−
[

1

4µ
|ǫe|2−

c1 |ė|2|ǫe|
λm(M)

]

−
(

1

4µ
− λM (Kd)

λm(M)

)

|ǫe|2

After completing the squares on the bracketed terms, the

following result can be obtained for µ ≤ λm(M)
4λM (Kd)

V̇3 ≤ − 1

4µ
|ǫe|2+2µ

(λM (Kp)+ch)
2

λ2
m(M)

|e|2+µ
c2
1

λ2
m(M)

|ė|4

+2µ
(2c1 |q̇d|M +ζλM (Fv)+λM (Kd))

2

λ2
m(M)

|ė|2 (49)

From (49), it can be shown that V̇3 can be upper bounded

by the following inequality:

V̇3(ǫe) ≤ −α3(|ǫe|) + σ3(µ |ze|) (50)

where α3(r)=r2/4µ, σ3(µr)=µr2(κ9+κ10r
2)∈K∞, with

κ9 =
2

λ2
m(M)

max

{

(λM (Kp) + ch)
2
,

(2c1 |q̇d|M +ζλM (Fv)+λM (Kd))
2

}

and κ10 =c2
1/λ2

m(M). Thus, from Definition 4, V3(ǫe) is an

ISS-Lyapunov function for the ǫe-subsystem. Furthermore,

from Definition 2, follows (43), where γǫ(µr) = α−1
3 ◦

σ3(µr) ∈ K∞. Inside DR the function σ3(ze) can be re-

defined as follows α3(µr)=µκ11r
2 with κ11 = κ9 + κ10C

2
z

Therefore, within DR, γǫ(µr)=µκǫr, where κǫ =2
√

κ11
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