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Abstract— This paper considers the deployment of a net-
work of robotic agents with limited-range communication and
anisotropic sensing capabilities. We encode the environment
coverage provided by the network by means of an expected-
value objective function. This function has a gradient which
is not amenable to distributed computation. We provide a
constant-factor approximation of this measure via an alterna-
tive aggregate objective function whose gradient is spatially
distributed over the limited-range Delaunay proximity graph.
We characterize the smoothness properties of the aggregate
expected-value function and propose a distributed deployment
algorithm to optimize it. Simulations illustrate the results.

I. INTRODUCTION

Currently there is a large interest in the design of stable
and decentralized control laws for distributed motion coor-
dination. In this paper, we focus on the deployment of a
robotic network where each agent is equipped with limited-
range communication and anisotropic sensing capabilities
(e.g., cameras). We model the restricted sensory range by
defining a wedge-shaped region centered about each robot’s
orientation with an angular width less than or equal to π
radians. Our objective is to design distributed coordination
algorithms that optimize sensor network coverage of a con-
vex closed environment.

The literature on coordination tasks for robotic systems is
becoming quite extensive. The deployment problem consid-
ered here falls within the field of facility location [1], [2],
[3], where one seeks to optimize the position of a number
of resources in order to provide better quality-of-service.
In particular, this paper builds on [4], which provides an
overview of coverage control for mobile networks, and [5],
which models systems with limited-range interactions. Other
works on coverage problems include [6], [7], [8], [9]. Our
technical approach uses concepts and notions from computa-
tional geometry and geometric optimization, such as Voronoi
partitions [1], proximity graphs [10], and spatially distributed
maps [5].

The contributions of the paper are threefold. First, we
define a novel proximity graph, termed the limited-range
wedge graph, and show that it is distributed over the limited-
range Delaunay graph. Second, we introduce the expected-

value locational optimization function to measure the net-
work coverage of the environment. Motivated by the fact that
the gradient of this function is not amenable to distributed
computation, we provide a constant-factor approximation via
an alternative aggregate expected-value objective function.
We characterize the smoothness properties of the aggre-
gate expected-value function and show that the limited-
range wedge graph plays a key role in the computation of
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its gradient. As an important consequence, we show that
the gradient is spatially distributed over the limited-range
Delaunay graph. Third, we propose a distributed gradient
ascent algorithm to optimize network coverage and provide
simulations to illustrate the algorithm execution.

The organization of this paper is as follows. Section II
presents useful concepts on Voronoi partitions, proximity
graphs, and spatially distributed maps. Section III introduces
the expected-value and aggregate expected-value functions,
discusses a constant-factor approximation between them, and
analyzes their distributed character. Based on these results,
Section IV presents a deployment algorithm spatially dis-
tributed over the limited-range Delaunay graph and illustrates
it in simulation. Section V gathers our conclusions and ideas
for future work.

II. PRELIMINARY DEVELOPMENTS

In this section we present various notational conventions
and discuss notions from computational geometry. Let R,
R>0, and R≥0 be the set of real, positive real, and non-
negative real numbers. Let F(Rd) be the set of all finite
pointsets in R

d. For x ∈ R
d, let xT denote the transpose of

x. Given a set S in R
d, let co(S) and int(S) be the convex

hull and the interior of S, respectively. The indicator function

1S : R
d → R of the set S is defined by 1S(q) = 1 if q ∈ S

and 1S(q) = 0 if q 6∈ S. For an integrable function φ :
R

d → R≥0, let areaφ(S) =
∫

S
φ(x)dx. Let B(x, r) denote

the closed ball centered at x with radius r, and arc(x, r)
denote an arc segment of ∂B(x, r). Throughout the paper,
Q ⊂ R

2 denotes a simple convex polygon. The diameter of
Q is diam(Q) = maxq,p∈Q ‖q − p‖. Lastly, we define the
unit vector uθ = [cos θ, sin θ]T and the counterclockwise
rotation-by-θ-radians matrix

Rotθ =

(

cos θ − sin θ
sin θ cos θ

)

.

A. Voronoi partitions and boundary parameterizations

Voronoi partitions can be defined in arbitrary metric
spaces, but here we restrict our attention to the plane. The
Voronoi partition generated by P = {p1, . . . , pn} ⊂ R

2 is
the collection V(P) = (V1(P), . . . , Vn(P)) where,

Vi(P) = {q ∈ R
2 | ‖q − pi‖ ≤ ‖q − pj‖, for all pj ∈ P}.

Often, we use the notation Vi instead of Vi(P). Two robots
i and j are Voronoi neighbors if Vi ∩Vj 6= ∅. The section of
the boundary of Vi(P) that corresponds to the intersection
with Vj(P) is counterclockwise parametrized as

γij(t) =
pi + pj

2
+ t Rotπ

2
(pj − pi), t ∈ [ci, di], (1)

for some ci, di ∈ R. The corresponding outward unit normal

vector is nij =
pj−pi

‖pj−pi‖
, see Fig. 1.
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Fig. 1. Voronoi partition and wedge-shaped sensing regions corresponding
to a random deployment of a robotic network. The parameters are α = π

8
and r = 0.5. The notation for the various parameterizations of the Voronoi
cell boundary and wedge sensing region are specified for robot 1.

The Voronoi partition of an ordered set of possibly coin-
cident points is not well-defined. To deal with this situation,
we introduce the immersion iF : (R2)n → F(R2) that maps
P to the pointset P containing the distinct points in P . The
cardinality of P is determined by whether P is an element
of the set

Scoinc = {(p1, . . . , pn) ∈ (Rd)n

| pi = pj for some i 6= j ∈ {1, . . . , n}}. (2)

For P ∈ Scoinc, we consider the Voronoi partition generated
by P = iF(P ).

B. Limited-range anisotropic sensory

Let P = (p1, . . . , pn) ∈ Qn be a tuple of points in
Q, where pi is the position of robot i, and let Θ =
(θ1, . . . , θn) ∈ (S1)n be a tuple of angles, where θi is the
orientation of robot i. For P ∈ Qn and Θ ∈ (S1)n, we denote
((p1, θ1), . . . , (pn, θn)) ∈ (R2 × S

1)n by (P,Θ) with a
slight abuse of notation. We define the wedge-shaped sensory
region wr,α(p, θ) as the sector of a circle of radius r, centered
at p, with orientation θ, and amplitude 2α, α ∈ (0, π

2 ],
see Fig. 1. For brevity, we occasionally denote the region
wr,α(pi, θi) of robot i by wi. The indicator function of the
region wr,α(p, θ) can be expressed by

1wr,α(p,θ)(q) =











1, if ‖q − p‖ ≤ r and

arccos
( |(q−p)·(cos θ,sin θ)|

‖q−p‖

)

≤ α,

0, otherwise.

It is convenient to decompose the boundary ∂wr,α(p, θ) of
the wedge into the union of two line segments ∂w+, ∂w−

and an arc segment arc(p, r). We consider the following
counterclockwise parametrization of ∂wr,α(p, θ),

γ∂w−(t) = p + tuθ−α, t ∈ [0, r], (3a)

γarc(p,r)(t) = p + ruθ+t, t ∈ [−α, α], (3b)

γ∂w+(t) = p + (r − t)uθ+α, t ∈ [0, r]. (3c)

The corresponding outward normal vectors are

n∂w−(q) = Rot−π
2

uθ−α, q ∈ ∂w−, (4a)

narc(p,r)(q) =
q − p

‖q − p‖
, q ∈ arc(p, r), (4b)

n∂w+(q) = Rotπ
2

uθ+α, q ∈ ∂w+. (4c)

These parameterizations are illustrated in Fig. 1.

C. Proximity graphs and spatially distributed maps

The notion of proximity graph is useful to model the
changing interactions in a mobile network, see [5], [10]. A
proximity graph function assigns to a pointset a graph whose
vertex set is the pointset, and whose edge set is determined
by the relative location of its vertices. Here we only consider
proximity graphs defined for points in the plane. Let G(R2)
be the set of directed graphs whose vertex set is an element
of F(R2). A proximity graph function G : F(R2) → G(R2)
associates to V ∈ F(R2) a graph with vertex set V and edge
set EG(V ), where EG : F(R2) → F(R2×R

2) has the property
that EG(V ) ⊆ V ×V \diag(V ×V ). The following proximity
graph functions are relevant to our discussion:

(i) the r-disk graph P 7→ Gdisk(P, r) = (P, EGdisk
(P, r)),

with

EGdisk
(P, r) =

{(pi, pj) ∈ P × P \ diag(P × P) | ‖pi − pj‖ ≤ r} ;

(ii) the Delaunay graph P 7→ GD(P) = (P, EGD
(P)),

with

EGD
(P) =

{pi, pj ∈ P × P \ diag(P × P) | Vi ∩ Vj 6= ∅};

(iii) the r-limited (or limited-range) Delaunay graph P 7→
GLD(P, r) = (P, EGLD

(P, r)), with edges (pi, pj) ∈
P × P \ diag(P × P) if

(

Vi(P) ∩ B(pi,
r
2 )

)

∩
(

Vj(P) ∩ B(pj ,
r
2 )

)

6= ∅ ;

(iv) the (r, α)-limited (or limited-range) wedge graph

(P,Θ) 7→ GLW(P,Θ) = (P, EGLW
(P,Θ)), with edges

((pi, θi), (pj , θj)) ∈ (P,Θ) × (P,Θ) if

(

Vi(P) ∩ Vj(P)
)

∩ w r
2 ,α

(pi, θi) 6= ∅.

Fig. 2 presents an illustration of these notions. Note that
the orientation of the robots does not affect the computation
of the r-limited Delaunay graph. The r-limited Delaunay
graph is undirected, whereas the (r, α)-limited wedge graph
is directed. Clearly it is possible for Vi∩Vj∩wr,α(pi, θi) 6= ∅
and Vi∩Vj∩wr,α(pj , θj) = ∅ simultaneously, see for instance
Fig. 1.

For a directed proximity graph G, q is an in-neighbor of v
(or equivalently v is an out-neighbor of q) if (q, v) ∈ EG(V ).
To a vertex v, one can associate the set of in-neighbors and
out-neighbors maps N in

G,v,N out
G,v : F(X) → F(X) defined by

N in
G,v(V ) = {q ∈ V | (q, v) ∈ EG(V ∪ {v})},

N out
G,v(V ) = {q ∈ V | (v, q) ∈ EG(V ∪ {v})}.
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Fig. 2. From left to right, Delaunay graph, r-disk graph, r-limited Delaunay
graph, and (r, α)-limited wedge graph corresponding to the configuration
in Fig. 1. The parameters are α = π

8
and r = 0.5.

A proximity graph G1 is spatially distributed over an
undirected proximity graph G2 if, for all V ∈ F(X) and
all v ∈ V , we have

N in
G1,v(V ) = N in

G1,v(NG2,v(V )),

N out
G1,v(V ) = N out

G1,v(NG2,v(V )).

The next result establishes that the limited-range wedge
graph is spatially distributed over the limited-range Delaunay
graph.

Lemma II.1 The (r, α)-limited wedge graph GLW is spa-

tially distributed over the r-limited Delaunay graph GLD.

Proof: Note that Vi(P) ∩ Vj(P) ∩ w r
2 ,α(pi, θi) 6= ∅

implies that B(pi,
r
2 )∩{q ∈ R

2 | ‖q− pi‖ = ‖q− pj‖} 6= ∅.

The latter is equivalent to B(pj ,
r
2 ) ∩ {q ∈ R

2 | ‖q − pi‖ =
‖q − pj‖} 6= ∅. Therefore,

N out
GLW,(pi,θi)

(P,Θ)

= {(pj , θj) ∈ (P,Θ) | Vi(P) ∩ Vj(P) ∩ w r
2 ,α(pi, θi) 6= ∅}

= {(pj , θj) ∈ NGLD,(pi,θi)(P,Θ) |

Vi(P) ∩ Vj(P) ∩ w r
2 ,α(pi, θi) 6= ∅}

= N out
GLW,(pi,θi)

(NGLD,(pi,θi)(P,Θ)).

A similar proof can be given for N in
GLW,(pi,θi)

(P,Θ).

III. ENCODING NETWORK PERFORMANCE VIA

LOCATIONAL OPTIMIZATION

We begin by introducing measures of the sensor coverage
of the environment by the robotic network.

A. Expected-value locational optimization functions

Let φ : Q → R≥0 be an integrable density function. This
function can be thought of as a measure of the probability
of some event taking place over Q. Due to noise and
interference, the sensor performance of robot i degrades
at point q in proportion to the distance ‖q − pi‖. Thus,
we introduce a continuously differentiable, strictly positive,
non-increasing performance function f : R≥0 → R≥0 to
measure this degradation: f(‖q−pi‖) provides a quantitative
assessment of sensor quality of the ith robot at point q ∈

Q. Consider then the expected-value locational optimization
function H : (Q × S

1)n → R≥0,

H(P,Θ) =

∫

Q

max
i∈{1,...,n}

{

f(‖q − pi‖)1wr,α(pi,θi)(q)
}

φ(q)dq.

(5)

This function provides an expected value of the sensor net-
work performance. Hence, it is of interest to find maximizers
of H. However, its gradient is in general not distributed over
the limited-range Delaunay or limited-range wedge graphs.
Fig. 1 illustrates this assertion. The sensing region of p2 is
the only one that contains the grey region depicted in the
plot. Changes in p5 affect the gradient of H with respect to
p2. However, p2 and p5 are not neighbors in the limited-range
Delaunay or limited-range wedge graphs.

The approach we take here is to provide an alternative
objective function. We define the aggregate expected-value

locational optimization function

Hagg(P,Θ) = (6)
∫

Q

max
i∈{1,...,n}

{

f(‖q − pi‖)
}

1∪pj∈M(q)wr,α(pj ,θj)(q)φ(q)dq,

where M(q) = argmin{‖q − pi‖}. For P 6∈ Scoinc, the
function Hagg can be rewritten as

Hagg(P,Θ) =
n

∑

i=1

∫

Vi(P )

f(‖q − pi‖)1wr,α(pi,θi)(q)φ(q)dq.

(7)

The function Hagg sums the individual sensor performance
of the robots within the intersection of their respective
sensing wedge and Voronoi cell. Note that the function is
discontinuous at coincident configurations. Let us show that
Hagg provides a good approximation of H on suitable regions
of the configuration space (Q × S

1)n.

Proposition III.1 Consider the expected-value and aggre-

gate expected-value objective functions, H and Hagg respec-

tively. Then, for all (P,Θ) ∈ (Q × S
1)n,

Hagg(P,Θ) ≤ H(P,Θ) ≤ Hagg(P,Θ) + ‖f‖∞ areaφ(Q),

where ‖f‖∞ = maxx∈[0,diam Q] |f(x)|. Additionally, for A ∈
(0, areaφ(Q)], define

ΣA ={(P,Θ) ∈ (Q × S
1)n

|
m

∑

j=1

areaφ(Vj(iF(P )) ∩ (∪ i s.t.
pi=zj

wr,α(pi, θi))) ≥ A},

where recall iF(P ) = {z1, . . . , zm}. Then, for all (P,Θ) ∈
ΣA,

Hagg(P,Θ) ≤ H(P,Θ) ≤
(

1 +
‖f‖∞ areaφ(Q)

Af(diam(Q))

)

Hagg(P,Θ).

Proof: The lower bounds in both approximations follow
directly from the function definition in (5) and (6). For P 6∈
Scoinc, the upper bound in the additive approximation follows
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from

H(P,Θ) −Hagg(P,Θ)

≤
n

∑

i=1

∫

Vi

f(‖q − pi‖)

(

max
j∈{1,...,n}

{1wr,α(pj ,θj)(q)} − 1wr,α(pi,θi)(q)
)

φ(q)dq

≤
n

∑

i=1

∫

Vi∩Q\wr,α(pi,θi)

f(‖q − pi‖)φ(q)dq

≤ ‖f‖∞ areaφ(Q \ ∪n
i=1 wr,α(pi, θi))

≤ ‖f‖∞ areaφ(Q).

A similar set of inequalities can be derived for P ∈ Scoinc.
The upper bound in the constant-factor approximation fol-
lows from the above upper bound and the fact that

Hagg(P,Θ)

≥ f(diam(Q))

m
∑

j=1

areaφ(Vj(iF(P )) ∩ (∪ i s.t.
pi=zj

wr,α(pi, θi)))

≥ Af(diam(Q))

on ΣA.
From Proposition III.1, one can see that the better the area

coverage of Q provided by the collection of sets resulting
from the intersection between Voronoi regions and wedges,
the better the approximation of H provided by Hagg is.
From (6), configurations with larger values of Hagg also
induce good area coverage of Q. Therefore, the maximization
of Hagg naturally leads to regions of good approximations of
H.

Remark III.2 For P ∈ Qn such that ‖zi − zj‖ > 2r, for
all zi, zj ∈ iF(P ), the values of H and Hagg coincide, i.e.,
H(P,Θ) = Hagg(P,Θ), for all Θ ∈ (S1)n. •

B. Smoothness properties of the aggregate expected-value

function

We explore the smoothness properties of the function Hagg.

Theorem III.3 Given a density function φ and a perfor-

mance function f , the function Hagg is piecewise contin-

uously differentiable. On Scoinc, Hagg is discontinuous. On

int(Q)n \ Scoinc, Hagg is continuously differentiable and, for

each i ∈ {1, . . . , n}, its gradient is given by

∂Hagg

∂pi

=

∫

Vi∩wi

∂

∂pi

f(‖q − pi‖)φ(q)dq (8a)

+

∫

Vi∩(∂w+
i
∪∂w−

i
)

f(‖q − pi‖)φ(q)n(q)dq

+

∫

Vi∩wi∩∂B(pi,r)

f(‖q − pi‖)φ(q)n(q)dq

+

n
∑

j=1

j 6=i

(

∫

Vi∩Vj∩wi

f(‖q − pi‖)φ(q)
q − pi

‖pj − pi‖
dq

−

∫

Vi∩Vj∩wj

f(‖q − pj‖)φ(q)
q − pi

‖pj − pi‖
dq

)

,

where n(q) denotes the unit outward normal vector at q, and

∂Hagg

∂θi

=
∑

s∈{+,−}

s

∫

V ∩∂ws
i

‖q − pi‖f(‖q − pi‖)φ(q)dq.

(8b)

Proof: For P ∈ int(Q)n \ Scoinc, consider the ex-
pression (7) of Hagg. Note that f(‖q − pi‖) is continuously
differentiable and for fixed (P,Θ), the maps q 7→ f(‖q−pi‖)
and q 7→ ∂

∂P
f(‖q − pi‖) are both measurable and integrable

on Vi ∩ wr,α(pi, θi). Also note that since both the Voronoi
partition and the wedge are convex sets, their intersection is
also convex. By [5, Proposition A.1] (see also Appendix A),
Hagg is continuously differentiable on (int(Q)n \ Scoinc) ×
(S1)n and, for each i ∈ {1, . . . , n},

∂Hagg

∂pi

(P,Θ) =
∂

∂pi

n
∑

k=1

∫

Vk∩wk

f(‖q − pk‖)φ(q)dq (9)

=

∫

Vi∩wi

∂

∂pi

f(‖q − pk‖)φ(q)dq

+

n
∑

k=1

∫

∂(Vk∩wk)

f(‖γ − pk‖)φ(γ)nT(γ)
∂γ

∂pi

dγ.

Next, we simplify the second term in the equation. The
boundary ∂(Vk ∩ wr,α(pk, θk)) is composed of a finite
number of line segments and arcs, all of which have been
parametrized in Section II-A. We first integrate over the
wedge boundary Vk ∩ ∂(wr,α(pk, θk)) = Vk ∩ (∂w+

k ∪
∂w−

k )∪m
l=1 arcl(pk, r), see (3). This integral is nonzero only

when k = i. Note that when there is a displacement in the
position of pi, the motion of wr,α(pi, θi) (when projected
along the appropriate normal vector) is exactly the same as

pi i.e., nT

(·)

∂γ(·)

∂pi
= n(·). Hence,

∫

Vi∩(∂w+
k
∪∂w−

k
)∪m

l=1arc(pi,r))

f(‖q − pi‖)φ(q)nT

(·)

∂γ(·)

∂pi

dγ

=

∫

Vi∩(∂w+
i
∪∂w−

i
)

f(‖q − pi‖)φ(q)n
∂w

(·)
i

dq

+

m
∑

l=1

∫

arcl(pi,r)

f(‖q − pi‖)φ(q)nB(pi,r)
dq.

The remaining boundary segments that must be considered
define the regions Vk∩Vj ∩wr,α(pk, θk), for j ∈ {1, . . . , n}.
To parametrize these boundaries, consider the map given
in (1). The derivative of this map with respect to pi is
non-zero only for the regions Vi ∩ Vj ∩ wr,α(pi, θi) and
Vj ∩ Vi ∩wr,α(pj , θj), i.e., when pj ∈ N in

GLW,(pi,θi)
(P,Θ) or

pj ∈ N out
GLW,(pi,θi)

(P,Θ), respectively. For both regions, we

use the counterclockwise parametrization γij . When pj ∈
N in

GLW,(pi,θi)
(P,Θ) we compute,

nT

ij

∂γij

∂pi

=
1

2
nT

ij +
t

‖pj − pi‖
Rotπ

2
(pj − pi)

=
1

2
nT

ij +
1

‖pj − pi‖
(γij −

pi + pj

2
) =

γij − pi

‖pj − pi‖
.

For pj ∈ N out
GLW,(pi,θi)

(P,Θ), a similar computation is made

using the inward normal vector nji = −nij . We place

2669



these formulations back into (9) to obtain the complete form
of (8a).

Next, let us compute the partial derivative of Hagg with
respect to θi by considering the parameterizations given
in (3). Since the boundary ∂(wr,α(pi, θi)) ∩ Vi contains the
only parametrization with a dependency on θi, we have

∂Hagg

∂θi

(P,Θ) =
∫

∂(wr,α(pi,θi))∩Vi

f(‖γ − pi‖)φ(γ)nT(γ)
∂γ

∂θi

dγ.

Notice that the normal vector nB(pi,r)
is orthogonal to

∂γarc(pi,r)

∂θi
. Hence, we only consider the line segments ∂w+

i ∩

Vi and ∂w−
i ∩ Vi. For q ∈ ∂w+

i we compute,

nT

∂w+
i

∂γ∂w+
i

∂θi

= ‖γ∂w+
i
− pi‖.

Hence,

∫

∂w+
i
∩Vi

f(‖γ∂w+
i
−pi‖)φ(γ∂w+

i
)n(γ∂w+

i
)T

∂γ∂w+
i

∂θi

dγ∂w+
i

=

∫

∂w+
i
∩Vi

‖q − pi‖f(‖q − pi‖)φ(q)dq.

A similar calculation for the integral over ∂w−
i ∩Vi completes

the proof.

Remark III.4 Using extension by continuity, we redefine
the domain where Hagg is continuously differentiable to
include the boundary of Q. •

IV. A COORDINATION ALGORITHM TO OPTIMIZE

NETWORK PERFORMANCE

Here we present an algorithm to maximize the locational
optimization function Hagg. We implement our control law
in continuous time and analyze its convergence properties.
Assume the robotic agents evolve according to

ṗi = ui, θ̇i = vi, i ∈ {1, . . . , n}.

Regarding sensing, we assume that each agent has a limited-
range wedge-shaped sensory region with parameters r ∈
R>0 and α ∈ (0, π

2 ]. Regarding communication, we assume
that each agent can share position and orientation information
with other agents within a distance 2r ∈ R>0. We implement
a gradient ascent of the locational optimization function
Hagg. In other words, for agents not co-located with any
other agent, we set

ui =

{

∂Hagg

∂pi
pi ∈ int(Q),

prQ(
∂Hagg

∂pi
) pi ∈ ∂Q,

(10a)

vi =
∂Hagg

∂θi

, (10b)

where prQ is the orthogonal projection onto Q of the gradient
vector given in Theorem III.3. For agents co-located with
other agents at the same point p and associated Voronoi
cell V , we define Si ⊂ {+,−} by specifying s ∈ Si if

Fig. 3. Execution of the coordination algorithm (10) by 7 robots with
sensory wedge radius r = 0.345 and α = π

4
. The plot on the left (resp.

right) illustrates the initial (resp. final) configuration after 6.5 milliseconds.
The central figure illustrates the gradient ascent flow of the system, with
the smaller dots representing the initial configuration and the larger dots
representing the final one. The performance function is f(x) = 2−x2 and
the density function φ (represented by its contour plot) is the sum of three

Gaussian functions of the form 50 e−10((x−xcntr)
2+(y−ycntr)

2).

∂ws
i is not contained in the wedge of another agent located

at p. Then, we set

ui = 0, (10c)

vi =
∑

s∈Si

s

∫

V ∩∂ws
i

‖q − pi‖f(‖q − pi‖)φ(q)dq. (10d)

We assume that the Voronoi partition is updated in
continuous time. The vector field is discontinuous, so we
understand the solutions in the Krasovskii sense, see [11],
[12].

Theorem IV.1 Given a density function φ and a perfor-

mance function f , the control law on (Q × S
1)n defined

by (10) has the following properties:

(i) the law is spatially distributed over the limited-range

Delaunay graph GLD(P, 2r) and;

(ii) for each initial configuration (P0,Θ0) ∈ (Q×S
1)n, the

Krasovskii solution that exactly satisfies (10) monoton-

ically optimizes Hagg and asymptotically converges to

the union of Scoinc and the set of critical points of Hagg.

Proof: Statement (i) follows from the fact that, ac-
cording to (8), the gradient of Hagg depends only on the
position and orientation of pi as well as those of its in- and
out-neighbors in the (r, α)-limited wedge graph GLW, and,
according to Lemma II.1, this graph is spatially distributed
over GLD. Statement (ii) follows from considering the dy-
namical system defined by (10) on the compact and strongly
invariant domain (Q × S

1)n. The motion according to (10)
of the nodes not co-located with any other node increases
the value of Hagg. Therefore, while the solution is outside
Scoinc, the function Hagg is monotonically optimized. If the
solution does not reach Scoinc, then the LaSalle Invariance
Principle [13] guarantees that it will reach the set of critical
points of Hagg. Otherwise, the solution reaches Scoinc and
stays in it.

A. Simulations

To illustrate the performance of the network under the
coordination algorithm (10), we present some numerical
simulations. The algorithm is implemented in Mathematica R©

as a main program running the simulation that makes use of a
library of routines. The structure of this simulation is loosely
described by the following procedure: first, the intersection of
the bounded Voronoi cell Vi and the wedge wr,α(pi, θi), for
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i ∈ {1, . . . , n}, is computed. Next, the r-limited Delaunay
and (r, α)-limited wedge proximity graphs are constructed.
Then, for each robot, information of its in- and out-neighbors
is collected and used to construct the various parameter-
izations necessary for the gradient computation. Finally,
the various surface and boundary integrals involved in the
gradient of the locational optimization function Hagg are
computed using the Mathematica R© numerical integration
routine NIntegrate. The position and orientation of each
robot are then updated according to these results. Fig. 3
illustrates an execution.

V. CONCLUSIONS

We have introduced two locational optimization functions
to measure the coverage of the environment provided by
a group of robotic agents with limited-range anisotropic
sensory. Based on considerations about the distributed com-
putation of the gradient information, we have selected the ag-
gregate expected-value function as our optimization criteria.
We have characterized the smoothness properties of this ob-
jective function, computed its gradient, and characterized its
spatially-distributed character. We have designed a gradient
ascent strategy that is guaranteed to achieve optimal network
deployment. Further research will include the analysis on
the computational complexity of the current algorithm, the
design of coordination algorithms implemented in discrete
time, the synthesis of cooperative strategies to attain global
optima of the aggregate objective function, and the study of
similar deployment problems in nonconvex environments.
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APPENDIX A
A GENERALIZED CONSERVATION OF MASS LAW

A set Ω ⊂ R
2 is said to be piecewise smooth if its bound-

ary, ∂Ω, is a simple closed curve that admits a continuous and
piecewise smooth (i.e. piecewise continuously differentiable)
parameterization γ : S

1 → R
2. Likewise, a collection of sets

{Ω(x) ⊂ R
2 | x ∈ (a, b)} is said to be a piecewise smooth

family if Ω(x) is piecewise smooth for all x ∈ (a, b), and
there exists a continuous function γ : S

1 × (a, b) → R
2,

(θ, x) 7→ γ(θ, x), continuously differentiable with respect
to its second argument such that for each x ∈ (a, b), the
map θ 7→ γx(θ) = γ(θ, x) is a continuous and piecewise
smooth parameterization of ∂Ω(x). We refer to γ as a
parameterization for the family {Ω(x) ⊂ R

2 | x ∈ (a, b)}.
The following result, originally stated and proved in [5],

is an extension of the integral form of the Conservation-of-
Mass law in fluid mechanics.

Proposition A.1 Let {Ω(x) ⊂ R
2 | x ∈ (a, b)} be a

piecewise-smooth family of curves such that Ω(x) is strictly

star-shaped for all x ∈ (a, b). Let the function ϕ : R
2 ×

(a, b) → R be continuous on R
2 × (a, b), continuously

differentiable with respect to its second argument for all

x ∈ (a, b) and almost all q ∈ Ω(x), and such that for each

x ∈ (a, b), the maps q 7→ ϕ(q, x) and q 7→ ∂ϕ
∂x

(q, x) are

measurable, and integrable on Ω(x). Then, the function

(a, b) ∋ x 7→

∫

Ω(x)

ϕ(q, x)dq

is continuously differentiable and

d

dx

∫

Ω(x)

ϕ(q, x)dq =

∫

Ω(x)

∂ϕ

∂x
(q, x)dq (11)

+

∫

∂Ω(x)

ϕ(γ, x)nt(γ)
∂γ

∂x
dγ,

where n : ∂Ω(x) → R
2, q 7→ n(q), denotes the unit outward

normal to ∂Ω(x) at q ∈ ∂Ω(x), and γ : S
1 × (a, b) → R

2 is

a parametrization for the family {Ω(x) ⊂ R
2 | x ∈ (a, b)}.
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