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Abstract— We consider the problem of minimizing the re-
sponse of a plant output to a stochastic disturbance using a
control law that relies on the output of a noisy communica-
tion channel. We discuss a lower bound on the performance
achievable at a specified terminal time using nonlinear time-
varying communication and control strategies, and show that
this bound may be achieved using strategies that are linear.

I. INTRODUCTION

The standard minimum variance control problem consists

of minimizing the variance of a plant output in response to

a stochastic disturbance using a control law that depends on

possibly noisy measurements of that output. A solution to

this problem, in the case of a noise free measurement, is

presented in [1], wherein transfer function methods are used

to obtain the result. An alternate approach, that is applicable

with noisy measurements, is to solve the “cheap control”

Linear Quadratic Gaussian (LQG) problem, in which a state

feedback gain is applied to an estimate of the plant state

obtained from a Kalman filter.

In the present paper, we assume that the system output

must be communicated to the controller over a Gaussian

communication channel. In this scenario, it may be feasible

to add precompensation (an encoder) before the channel. For

example, we may transmit a filtered version of the system

output, or a signal that depends on measurements of the plant

states, if available. The only restriction is that the channel

input must satisfy the power limit of the Gaussian chan-

nel. The flexibility available from channel precompensation

does not come without a price: the certainty equivalence

and separation properties present with LQG optimal control

may no longer be present, thus complicating the design of

communication and control strategies.

A special case of the minimum variance communication

and control problem described above was treated in [6]. In

that paper, it was assumed that the channel input is equal

to a constant scalar multiple of the plant output, and that

the control input is obtained by passing the channel output

through a linear time invariant filter. In the present paper,

we consider potential improvements using more general

communication and control strategies.

A partial review of previous work on feedback perfor-

mance over a communication channel follows. The authors

of [8] derive a lower bound on a measure of disturbance
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attenuation that is stated in terms of channel capacity. The

authors of [12] study performance limitations imposed by

a vector Gaussian channel. The author of [4] relates the

problem of feedback stabilization to that of communication

over a channel with feedback. The authors of [9], [10]

consider performance constraints imposed by noise free, data

rate limited channels. The authors of [2] study the joint

optimum design of communication and control strategies for

feedback over noisy channels.

Because we wish to determine the performance limita-

tions imposed by the channel, we assume that other known

sources of limitations are not present: the plant is assumed

to be minimum phase and relative degree one, a noiseless

measurement of the plant output is available to the encoder,

and there is no delay in the feedback path.

The remainder of this paper is outlined as follows. In

Section II we note that the variance of the plant output is

bounded below by that of the prediction estimation error,

and present a control law that achieves this bound with

equality. We also review the results of [6] discussed above. In

Section III we present a lower bound on the variance of the

output estimation error that holds for potentially nonlinear

communication and control strategies. By the results of

Section II, this lower bound also applies to the mean square

plant output. We derive time varying communication and

control strategies in Section IV that achieve this lower bound

at a specified terminal time. The communication strategy

proposed in Section IV assumes that the states of the plant

are measurable. We show in Section V that, under appropriate

conditions, these state measurements can be replaced by

state estimates obtained from a filter that is driven only by

the plant output. Communication and control strategies that

are defined over an infinite horizon are briefly described in

Section VI. The paper concludes in Section VII.

Notation

Denote a random sequence by {xk}, and define the

subsequence xk , {xℓ; ℓ ≤ k}. The z-transform of a

discrete-time sequence is denoted by an upper case letter,

e.g., X(z) = Z{xk}. The open and closed unit disks are

denoted by D and D̄. A rational transfer function G(z) is

minimum phase if all its zeros lie in D̄, and is nonminimum

phase (NMP) otherwise. The relative degree of G(z) is

defined as its excess of poles over zeros.

II. PRELIMINARIES

We consider the linear plant

xk+1 = Axk + Buk + Edk, xk ∈ R
n, uk, dk ∈ R, (1)

yk = Cxk, yk ∈ R, (2)
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where dk is a zero mean Gaussian white noise sequence of

variance σ2
d. Denote the transfer functions from the control

and disturbance to the output by Gu(z) = CΦ(z)B and

Gd(z) = CΦ(z)E, respectively, where Φ(z) , (zI −A)−1.

Measurements of the plant output must be processed and

communicated to the controller over a Gaussian communi-

cation channel

rk = sk + nk, (3)

where nk is a zero mean Gaussian white noise sequence of

variance σ2
n, and the channel input satisfies the power limit

E{s2
k} ≤ P, ∀k. (4)

We discuss several control and communication strategies

in the paper. The most general of these are time-varying and

nonlinear of the form

sk = fk(yk), (5)

uk = gk(rk). (6)

In later sections we shall also discuss various linear control

and communication strategies that, depending on context,

may be static, dynamical, or time-varying.

Define the conditional expectation of the plant state xk+1

given the history of the channel output rk−1 or rk by

x̂k|k−1 = E{xk|r
k−1}, (7)

x̂k|k = E{xk|r
k}. (8)

It is well known that the conditional expectations (7)-(8)

are optimal with respect to minimizing the mean square

estimation error [7, p. 97]. Denote the associated state

estimation errors by

x̃k|k−1 = xk − x̂k|k−1, x̃k|k = xk − x̂k|k. (9)

Similarly, denote the corresponding output estimates and

estimation errors by ŷk|k−1, ŷk|k, ỹk|k−1, and ỹk|k−1. We

shall denote the covariance of x̃k|k−1 by

Σk|k−1 = E{x̃k|k−1x̃
T
k|k−1}. (10)

In particular, the covariance of the initial state estimate is

given by Σ0|−1.

We are interested in the problem of selecting communi-

cation and control strategies to minimize the mean square

value of the system output, E{y2
k}. Our first result provides

a lower bound, and follows immediately from properties of

the conditional expectation [7, p. 97].

Lemma II.1 Consider the plant (1)-(2), channel (3), and the

communication and control strategies (5)-(6). Then

E{y2
k} ≥ E{ỹ2

k|k−1}. (11)

�

Our next result is an immediate consequence of plant

linearity and the assumption that dk is white noise.

Lemma II.2 Consider the plant (1)-(2), the channel (3), and

the communication and control strategies (5)-(6). Then

E{ỹ2
k+1|k} = E{(CAx̃k|k)2} + (CE)2σ2

d. (12)

�

Since the channel output sequence rk may be influenced

by the choice of communication strategy, one may think

of choosing such a strategy to minimize E{ỹ2
k+1|k}. The

significance of Lemma II.2 lies in the fact that the problem

of minimizing E{ỹ2
k+1|k} is equivalent to that of minimiz-

ing E{(CAx̃k|k)2}. We shall return to this observation in

Section IV.

Our final preliminary result states conditions under which

the lower bound of Lemma II.1 is achieved with equality.

Lemma II.3 Consider system (1)-(2), the channel (3), and

the communication strategy (5). Assume that CB 6= 0. Then,

under the control law

uk = −(CB)−1CAx̂k|k, (13)

the output and its conditional estimate satisfy

yk+1 = ỹk+1|k, ŷk+1|k = 0. (14)

�

As we shall see in the sequel, a communication strategy

chosen to minimize the variance of the output estimation

error may require that a specific control law be applied. Such

a control law may be different than (13), with the result that

communication and control strategies chosen to minimize

estimation error may differ from those that minimize distur-

bance response.

To illustrate the preceding remarks, we now review the

results of [6], in which it is assumed that the channel input

is a scalar multiple of the plant output, sk = λyk, and the

control input is the response of a linear time invariant filter

to the channel output, denoted in the transform domain by

U(z) = −K(z)R(z), where K(z) is the transfer function of

the filter. The scalar λ and the filter K(z) solve the infinite

horizon minimum variance problem

J∗ , min
K,λ

lim
N→∞

1

N

N−1
∑

k=0

E{y2
k}. (15)

Since the system is linear and time invariant, stability implies

that all signals will have stationary distributions in the limit,

and thus J∗ , minK,λ E{y2
k}. For a fixed value of λ, this

problem may be solved using standard LQG methods. Under

the assumptions that Gu(z) is minimum phase and relative

degree one, the optimal control input is stabilizing and is

given by (13). The state estimate x̂k|k satisfies

x̂k+1|k = Ax̂k|k−1 + Buk + Lp(rk − λCx̂k|k−1), (16)

x̂k|k = x̂k|k−1 + Lf (rk − λCx̂k|k−1),

where

Lp = ALf , Lf = λΣ(λ)CT /(λ2CΣ(λ)CT + σ2
n),
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and Σ(λ) is the unique positive semidefinite solution to the

algebraic Riccati equation

Σ(λ) = AΣ(λ)AT −
λ2AΣ(λ)CT CΣ(λ)AT

λ2CΣ(λ)CT + σ2
n

+ σ2
dEET .

Since the optimal control input is given by (13), Lemma II.3

implies that, ∀k,

E{y2
k} = E{ỹ2

k|k−1} = CΣ(λ)CT ,

E{s2
k} = E{s̃2

k|k−1} = λ2CΣ(λ)CT .

To choose a value of λ, we note from [6] that (a) E{s̃2
k|k−1}

is monotonically increasing with λ, becoming unbounded as

λ → ∞, and (b) E{ỹ2
k|k−1} is monotonically decreasing with

λ. Hence E{y2
k} can be set equal to P/λ∗2, where λ∗ is the

value of the λ for which the channel input satisfies the power

constraint (4) with equality.

Example II.4 Consider the system (1)-(2) with

A =

[

1.1 1
0 1.2

]

, E =

[

0
1.5

]

, C =
[

1 1
]

.

Assume that the disturbance has variance σ2
d = 1. The

optimal value of E{y2
k} is plotted as a function of the channel

SNR in Figure 1. Note that E{y2
k} becomes unbounded as

the SNR approaches the limit required for stabilization [3],

P/σ2
n >

m
∏

i=1

|φi|
2 − 1, (17)

where φi, i = 1, . . . ,m denote the eigenvalues of A that

satisfy |φi| > 1. As the channel SNR becomes large, E{y2
k}

approaches the lower limit (CE)2σ2
d [6]. �
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E{ỹ2

k|k−1
}(sk = λyk)

stabilization requirement

(CE)2σ2

d

E{ỹ2

k|k−1
} (lower bound)

Fig. 1. Estimation error E{ỹ2
k|k−1

} for sk = λyk and the asymptotic

lower bound (20) vs. channel SNR.

Note the implicit dependence of the communication strat-

egy (i.e., choice of λ) upon the control law, which sets

yk = ỹk|k−1, and thus allows λ to be selected based on the

solution to an estimation problem. The estimator gains and

the estimation error do not themselves depend on the control

law. Indeed, using Lemma II.3 implies that the estimation

error satisfies the difference equation

x̃k+1|k = (Axk + Edk) − (Ax̂k|k−1 + Lpnk + Lpλỹk|k−1),

which is diagrammed in Figure 2. The effect of the control

law may thus be viewed as one of inverting the plant

and introducing a feedback path around the communication

channel.

C

Σ

nk

rk

channel

Σ

E

dk

Lp
-

skyk|k-1
~

λ

xk

Σ z -1

A

xk+1
xk|k-1
^

yk

yk|k-1
^

C Σ z -1

A

xk+1|k
^

Fig. 2. Optimal control reduces the feedback system to a communication
channel with feedback.

III. A LOWER BOUND ON THE DISTURBANCE RESPONSE

We now present a lower bound on the disturbance response

that is valid for the potentially nonlinear communication and

control strategies (5)-(6). A proof is found in [5].

Proposition III.1 Consider the plant (1)-(2), channel (3),

and the communication and control scheme (5)-(6). Then the

variance of the output estimation error satisfies the lower

bound

E{ỹ2
k+1|k} ≥ CAk+1Σ0|−1A

(k+1)T CT

(

σ2
n

P + σ2
n

)k+1

+ σ2
d

k+1
∑

j=1

(CAk+1−jE)2
(

σ2
n

P + σ2
n

)k+1−j

. (18)

�

It follows from Lemma II.1 that the right hand side of (18)

is also a lower bound for the mean square value of the plant

output.

The lower bound (18) holds for any finite value of k,

and for any channel signal to noise ratio P/σ2
n. Our next

result, whose proof is straightforward, reveals the asymptotic

behavior of (18) for large values of k.

Corollary III.2 Assume in Proposition III.1 that

P/σ2
n > ρ2(A) − 1, (19)

where ρ(A) denotes the spectral radius of A. Then, in the

limit as k → ∞, the right hand side of (18) remains

bounded, and the estimation error variance satisfies

lim
k→∞

E{ỹ2
k+1|k} ≥ σ2

d

∞
∑

ℓ=0

(CAℓE)2
(

σ2
n

P + σ2
n

)ℓ

. (20)

�
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A sufficient condition for (19) to be satisfied is that the

channel SNR satisfies the lower bound (17) required for

stabilization. The fact that the lower bound (20) remains

finite for SNRs that are incompatible with closed loop

stability is not a contradiction, since the bound need not

be tight. We shall, in fact, show that the bound (20) can be

achieved at any given finite value of k.

Example III.3 Consider again the system in Example II.4.

The estimation error computed in that example for the chan-

nel input sk = λyk is plotted, together with the asymptotic

lower bound (20), in Figure 1. The difference between these

curves describes the potential to achieve lower estimation

error by using communication and control strategies more

general than those in Example II.4. �

IV. ACHIEVABILITY OF LOWER BOUND AT A FIXED TIME

We now exhibit a communication strategy that achieves

the lower bound (18) on estimation error for a fixed finite

value of k. We then present a control strategy, whose details

depend upon those of the communication strategy, that results

in E{y2
k} achieving the same lower bound.

Motivated by the structure of the minimum variance con-

troller at the close of Section II, we consider the estimation

scheme depicted in Figure 3, with channel input

Hk

Σ

nk

rk

channel

Σ

E

dk

ALk
-

skzk|k-1
~

λk

xk

Σ z -1

A

xk+1
xk|k-1
^

zk

zk|k-1
^

Hk Σ z -1

A

xk+1|k
^

Fig. 3. Estimation over a channel with feedback.

sk = λkHkx̃k|k−1. (21)

The sequence of estimator gains Lk minimizes the mean

square state estimation error for given sequences Hk and

λk, and is given by

Lk = λkΣk|k−1H
T
k /(λ2

kHkΣk|k−1H
T
k + σ2

n), (22)

Σk+1|k = AΣk|k−1A
T

−
λ2

kAΣk|k−1H
T
k HkΣk|k−1A

T

λ2
kHkΣk|k−1H

T
k + σ2

n

+ σ2
dEET , (23)

with initial condition Σ0|−1. The output estimation error

ỹk+1|k satisfies

CΣk+1|kCT = CAΣk|k−1A
T CT

−
λ2

kCAΣk|k−1H
T
k HkΣk|k−1A

T CT

λ2
kHkΣk|k−1H

T
k + σ2

n

+ σ2
d(CE)2. (24)

We shall choose the sequences λk and Hk, for k = 0, . . . , N ,

so that the lower bound (18) on estimation error is achieved

at time k = N .

We consider first the problem of minimizing the variance

of the output estimation error at a fixed time step, given the

variance of the state estimation error one time step earlier.

Lemma IV.1 For a given time k = N and covariance

matrix ΣN |N−1, the choices of λN and HN that minimize

CΣN+1|NCT , the output estimation error at the subsequent

time step, subject to the power constraint (4), are given by

HN = CA,

and, assuming that HNΣN |N−1H
T
N 6= 0,

λ2
NHNΣN |N−1H

T
N = P. (25)

Furthermore, with these choices of HN and λN ,

E{ỹ2
N+1|N} = CAΣN |N−1A

T CT

(

σ2
n

P + σ2
n

)

+ σ2
d(CE)2.

(26)

Proof: Any positive semidefinite matrix X ∈ R
n×n,

whose rank is equal to m, has a matrix square root Y ∈
R

n×m that has rank m and satisfies X = Y Y T . Denote

such a square root for ΣN |N−1 by YN . It follows that

CAΣN |N−1H
T = ‖CAYN‖‖HNYN‖ cos φN , (27)

where ‖ · ‖ denotes the Euclidean vector norm, and

cos φN , |CAYNY T
N HT

N |/(‖CAYN‖‖HNYN‖).

Substituting (27) into (24) and rearranging yields

CΣN+1|NCT = σ2
d(CE)2+

CAΣN |N−1A
T CT

(

λ2
NHNΣN |N−1H

T
N sin2 φN + σ2

n

λ2
NHNΣN |N−1H

T
N + σ2

n

)

.

It is straightforward to show that the coefficient of

CAΣN |N−1A
T CT is a monotonically decreasing function

of λ2
N . Hence, for any value of HN , λN should be chosen

so that (25) is satisfied. Doing so yields

CΣN+1|NCT = σ2
d(CE)2+

CAΣN |N−1A
T CT

(

P sin2 φN + σ2
n

P + σ2
n

)

. (28)

Since we assume that ΣN |N−1 is given, it follows that HN

should be chosen as a scalar multiple of CA, so that φN =
0.

Our next result builds on Lemma IV.1 to exhibit choices

of Hk and λk such that the variance of the output estimation

error achieves the lower bound from Proposition III.1.

Proposition IV.2 Consider the communication channel with

feedback depicted in Figure 3. Choose the channel input to

satisfy (21), where

Hk = CAN+1−k, k = 0, . . . , N. (29)

Assume that HkΣk|k−1H
T
k 6= 0, and choose λk such that

λ2
kHkΣk|k−1H

T
k = P, k = 0, . . . , N. (30)
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Then the variance of the estimation error at time k = N +1
satisfies the lower bound (18) with equality:

E{ỹ2
N+1|N} = CAN+1Σ0|−1A

(N+1)T CT

(

σ2
n

P + σ2
n

)N+1

+ σ2
d

N+1
∑

j=1

(CAN+1−jE)2
(

σ2
n

P + σ2
n

)N+1−j

. (31)

Proof: We have shown in Lemma IV.1 that the choices

of HN and λN given by (29) and (30) minimize the estima-

tion error for a given value of ΣN |N−1, whose variance is

then given by (26). The problem of choosing HN−1 and

λN−1 to minimize CΣN+1|NCT thus reduces to that of

choosing these variables to minimize CAΣN |N−1A
T CT for

a given value of ΣN−1|N−2. Computations similar to those in

the proof of Lemma IV.1 thus show that the values of HN−1

and λN−1 given by (29) and (30) are optimal. Repeating this

process yields (31).

Corollary IV.3 Consider the plant (1)-(2) and the channel

(3). Assume that the plant states are measurable, and that

x̂0|−1 = 0. Choose the channel input to satisfy

sk = λkHkxk, (32)

where

Hk = CAN+1−k, k = 0, . . . , N, (33)

and, if HkΣk|k−1H
T
k 6= 0,

λ2
kHkΣk|k−1H

T
k = P, k = 0, . . . , N. (34)

Assume that Hk+1B 6= 0, k = 0, . . . , N , and set

uk = −(Hk+1B)−1Hk+1Ax̂k|k, k = 0, . . . , N, (35)

with x̂k|k given by

x̂k+1|k = Ax̂k|k−1 + Buk + ALk(rk − λkHkx̂k|k−1),

x̂k|k = x̂k|k−1 + Lk(rk − λkHkx̂k|k−1),

where Lk = λkΣk|k−1H
T
k /(P + σ2

n), and Σk|k−1 is the

solution to the Riccati difference equation

Σk+1|k = AΣk|k−1A
T

−
AΣk|k−1H

T
k HkΣk|k−1A

T

HkΣk|k−1H
T
k

P

P + σ2
n

+ σ2
dEET .

Then at time k = N +1, the mean square value of the plant

output satisfies E{y2
N+1} = E{ỹ2

N+1|N}, where E{ỹ2
N+1|N}

is given by (31).

Proof: We first need to show that the channel input

sequence (32) for the feedback control system is identical

to the channel input sequence (21) for the communication

system in Figure 3 for k = 0, . . . , N . Doing so will imply

that the estimation error at time k = N +1 satisfies (31). We

then need to show that yN+1 = ỹN+1, which implies that

the mean square value of the system output is also equal to

(31).

To proceed, we note the assumption x̂0|−1 = 0 implies

that s0 = λ0H0x0 = λ0H0x̃0, and thus (32) and (21) are

equal for k = 0. At subsequent times, use of the control law

(35) implies that Hkxk = Hkx̃k|k−1, k = 1, . . . , N +1, and

thus (32) and (21) are equal for k = 1, . . . , N , completing

the first step. At time k = N + 1, HN+1xN+1 = CxN+1 =
Cx̃N+1|N , thus completing the second step.

Example IV.4 Consider again the plant model from Exam-

ple II.4, and let P = 10, σ2
n = 5. Suppose we wish to achieve

the lower bound (18) on the variance of the estimation error

and the mean square value of the plant output at time k = 20;

to do so, we apply Proposition IV.2 and Corollary IV.3

with N = 19. Time histories of the lower bound (18)

together with the estimation error that results from applying

the communication strategy of Proposition IV.2 are plotted

in Figure 4 in the case that Σ0|−1 = 0. Note that the

estimation error is equal to the lower bound only at k = 20.

Corollary IV.3 implies that E{y2
20} = E{ỹ2

20|19}. At prior

times the mean square plant output is guaranteed to be no

smaller than the variance of the estimation error. The poor

transient behavior of the estimation error and plant output is

feasible given that the communication and control strategies

were chosen only to optimize at the final time. �
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E{ỹ2

k|k−1
} : sk = λkHkxk

E{ỹ2

k|k−1
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Fig. 4. Estimation error E{ỹ2
k|k−1

} = CΣk|k−1CT for channel input

sk = λkHkx̃k|k−1, Hk = CAN+1−k , N = 19, together with the
theoretical lower bound (18).

V. CHANNEL INPUT A FILTERED VERSION OF THE

PLANT OUTPUT

We have assumed heretofore that an arbitrary linear com-

bination of the plant states can be measured and transmitted

over the channel at each time step. We now show that, under

appropriate hypotheses, the results obtained with measurable

states also hold when only a noise-free measurement of the

system output is available, provided that this output can
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be processed by a linear filter before transmission over the

channel. As we shall see, the filter has the form of a state

estimator that does not require knowledge of the control input

to the plant.

To distinguish state estimates based on the plant output

from those obtained by processing the channel output, we

denote them by x̂0
k|k−1 = E{xk|u

k−1, yk−1} and x̂0
k|k =

E{xk|u
k−1, yk}.

Proposition V.1 Assume that E = B, and that Gu(z) is

minimum phase and has relative degree one. Then the state

estimate x̂0
k|k may be obtained from the recursion

x̂0
k|k = Ax̂0

k−1|k−1 + Lf (yk − CAx̂0
k−1|k−1),

where Lf = B(CB)−1. Furthermore, if Fx(z) denotes

the transfer function from the plant output yk to the state

estimate x̂0
k|k, then Fx(z)G(z) = (zI − A)−1B.

Proof: The form of the optimal gain Lf follows from

[11]. The state estimates x̂0
k|k and x̂0

k|k−1 satisfy

x̂0
k+1|k = Ax̂0

k|k−1 + Buk + ALf (yk − Cx̂0
k|k−1)

x̂0
k|k = x̂0

k|k−1 + Lf (yk − Cx̂0
k|k−1).

Combining these equations yields

x̂0
k+1|k+1 = Ax̂0

k|k + Buk + Lf (yk+1 − CAx̂0
k|k − CBuk),

and the result follows by using the expression for Lf .

It follows from Proposition V.1 that the response of the state

estimate x̂0
k|k to disturbance and control inputs is identical

to the response of the system state to these signals. Hence

if the estimator is initialized with the plant initial condition,

x̂0|−1 = x0, then x̂0
k|k = xk, ∀k. If the initial plant state is

unknown, then x̂0
k|k → xk as k → ∞.

VI. INFINITE HORIZON PROBLEMS

The communication and control strategies presented in

Section IV are optimal at a single specified time, but are

only defined over a finite time interval, and may exhibit poor

transient performance during that interval. Consider instead

a communication and control strategy

sk = λkHxk (36)

uk = −(HB)−1HAx̂k|k. (37)

If the plant HΦ(z)B is minimum phase, then this con-

trol law is stabilizing, and the channel input is given by

sk = λkHx̂k|k−1. Suppose that λk is adjusted so that

λ2
kHΣk|k−1H

T = P . Then Σk|k−1 is the solution to the

“SNR constrained” Riccati difference equation

Σk+1|k = AΣk|k−1A
T

−
AΣk|k−1H

T HΣk|k−1A
T

HΣk|k−1HT

P

P + σ2
n

+ σ2
dEET , (38)

with initial condition Σ0|−1. The “SNR constrained” alge-

braic Riccati equation corresponding to (38) is

Σ = AΣAT −
AΣHT HΣAT

HΣHT

P

P + σ2
n

+ σ2
dEET , (39)

The following result, whose proof will be presented else-

where, allows study of the asymptotic behavior of systems

governed by the communication and control laws (36)-(37).

Proposition VI.1 (a) Assume that (A,E) is stabilizable,

(A,H) is detectable, and the ratio P/σ2
n satisfies the

lower bound (17). Then the “SNR constrained” al-

gebraic Riccati equation (39) has a unique positive

semidefinite solution Σ̂, and A − L̂H has stable eigen-

values, where L̂ = (AΣ̂HT /HΣ̂HT )(P/(P + σ2
n)).

(b) In the limit as k → ∞, the solution to the difference

equation (38) converges to the unique positive semidefi-

nite solution to the algebraic Riccati equation (39).

�

VII. CONCLUSIONS AND FUTURE DIRECTIONS

We have derived communication and control strategies

that are optimal with respect to minimizing the mean square

plant output and the variance of the output estimation error

at a single specified time. In contrast to the standard LQG

problem, the tasks of control and estimation cannot be sep-

arated. We have also presented communication and control

strategies that are valid over an infinite horizon. These will

be suboptimal for any specific time, but may yield better

transient properties.
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