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Abstract— In stochastic game theory, the mean of a player’s
cost function has played a prominent role as a performance
index. However, the mean is just one of many other cumulants.
In fact, it is the first cumulant, with the second being the
variance. The objective of this paper is to begin an N -player,
higher order cumulant, stochastic differential Nash game. The
problem is defined for a class of nonlinear systems with non-
quadratic costs. Then sufficient conditions for the equilibrium
solutions are developed. Lastly, for the case of linear systems
with quadratic cost functions, the equilibrium solutions are
determined with coupled Riccati equations.

I. INTRODUCTION

Game theory has provided some interesting results for
control theory. One such important application of game
theory has been using a games approach to solving the H∞
and H2/H∞ control problems [1] and [7]. These results can
be used with a system with a stochastic input, where in
this case the mean of the costs are used as the performance
indices. However, the mean is the first cumulant. Using a
game theoretic approach and higher order cumulants leads to
a generalization of the H2/H∞ and H∞ control techniques.
Such generalizations are given for the variance in [2], [3],
and [4]. In [9], k cumulant games were discussed for only
the linear quadratic case. In fact, it was the quadratic nature
of cumulants for the linear system and quadratic costs that
was exploited. Here, the development will be done for a
class of nonlinear systems with non-quadratic costs. This
interaction between cumulants and games leads to this study
of N -player, Nash cumulant games.

The mean is just one cumulant. Cumulants are a statistic
that can be determined from the second characteristic func-
tion, which is the natural logarithm of the first characteristic
function. As with moments and the first characteristic func-
tion, the kth cumulant is the kth derivative of the second
characteristic function. Furthermore, if all of the cumulants
are known, then the random variable can be completely
described. In the case of structural control, adding additional
cumulants beyond the mean was found to be worthwhile
when the control was applied to a benchmark [8]. Each
additional cumulant that was added reduced the various
measures of the structural vibration. This helps motivate the
study of using cumulants for N -player games.
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The discussion will begin by defining the problem, in-
cluding the class of nonlinear systems and non-quadratic
costs that will be used and the type of admissible player
strategy. Sufficient conditions will be developed for both the
k-th moment and k-th cumulant problems. These sufficient
conditions will be for the nonlinear system and non-quadratic
cost. Finally a linear system with quadratic costs will be
examined. Equilibrium solutions for the players will be
determined.

II. N PLAYER NASH GAME

Work on cumulant games started out with a two player,
two cumulant game. The next logical step would be to
consider an N -player, multiple-cumulant Nash game. That
is what will be done here, in which a general sufficient
condition will be determined for up to the fourth cumulant.
Before this is presented, some preliminaries must be taken
care of. For this game, consider the stochastic differential
equation

dx(t) =f(t, x(t), u1(t), · · · , uN (t))dt

+ σ(t, x(t))dξ(t)
(1)

where x(t0) = x0 is a random variable independent of ξ,
x ∈ Rn is the state, ui ∈ Ui ⊂ Rpi is the i-th player,
i = 1, · · · , N , and ξ is a d-dimensional Brownian motion
with variance W . The functions f, ui will be assumed to
satisfy both linear growth and Lipschitz conditions. That is,
f and σ satisfy

(i) There exists a constant C such that

‖f(t, x, u1, · · · , uN )‖ ≤ C

(
1 + ‖x‖+

k∑

l=1

|ul|
)

‖σ(t, x)‖ ≤ C(1 + ‖x‖)
for all (t, x, u1, · · · , uN ) ∈ Q̄0×U1×· · ·×Uk, (t, x) ∈
Q̄0 = [t0, tf ]× Rn, and ‖ · ‖ is the Euclidean norm.

(ii) There is a constant K so that

‖f(t, x̃, ũ1, · · · , ũN )− f(t, x, u1, · · · , uN )‖

≤ K

(
‖x̃− x‖+

k∑

l=1

‖ũl − ul‖
)

‖σ(t,x̃)− σ(t, x)‖ ≤ K‖x̃− x‖
for all t ∈ T ; x, x̃ ∈ Rn; ul, ũl ∈ Ul.

Furthermore, the players strategies ul(t) = µl(t, x(t)) satisfy
(i) for some constant C̃

‖µl(t, x)‖ ≤ C̃(1 + ‖x‖)
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(ii) there exists a constant K̃ such that

‖µl(t, x̃)− µl(t, x)‖ ≤ K̃(‖x̃− x‖)

where t ∈ T and x, x̃ ∈ Rn. Often we will suppress the
dependence on t and x and refer to the strategies as simply
µl.

The cost function for the l-th player will be given as

Jl =
∫ tf

t0

Ll(t, x(t), u1(t), · · · , uN (t))dt

+ ψl(tf , x(tf ))
(2)

where Ll, ψl are continuous functions that satisfy polynomial
growth conditions for l = 1, · · · , N . If the strategies µl

satisfy these conditions, then they are admissible strategies.
We can rewrite the stochastic differential equation as

dx(t) = f̃(t, x(t))dt + σ(t, x(t))dξ(t) x(t0) = x0 (3)

where the strategy (µ1, · · · , µk) has been substituted into f ,
called f̃ . The conditions of Theorem V4.1 of [5] are now
satisfied and we see that if E‖x(t0)‖2 < ∞, then a solution
of (1) exists. Furthermore the solution x(t) is unique in the
sense that if there exists another solution x̃(t) with x̃(t0) =
x0, then the two solutions have the same sample paths with
probability 1. The resulting process is a Markov diffusion
process ([5] pg. 123) and the moments of x(t) are bounded.

Also, the operator Ol = Ol
1 +O2 will be given by

Ol
1 =

∂

∂t
+ f ′(t, x, µ∗1, · · · , µ∗l−1, µl, µ

∗
l+1, · · · , µ∗N )

∂

∂x

O2 =
1
2
tr

(
σ(t, x)W (t)σ′(t, x)

∂2

∂x2

)
.

The performance index will be given as

φi(t, x, u1, · · · , uN ) = Λi
k(t, x, u1, · · · , uN ) (4)

where Λi
j is the k-th cumulant of the i-th player’s cost

function, Ji. Also, an admissible j-th moment cost function
M i

j is defined as in the two player,multiple cumulant game
for j = 1, · · · , k − 1. Likewise, we have UMi and the j-th
cumulant cost function Ki

j(t, x).
Let C1,2(Q̄0) be the class of functions Φ that have

continuous first partial derivatives with respect to t and
continuous second partial derivatives with respect to x:
Φt, Φxi , Φxixj for i, j = 1, 2, · · · , n. Now let C1,2

p (Q̄0) be
the class of functions Φ(t, x) that are of class C1,2(Q̄0)
but where Φ, Φt, Φxi , Φxi,xj satisfy a polynomial growth
condition. A polynomial growth condition for a function Φ is
such that there exist constants c1 and c2 so that ‖Φ(t, x)‖ ≤
c1(1+ ‖x‖c2) for all (t, x) ∈ Q̄0, where Q̄0 = [t0, tf ]×Rn.
This yields the Dynkin formula

Φ(t, x) =E

{∫ tf

t

−OlΦ(s, x(s))ds|x(t) = x

}

+ E {Φ(tf , x(tf ))|x(t) = x}
(5)

where Ol is the backward evolution operator given by

Ol =
∂

∂t
+ f ′(t, x, u∗1, · · · , ul, · · · , u∗N )

∂

∂x

+
1
2
tr

(
σ(t, x)W (t)σ′(t, x)

∂2

∂x2

) (6)

with E{dξ(t)dξ′(t)} = W (t). The expectation in (5) will
now be referred to as Etx.

III. PRELIMINARIES

Consider the j-th moment of the cost function Jl, defined
as

V l
j (t, x; µ1, · · · , µN ) = Etx{Jj

l (t, x;µ1, · · · , µN )} (7)

where Etx is the expectation given x(t) = x. From [6], the
(j + 1)-st moment may be determined through

V l
j+1(t, x; µ1, · · · , µN ) =

j∑

i=0

j!
i!(j − i)!

[

V l
j−i(t, x; µ1, · · · , µN ) · Λl

i+1(t, x; µ1, · · · , µN )
] (8)

where Λl
i is the i-th cumulant of the cost function Jl, where

i, j are integers, i ≤ j, and 0 ≤ l ≤ N . This equation gives
a much needed relationship between the moments and the
cumulants.

A. Definitions
In this section we shall begin with some definitions for

the problem of three cumulants. The approach taken here, in
which the first to k−1th cumulants have admissible cumulant
cost function is a growth from Won’s work, [12].

Definition 1: A function M l
j : Q̄0 → R+ is an admissible

j-th moment cost function for the lth player if there exists a
strategy µl such that M l

j(t, x) = V l
j (t, x;µ1, · · · .µN ), where

M l
j ∈ C1,2(Q̄0) and j = 1, 2, · · · , k − 1. Kl

j is then the
admissible jth cumulant cost function for the lth player that
is defined through

Kl
j+1(t, x) =M l

j+1(t, x)

−
j∑

i=0

(j)!
i!(j − i)!

M l
j−i(t, x)Kl

i+1(t, x).
(9)

where Kl
i and M l

i for i = 1, · · · , j are, respectively, admis-
sible i-th cumulant and moment cost functions. Furthermore,
for µl ∈ UMl

, Kl
j(t, x) = Λl

j(t, x;µ∗1, · · · , µl, · · ·µ∗N ).
Definition 2: Let the class of admissible strategies UMl

be such that if µl ∈ UMl
then µl is such that it satisfies the

equality of Definition 1 from the definitions of M l
1, · · · ,M l

j ,
where j = 1, 2, · · · , k − 1.
Note that the first cumulant is the same as the first moment.
The first and second cumulant cost functions Kl

1,K
l
2 ∈

C1,2(Q̄0) are given by Kl
1(t, x) = M l

1(t, x) and Kl
2(t, x) =

M l
2(t, x)−M l2

1 (t, x) respectively.
Definition 3: Let Kl

1, · · · , Kl
j be admissible

1-st, · · · , j-th cumulant cost functions. The control strategy
µl∗ is the lth player’s equilibrium solution if it is such that

M l
j+1(t, x) = V l

j+1(t, x; ) ≤ Vj+1(t, x;µ∗1 · · · , µl, · · · , µ∗N )
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for all µ ∈ UM . Furthermore the j + 1-st cumulant cost
function is given by

Kj+1(t, x) =Λj+1(t, x; µ∗1, · · · , µ∗N )
≤Λj+1(t, x; µ∗1, · · · , µl, · · · , µ∗N ).

IV. THE k-TH MOMENT

It will be assumed that the other players have played their
equilibrium strategies. The moment recursion formulae were
first given in the paper by Sain 1967, [10]. This paper showed
that, for the optimal control problem, the (j + 1)-st moment
of the cost function, V l

j+1(t, x; µ∗1, · · · , µl, · · · , ν∗), satisfies

OlVj+1(t, x; µ∗1, · · · , µl, · · · , µ∗N )
+ (j + 1)Vj(t, x; µ∗1, · · · , µl, · · · , µ∗N )
· Ll(t, x; µ∗1, · · · , µl, · · · , µ∗N ) = 0

(10)

where Ol is the backward evolution operator. If the first j
moment cost functions are admissible moment cost func-
tions, then they satisfy

OlM l
1(t, x)+Ll(t, x, µ∗1, · · · , µl, · · · , µ∗N ) = 0

OlM l
2(t, x)+2M l

1(t, x)Ll(t, x, µ∗1, · · · , µl, · · · , µ∗N ) = 0
...

OlM l
j(t, x)+jM l

j−1(t, x)Ll(t, x, µ∗1, · · · , µl, · · · , µ∗N ) = 0.
(11)

Before moving further, the following useful lemma will be
presented.

Lemma 1: Consider the running cost function
Ll(t, x, µ∗1, · · · , µl, · · · , µ∗N ), which is denoted by Lt.
then the equality

(j + 1)
∫ tf

t

Ls

[∫ tf

s

Lrdr

]j

ds =
[∫ tf

t

Lrdr

]j+1

(12)

holds.
Proof. First we should change the limits of integration:

∫ tf

t

Ls

[∫ tf

s

Lrdr

]j

ds = (−1)j

∫ t

tf

Ls

[∫ s

tf

Lrdr

]j

ds

Now recall that for two differential functions F and G we
can integrate by parts
∫ t

tf

F (s)g(s)ds = F (t)G(t)−F (tf )G(tf )−
∫ t

tf

f(s)G(s)ds

where f(s) = dF (s)
ds , G(s) =

∫ s

tf
g(r)dr. Let g(s) = Ls and

F (s) =

[∫ s

tf

Lrdr

]j

.

With these definitions we see that

f(s) = jLs

[∫ s

tf

Lrdr

]j−1

G(s) =
∫ s

tf

Lrdr

which then yields

(−1)j

∫ t

tf

Ls

[∫ s

tf

Lrdr

]j

ds = (−1)j

[∫ t

tf

Lsds

](j+1)

− (−1)j

∫ t

tf

jLs

[∫ s

tf

Lrdr

]j

ds

which is

(j + 1)
∫ t

tf

Ls

[∫ s

tf

Lrdr

]j

ds =

[∫ t

tf

Lsds

](j+1)

and the lemma is proved. 2

Now consider the j-th moment equation. We can show
that a function M l

j that satisfies this equation is in fact the
j-th moment.

Lemma 2: Consider a function M l
j ∈ C1,2

p (Q) ∩ C(Q̄)
that satisfies

OkM l
j(t, x) + jMj−1(t, x)Ll(t, x, µ∗1, · · · , µl, · · · , µ∗N ) = 0

(13)
where M l

j−1 is an admissible (j− 1) moment cost function;
then M l

j(t, x) = V l
j (t, x; µ∗1, · · · , µl, · · · , µ∗N ).

Proof. Due to space constraints this proof is omitted. See [4]
for details. 2

Now consider the equation

min
µl∈UMl

{OlM l
j+1(t, x) + (j + 1)M l

j(t, x)

· Ll(t, x, µ∗1, · · · , µl, · · · , µ∗N )
}

= 0
(14)

where M l
j+1(t, x) is a suitably smooth solution to (14)

and UMl
. Suppose that the moment that is desired to be

minimized is the (j + 1)-st moment.
Theorem 1 (Verification Theorem): Let M l

j ∈ C1,2
p (Q) ∩

C(Q̄) be the j-th admissible moment cost function with an
admissible class of control strategies, UMl

. If the function
M l

j+1 ∈ C1,2
p (Q) ∩ C(Q̄) satisfies

min
µl∈UMl

{OlM l
j+1(t, x) + (j + 1)M l

j(t, x)

· L(t, x, µ∗1, · · · , µl, · · · , µ∗N )
}

= 0,
(15)

then M l
j+1(t, x) ≤ V l

j+1(t, x;µ∗1, · · · , µl, · · · , µ∗N ) for all
µl ∈ UMl

and (t, x) ∈ Q. Furthermore if there is a µ∗l such
that

µ∗l = arg min
µl∈UMl

{OlM l
j+1(t, x) + (j + 1)M l

j(t, x)

· Ll(t, x, µ∗1, · · · , µl, · · · , µ∗N )
} (16)

then M l
j+1(t, x) = V l

j+1(t, x;µ∗1, · · · , µl, · · · , µ∗N ).
Proof. The proof is the same as that of Lemma 2 except that
the equality sign is now an inequality

M l
j(t, x) ≤ Etx

{∫ tf

t

jM l
j−1(s, x(s))Lsds + ψj

l (x(tf ))
}

.

Beyond this, the proof is the same. For the case of µl = µ∗l ,
the proof is exactly the same as the proof in Lemma 2. 2

The problem, however, is not cast in terms of the moments
of the cost function but rather the cumulants. For the case of
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one cumulant, the problem is the well known mean stochastic
game. The two cumulant problem has already been given in
this chapter. Now the case for three cumulants, and then
four cumulants, will be examined. Furthermore a general r-
cumulant HJB equation will be proposed.

V. kTH CUMULANT

With this proof, one can propose a general HJB equation
for the k-th cumulant. Before doing so, we will consider
several lemmas that will aid in the proof.

Lemma 3: Consider two functions M l
j(t, x),Kl

i(t, x) ∈
C1,2

p (Q) ∩ C(Q̄) where i and j are positive integers, then

Ol[M l
j(t, x)Kl

i(t, x)] =Ol[M l
j(t, x)]Kl

i(t, x)

+Ol[Kl
i(t, x)]M l

j(t, x)

+

(
∂M l

j

∂x
(t, x)

)′

σ(t, x)

·W (t)σ′(t, x)
(

∂Kl
i

∂x
(t, x)

)
.

(17)
Proof. For the sake of ease, we will suppress the dependence
on time and state. From the definition of the operator Ol, we
have

Ol[M l
jK

l
i ] = Ol

1[M
l
jK

l
i ] +O2[M l

jK
l
i ]

= Ol
1[M

l
j ]K

l
i +Ol

1[Ki]Mj +O2[M l
jK

l
i ]

where in the last line, the chain rule was used. But,

O2[M l
jK

l
i ] =

1
2
tr

(
σWσ′

∂

∂x

[
∂M l

j

∂x
Kl

i +
∂Kl

i

∂x
M l

j

])

=
1
2
tr

(
σWσ′

[
∂2M l

j

∂x2
Kl

i +

(
∂M l

j

∂x

) (
∂Kl

i

∂x

)′

+
(

∂Kl
i

∂x

) (
∂M l

j

∂x

)′

+
∂2Kl

i

∂x2
M l

j

])

=Kl
iO2[M l

j ] + MjO2[Kl
i ]

+

(
∂M l

j

∂x

)′

σWσ′
(

∂Kl
i

∂x

)

and therefore

Ol[M l
jK

l
i ] =Ol[M l

j ]K
l
i +Ol[Kl

i ]M
l
j

+

(
∂M l

j

∂x

)′

σWσ′
(

∂Kl
i

∂x

)
.

This is the desired result and completes the proof. 2

Lemma 4: Let Kl
1, · · · , Kl

k−1 ∈ C1,2
p (Q) ∩ C(Q̄), then

k−2∑

i=0

(k − 1)!
i!(k − i− 1)!

(
∂Kl

k−1−i

∂x

)′

σWσ′
(

∂Kl
i+1

∂x

)

=
1
2

k−1∑

j=1

k!
j!(k − j)!

(
∂Kl

j

∂x

)′

σWσ′
(

∂Kl
k−j

∂x

) (18)

where the arguments of Kl
1, · · · ,Kl

k−1 have been suppressed
and k, l are positive integers with l ≤ k.

Proof. Let j = i + 1, then the first term in (18) becomes
k−1∑

j=1

(k − 1)!
(j − 1)!(k − j)!

(
∂Kl

k−j

∂x

)′

σWσ′
(

∂Kl
j

∂x

)
,

by changing the limits of summation. Now consider 1 ≤ j ≤
k − 1. For odd k, the above summation is an even number
of sums. So in pairs, we have

(k − 1)!
(j − 1)!(k − j)!

(
∂Kl

k−j

∂x

)′

σWσ′
(

∂Kl
j

∂x

)

+
(k − 1)!

(k − j − 1)!(j)!

(
∂Kl

j

∂x

)′

σWσ′
(

∂Kl
k−j

∂x

)

=
(

j(k!)
k(j!)(k − j)!

+
(k − j)(k!)

k(k − j)!(j!)

)

·
(

∂Kl
j

∂x

)′

σWσ′
(

∂Kl
k−j

∂x

)

=

(
∂Kl

j

∂x

)′

σWσ′
(

∂Kl
k−j

∂x

)

=
1
2

[
k!

j!(k − j)!

(
∂Kl

j

∂x

)′

σWσ′
(

∂Kl
k−j

∂x

)

+
k!

(k − j)!j!

(
∂Kl

k−j

∂x

)′

σWσ′
(

∂Kl
j

∂x

)]
.

For the case of k even, it is much the same, with the
exception of j = k/2. In this case we have

(k − 1)!
(k/2− 1)!(k/2− j)!

(
∂Kl

k/2

∂x

)′

σWσ′
(

∂Kl
k/2

∂x

)

but this is exactly the same as

1
2

k!
(k/2)!(k/2)!

(
∂Kl

k/2

∂x

)′

σWσ′
(

∂Kl
k/2

∂x

)

and the lemma is proved. 2

Theorem 2: Let Kl
1,K

l
2, · · · ,Kl

j−1 be admissible cumu-
lant cost functions. If there exists a solution Kl

j ∈ C1,2
p (Q)∩

C(Q̄) that satisfies

OlKl
j(t, x) +

1
2

j−1∑
s=1

k!
s!(k − s)!

(
∂Kl

s

∂x
(t, x)

)′

· σ(t, x)W (t)σ′(t, x)

(
∂Kl

j−s

∂x
(t, x)

)
= 0,

(19)
then Kl

j(t, x) = Λl
j(t, x, µ∗1, · · · , µl, · · · , µ∗N ), where µl is

in UMl
.

Proof. The proof of this theorem follows very closely to that
of the following theorem. 2

Next, a general theorem will be given. This theorem has
been shown to hold for k up to six, and it is conjectured that
it holds further.
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Theorem 3: Let Kl
1,K

l
2, · · · ,Kl

k−1 be admissible cumu-
lant cost functions. If there exists a solution Kl

k ∈ C1,2
p (Q)∩

C(Q̄) that satisfies

min
µl∈UMl

{
OlKl

k(t, x) +
1
2

k−1∑
s=1

k!
s!(k − s)!

(
∂Kl

s

∂x
(t, x)

)′

· σ(t, x)W (t)σ′(t, x)

(
∂Kl

k−s

∂x
(t, x)

)}
= 0,

(20)
then

Kl
k(t, x) =Λl

k(t, x, µ∗1, · · · , µ∗N )
≤Λk(t, x, µ∗1, · · · , µl, µ

∗
Nν∗),

where µ∗l is the minimizing argument of (20) and the optimal
strategy for the control.

Proof. Let Kl
k be of class C1,2

p (Q) ∩ C(Q̄). Also, by
definition,

Kl
k(t, x) =M l

k(t, x)

−
k−2∑

i=0

(k − 1)!
i!(k − i− 1)!

M l
k−1−i(t, x)Kl

i+1(t, x)

therefore M l
k(t, x) ∈ C1,2

p (Q)∩C(Q̄). Now assume that M l
k

satisfies (14), that is M l
k is a solution to

OlM l
k(t, x)+kM l

k−1(t, x)
· Ll(t, x; µ∗1, · · · , µl, · · · , µ∗N ) = 0.

Substituting for Mk yields

OlKl
k +

k−2∑

i=0

(k − 1)!
i!(k − i− 1)!

Ol
[
M l

k−1−iK
l
i+1

]

+kM l
k−1Ll = 0

where the linearity of the operator Ol is used.
Using Lemma 3 and expanding the sum, we obtain

OlKl
k +

k−3∑

j=0

(k − 1)!
j!(k − 1− j)!

Ol[M l
k−1−j ]K

l
j+1

+(k − 1)Ol[M l
1]K

l
k−1

+
k−2∑

j=1

(k − 1)!
j!(k − 1− j)!

Ol[Kl
i+1]M

l
k−1−i

+
k−2∑

j=0

(k − 1)!
j!(k − 1− j)!

(
∂M l

k−1−j

∂x

)′

·σWσ′
(

∂Kl
i+1

∂x

)
+ kM l

k−1Ll

+M l
k−1Oµ,ν∗ [Kl

1] = 0.

(21)

It can be shown that this reduces to

OlKl
k +

k−2∑

j=1

(k − 1)!
j!(k − 1− j)!

Ol[Kl
i+1]M

l
k−1−i

+
k−2∑

j=0

(k − 1)!
j!(k − 1− j)!

(
∂M l

k−1−j

∂x

)′

· σWσ′
(

∂Kl
i+1

∂x

)
= 0.

(22)

By substitution for M l
k−1−i and with the use of Lemma 4,

we can obtain

OlKl
k+

1
2

k−1∑

j=1

k!
j!(k − j)!

(
∂Kl

j

∂x

)′

· σWσ′
(

∂Kl
k−j

∂x

)
= 0

which is the desired equation, where it can be shown for
various values of k that the following equation holds.

k−2∑

j=0

(k − 1)!
j!(k − 1− j)!

k−3−j∑

i=0

(k − 2− j)!
i!(k − 2− j − i)!

[
Kl

i+1

(
∂M l

k−2−j−i

∂x

)
+ M l

k−2−j−i

(
∂Kl

i+1

∂x

)]

′σWσ′
(

∂Kl
j+1

∂x

)

+
k−2∑

j=1

(k − 1)!
j!(k − 1− j)!

Ol[Kl
j+1]M

l
k−1−i = 0.

(23)
2

VI. CASE OF LINEAR SYSTEM WITH QUADRATIC COSTS

This gives a sufficient condition for a class of nonlinear
systems with non-quadratic costs. Now consider a linear
system

dx(t) =

[
A(t)x(t) +

N∑

i=1

Bi(t)ui(t)

]
dt + E(t)dξ(t) (24)

where x(t0) = x0. The n × n matrix A, n × mi matrices
Bi, and n× d matrix E all have continuous entries. The ith
player’s cost is assumed to be quadratic

Ji =
∫ tf

t0


x′Qix +

N∑

j=1

u′jRijuj


 dt + x′fQf

i xf (25)

where x(tf ) = xf , Qi, Qf
i , Rij for i 6= j are assumed

to be positive semidefinite, and Rii is positive definite for
i, j = 1, · · · , N .

Let Ki
j be quadratic with respect to the state, x, that is

Ki(t, x) = x′Ki
j(t)x + ki

j(t), where here 0 ≤ i ≤ N and
0 ≤ j ≤ k.
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Theorem 4: Let Ki
r ∈ C1,2

p (Q̄0) be the r-th cumulant cost
functions for 1, · · · , k− 1. If Ki

r is a solution to the Riccati
equations for 1 < r ≤ k − 1,

K̇i
r + A′Ki

r +Ki
rA− 2γi

rKi
rBiR

−1
ii B′

iKi
r

−
r−1∑
s=1

[
γi

sKi
sBiR

−1
ii B′

iKi
r + γi

sKi
rBiR

−1
ii B′

iKi
s

]

−
k∑

s=r+1

[
γi

sKi
sBiR

−1
ii B′

iKi
r + γi

sKi
rBiR

−1
ii B′

iKi
s

]

−
r−1∑
s=1

[
γi

sKi
sBiR

−1
ii B′

iKi
r + γi

sKi
rBiR

−1
ii B′

iKi
s

]

−
i−1∑

j=1

r∑
s=1

[
γj

sKj
sBjR

−1
jj B′

jKi
r + γj

sKi
rBjR

−1
jj B′

jKj
s

]

−
N∑

j=i+1

r∑
s=1

[
γj

sKj
sBjR

−1
jj B′

jKi
r + γj

sKi
rBjR

−1
jj B′

jKj
s

]

+
r−1∑
s=1

k!
s!(r − s)!

[Ki
sEWEKi

r−s +Ki
r−sEWEKi

s

]
= 0,

(26)

k̇i
r = −tr(E(t)W (t)E(t)Ki

r(t)), (27)

and for r = 1

K̇i
1 + A′Ki

1 +Ki
1A− 2γi

1Ki
1BiR

−1
ii B′

iKi
1

−
r−1∑
s=1

[
γi

sKi
sBiR

−1
ii B′

iKi
1 + γi

sKi
1BiR

−1
ii B′

iKi
s

]

−
k∑

s=r+1

[
γi

sKi
sBiR

−1
ii B′

iKi
1 + γi

sKi
1BiR

−1
ii B′

iKi
s

]

−
r−1∑
s=1

[
γi

sKi
sBiR

−1
ii B′

iKi
1 + γi

sKi
1BiR

−1
ii B′

iKi
s

]

−
i−1∑

j=1

r∑
s=1

[
γj

sKj
sBjR

−1
jj B′

jKi
1 + γj

sKi
1BjR

−1
jj B′

jKj
s

]

−
N∑

j=i+1

r∑
s=1

[
γj

sKj
sBjR

−1
jj B′

jKi
1 + γj

sKi
1BjR

−1
jj B′

jKj
s

]

+
N∑

j=1

(
k∑

s=1

γj
sKj

s

)
BjR

−1
jj RijR

−1
jj B′

j

(
k∑

s=1

γj
sKj

s

)

+ Qi = 0, (28)

where Ki
1(tf ) = Qf

i and Ki
r(tf ) = 0. Then the Nash

equilibrium solution is given as

u∗i (t) = µ∗i (t, x(t)) = −R−1
ii (t)B′

i(t)

[
k∑

s=1

γi
sKi

s(t)

]
x(t).

(29)
Furthermore ki

r is constructed with the use of Ki
r, that is

k̇i
r = −tr(E(t)W (t)E(t)Ki

r(t)) (30)

for r = 1, · · · , k and i = 1, · · · , N .

Proof. Due to space constraints, this proof it omitted. See
[4]. 2

VII. CONCLUSION

Sufficient conditions for equilibrium solutions of an N
player stochastic game with a class of nonlinear systems with
non-quadratic costs were developed. Using these sufficient
conditions, equilibrium solutions were determined for the
case of a linear system with quadratic costs. This involved the
solution of coupled Riccati equations. The use of cumulants
can be seen to generalize standard stochastic game theory,
in which the mean (the first cumulant) is prominent.
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