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Abstract— We review basic issues in the control of scan-
ning probe microscopes. To improve the performance of the
present generation of instruments, we have developed a simple
feedforward technique that nonetheless increases the effective
bandwidth of the positioning stage by a factor of 15 over its
standard operation. If the desired control signal is known in
advance (as it is for a periodic scan signal), the feedforward
filter can be non-causal: information about the future can be
used to cancel the phase lag produced by the stage response.
We compare our design with other control techniques. We show
that model-based iterative control algorithms can lead to a sub-
stantial performance boost, at the cost of more measurements
of the system transfer function. We then introduce a model-free
variant that is simpler to set up, performs better, and is more
robust to system changes.

I. INTRODUCTION

One of the clichés about the development of science is

the image of an ever-branching tree, where increasingly

specialized domains are viewed as new branches that are

connected to each other only by tracing back to the thicker

trunks of older growth. Thus, while the disciplines of physics

and control engineering share common origins in the study of

dynamical systems through the 19th century, their progress

in the 20th and 21st centuries has occurred largely in

separation from each other. Recently, however, the number of

connections between the two disciplines has been increasing

notably, as illustrated by two recent reviews by physicists

of applications of control theory to physics [1], [2]; by the

publication, by control engineers, of the first textbook on

modern control theory written for a broad audience of general

scientists and engineers [3]; and by the appearance of an

interesting “cross-over” work that analyzes physical systems

from a control perspective [4].

While influences have gone in both directions, we focus

here on applications of control theory to physics. Such

applications have come in two forms. First, central concepts

of control theory such as positive and negative feedback,

feedforward, and robustness have been recognized to be im-

portant in the understanding of complex systems, particularly

in biological applications [5], [6]. Second, while physicists

have for a long time limited themselves to using elementary

concepts from control theory, such as PID control, they have

recently begun to recognize the value of learning and ap-

plying more sophisticated concepts. Such applications have

been fruitful in the design of scanning probe microscopes,

particularly the atomic force microscope (AFM).
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Much of the reason for the interest in applying control

concepts to AFM stems from the limitations of simple control

algorithms such as proportional-integral (PI) control [7]. The

dynamics of the AFM scan head (incorporating both the

mechanical resonances of the physical parts and the electro-

mechanical response of the piezoelectric actuators) consist

of a number of weakly damped poles and of zeros that can

be in the right-hand plane (non-minimum phase systems).

Controlling such structures is notoriously difficult, and PI

algorithms are restricted to low bandwidths [8].

In the present article, we briefly review, in Sec. II, some

of the general issues in the control of AFMs. In fact, as

both Tien et al. [29] and Pao et al. [10] have emphasized,

the AFM is a MIMO system where the dynamics (and

control) of lateral scanners couples to the surface topography

sensor, often in significant ways. In this article, we shall

simplify by focusing mostly on the dynamics of the lateral

scanner. In Sec. III, we present a simple, inversion-based

feedforward control algorithm for AFM scanners. In Sec. IV-

A, we compare our method to a previously derived iterative

method. In Sec. IV-B, we introduce a “model-free” variant

with significant advantages.

II. REVIEW OF CONTROL ISSUES RELATING TO AFM

SCANNERS

Most current commercial AFMs are slow, with high-

quality images typically taking several minutes. Such slow

speeds can be traced back to the resonant frequencies of the

scanner (≈ 0.1–1 kHz) and the bandwidth of the combination

of cantilever sensor, vertical mechanical scanner, and control

system used to measure sample topography (≈ 1 kHz) –

“sensor,” for short. (The sensor bandwidth must exceed the

line-scan frequency by a factor equal to the number of pixels,

typically 100 to 1000 in each direction.) Higher-speed AFM

imaging is desirable, both because many applications require

imaging of fast processes and for operator comfort and

efficiency [11]. For example, to achieve “video” rates of 25

images/s at 200 pixels square implies scanner bandwidths of

at least 10 kHz (for a sinusoidal scan) and sensor bandwidths

of at least 2 MHz. For closed-loop operation and constant-

velocity scans, these bandwidths would need to be multiplied

at least ten-fold. Such bandwidths are being approached in

recent instruments [12], [13], [14], [15].

It is useful to consider what sets the bandwidth in cur-

rent AFMs. Since the control algorithms are scaled by the

characteristic frequencies (i.e., resonances), the bandwidth

is determined both by the physical resonance frequencies

and the ability of the control algorithm to perform well at

frequencies close to the resonances. While the focus here
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is on the control aspects, we briefly review the physical

limitations. (See [16] for a more in-depth discussion.)

The physical frequency limits of AFM are associated

with the mechanical resonances of the lateral scanner, the

vertical scanner, and the cantilever sensor. Most commercial

AFMs have scanner dimensions of order cm and cantilever-

tip assemblies with lengths of order 100 µm, with scanner

resonances of order 100–1000 Hz and cantilever resonances

of order 10–100 kHz. Resonance frequencies ν are set by

the size and shape of objects: ν ∼ c/(ℓa), with c the sound

speed, ℓ the largest dimension, and a the aspect ratio (ratio

of largest length to smallest) [17]. Putting c ≈ 103 m/s,

ℓ ≈ 1 cm, and a ≈ 10 gives ≈ 100 Hz for the scanner;

with ℓ ≈ 100 µm and a ≈ 100 (typical for a commercial

cantilever), we get ≈ 100 kHz. One might naively think

that the aspect ratio should be 1 (cube-like structures), in

order to maximize the resonance frequency. But other factors

favor large aspect ratios. There is a maximum electric field

that piezoelectric materials can withstand, which leads to a

maximum displacement. The practical way to increase the

scan range is to put piezo elements in series, increasing

the aspect ratio. For cantilevers, larger aspect ratios make

softer probes, which minimize sample damage. The key,

then, to increasing the lowest resonance frequencies of both

scanner and cantilever is to use smaller overall length scales

and, as far as possible, lower aspect ratios. An interesting

new scanner design uses conventional parts and machining

but reduces ℓ and a to achieve resonances of 22 and 40

kHz (lateral and vertical directions) [18]. In parallel, smaller

cantilevers have been explored for a number of years [19]

and are beginning to be produced commerically [11]. The

ultimate solution would be to scale the entire AFM down to

a microfabricated chip [20].

Scaling down both scanner and tip sizes is only part

of the solution, however. In a typical commercial AFM,

scan speeds are limited to a few Hz, even though the

scanner resonances are a few hundred Hz. The ratio of the

scanning bandwidth to physical scanner resonance is thus

only ≈ 0.01. The feedforward technique to be presented

here allows one to increase this ratio easily to 0.1 and, with

more effort, to 0.3. Our technique [22], is only one of a

number of advanced control techniques for AFM that have

been discussed recently (reviewed in [10]), and we place our

scheme in the context of others, below.

III. A SIMPLE IMPLEMENTATION OF INVERSION-BASED

FEEDFORWARD CONTROL OF AN AFM SCANNER STAGE

In this section, we outline a simple, practical version

of feedforward to improve the scan rates of a commercial

piezoelectric flexure stage [21]. The design is an improved

version of one we presented recently [22]. The basic idea of

feedforward is to use the known dynamical characteristics of

a system to design a prefilter that “inverts” those dynamics

as far as possible, so that the output more closely resembles

the desired input. Our goal was to achieve reasonable perfor-

mance while keeping the design as simple as possible. Sim-

plicity has two virtues: first, the design is compatible with

many existing commercial AFMs; second, the design can

be understood and implemented by users without extensive

control-theory background. This latter reason was important,

as a secondary goal of our work was to proselytize the virtues

of using feedforward to the physics community, where it has

been seldom applied.

In our work, we implemented feedforward on a closed-

loop piezoelectric flexure stage [21]. Such stages are be-

coming more standard on commercial instruments and have

two advantages over the tube scanners of older AFMs: first,

they incorporate position sensors that allow the internal

feedback of the stage to compensate, at low-frequencies, for

the hysteresis and creep found in the open-loop response of

piezoelectric elements. Although there have been attempts

to invert the nonlinear, hysterestic models that describe

the piezo-actuator response, the models are difficult and

require extensive characterization of the scan response under

different conditions. Correcting as much of that motion in

feedback makes the feedforward task much easier [23]. A

second advantage of using a commercial flexure stage is

that the flexure mechanisms do a better job of decoupling

dynamics, particularly horizontal-vertical coupling [29].

Since the feedback in the translation stage is effective at

low frequencies in linearizing the stage response, we can

describe that response by a linear transfer function, T (s),
which represents the closed loop dynamics. Fig. 1 shows

the measured response of our stage. The two-pole, low-

pass filter part of the dynamics, with a bandwidth of 27

Hz, arises from the feedback electronics of the stage. We

see here the origin of the small ratio of practical scanning

rates (scan lines/time) to resonance frequency. Because of

the lightly damped mechanical stage resonance at ≈ 440

Hz, it would be difficult to set the closed-loop bandwidth

higher. Without feedforward, scans should be at no more

than 10% of the feedback bandwidth, in order to prevent

attenuation and lag of the higher harmonics of the triangle-

wave scan signal. Thus, one arrives at scan rates of 2-3

lines/sec., which is typically the maximum used in AFMs

based on such scanners.

The feedforward design presented in [22] approximates

the inverse of the response shown in Fig. 1. It is important

to realize that an exact inverse, which would trivially lead to

exact tracking of the output by the input, is never possible.

First, the transfer function is never perfectly known. Second,

all stable poles become zeroes in the inverse. This means

that they are approximately differentiators and require a

frequency response that increases indefinitely at high fre-

quencies. For example, a simple pole, 1/(1 + s), becomes

a simple zero, 1 + s, whose magnitude response increases

linearly with frequency at high frequencies. Such a response

cannot be exactly realized by any physical actuator, whose

response will always roll off at high-enough frequencies.

Third, if the system is non-minimum phase, then the inverse

has unstable poles. Devasia et al. have come up with clever

ways to deal with this situation, albeit at the cost of using a

non-causal prefilter [24]. Here, one of the benefits of using

a closed-loop translation stage is that its dynamics are well-
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Fig. 1. Magnitude (a) and phase (b) Bode plot of translation stage
response. Dashed curves are fit to a fourth-order model. The response after
compensation by the pre-filter is also shown.

described by a minimum-phase transfer function at relevant

frequencies (Fig. 1).

In our work, we arrive at a physically realizable response

by shifting the poles of the response function to higher

frequencies. These are kept below the first mechanical res-

onance but may be much closer than the closed-loop band-

width. In the case considered here, the chosen bandwidth

was 400 Hz, which nearly equals the lowest mechanical

resonance of the stage, 430 Hz. We then constructed our

approximation to the transfer-function inverse by placing

zeros on top of each pole (covering the feedback poles

and the first mechanical resonance). Having put four zeroes

in our pre-filter (two for the feedback loop and two for

the mechanical resonance), we added four poles, in order

to keep the prefilter response finite at high frequencies.

The poles corresponding to the feedback were placed in

a Butterworth configuration giving the desired increased

bandwidth (400 Hz). The Butterworth configuration gives

the flattest amplitude response. The poles corresponding

to the mechanical resonance were left at the resonance

frequency, but the damping of that resonance was shifted to

be at critical damping. The continuous-time transfer function

was converted into a discrete-time version using the Tustin

(bilinear) transform [25], with a sampling rate of 10 kHz. Our

filter is implemented as an infinite-impulse-response (IIR)

filter, which requires fewer coefficients than the alternative,

finite-impulse-response (FIR) filters championed by Seering

and collaborators [26]. The IIR filter is of the form,

r′
n

= a2rn + a1rn−1 + a0rn−2 − b1r
′
n−1

− b0r
′
n−2

, (1)

with r the desired input and r′ the modified input, and where

the a and b coefficients are taken from the discrete-time

version of the pre-filter. Fig. 2 shows traces illustrating the

improvement for various scan speeds.

One limitation of using a feedforward pre-filter on a

closed-loop positioning stage is that the finite bandwidth of

the closed-loop controller (the low-pass response in Fig. 1)

limits the bandwidth obtainable by the pre-filter. In essence,

the modified input must be amplified at high frequences. At

frequencies that are too high, the amplification factor can

easily cause the desired stage input signal to be clipped by

its finite input range. One can, of course, restrict the range

and work in the central part of the overall scanner range.

But there will always be a practical limit. In our case, with

a bandwidth of 400 Hz., we could perform scans of 10 µm

at 150 Hz before being limited by the range of the piezo

actuator.

(c)(b)(a)

10 Hz 40 Hz 80 Hz

Fig. 2. Measured stage responses at (a) 10 Hz, (b) 40 Hz, and (c) 80
Hz. Dotted-line triangular waveform represents the desired stage response
(1 µm amplitude). Dashed line shows the phase shifted and attenuated stage
response without feedforward. Red lines show the response with a causal
feed-forward filter giving 400 Hz system bandwidth. Green lines show the
response with a similar non-causal filter.

One advantage of using a feedforward pre-filter is that

the repetitive nature of the desired triangle-wave scan allows

one to design a non-causal prefilter. Intuitively, with future

knowledge of the signal, one can send a control input to

the stage in advance of the desired movement, such that the

phase advance of each frequency component just cancels out

the delay due to the stage inertia. A simple way to compute

the desired waveform is sketched in Fig. 3, with the results

for the scan signal illustrated in Fig. 2. The basic idea is

to first pass the signal through the pre-filter and a model

of the system’s dynamics. This generates a conventional,

phase-delayed signal. That signal is then time reversed and

passed again through the pre-filter. All these steps are done

computationally. Finally the signal is passed through the

physical stage. The combined dynamics of pre-filter and

stage then remove the phase delays generated in the first

pass, resulting in a signal with zero-phase shift. In Fig. 2,

one can see clearly that the non-causal filter removes nearly

all phase shift relative to the reference. The small residual

shift noticeable at 80 Hz is due to the unmodeled dynamics

that begin to be important at 1 kHz.

In principle, in order to implement a non-causal filter

exactly, one should know the desired input signal out to

infinite times in the future. In practice, because the stage

dynamics decay, knowledge of the future to a specified

accuracy is required only to finite times. Zou and Devasia

have used this idea to develop a more sophisticated approach,

where a finite-time “preview” is all that is needed [27]. In

the case of AFM images, such an approach is typically not

needed, in that the scanning waveform is periodic, except
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Fig. 3. Sketch of a non-causal feedforward filter. The light-shaded boxes
represent modeled dynamics, while the dark-shaded box represents the
physical system.

at the beginning and end of scanning. We thus generate

the required input waveform by inputting a waveform with

several (usually five) periods and then carrying out the rest

of the procedure illustrated in Fig. 3 with the steady-state

response. This gives a signal appropriate for a perfectly

periodic signal but which generates errors in the transient

when the first scan starts from rest. But simply adding a

scan line before starting the image proper easily removes

any effects of transient scanner dynamics. (Note here that

“transient” refers to the motion that occurs when the scanner

starts from rest and not to the motion occurring when the

stage reverses direction. The latter is corrected by the non-

causal filter.)

IV. ITERATIVE METHODS

The inversion-based design presented above is deliberately

simple and complements the more sophisticated techniques

presented within the control community. For example, a vari-

ant of optimal control tries to compensate for the uncertain-

ties in the dynamics by using notions of robust control (H∞

metric) for the cost function [7], [28]. In another approach,

Tien, Zou, and Devasia [29] have explored feedforward

techniques where they supplement the kind of inversion-

based techniques discussed here with a procedure inspired

by iterative learning control schemes [30], [31], [32]. The

basic idea is to apply a control repeatedly to a system, to

measure the outcome, and to use the difference between

observed and desired outcome to improve the control signal.

As Tien et al. note, such a scheme applies well to many

AFM operations, such as XY-stage scanning, where the

control signal is already periodic. They further note that

the periodicity makes it natural to formulate the iterative

method in frequency space. Here, we summarize the iterative

approach, implement it on our AFM stage, and compare its

performance to the simple inversion-based design discussed

above. We then go on to introduce a significant variation of

our own, which eliminates the preliminary modeling step.

A. Model-based iterative control

Here, we describe a variant of the iteration method intro-

duced by Kim, Zou, and Su [33]. Because estimates of the

system transfer function (and related uncertainties) play a

key role in the algorithm, we refer to their method as “model

based.” Let the actual system transfer function be denoted by

G∗(jω) and the experimentally determined model by G(jω).

Then one starts with a control signal that, in the frequency

domain, is given by

u0(jω) = G−1(jω) yd(jω) , (2)

where yd(jω) is a frequency component of the desired

sensor signal, yd(t). Here, one takes advantage of the fact

that a repetitive control process is naturally analyzed in the

frequency domain. One measures N periods of the repetitive

waveform, Fourier transforms, calculates the update for each

Fourier component, and the transforms the result back to the

time domain to find the desired control signal, u(t). After

applying the initial control signal, one measures the actual

output y(jω) and updates the control signal as

|uk| = |uk−1| + ρ G−1(|yd| − |yk−1|) , k ≥ 1 , (3)

6 uk = 6 uk−1 + ( 6 yd − 6 yk−1) .

In Eq. 3, all quantities are functions of jω. Kim et al.

show that the iteration law in Eq. 3 is stable provided

that the free parameter ρ is chosen to be in the range

0 < ρ < 2/∆G, where ∆G = G∗/G is a measure of the

uncertainty in the determination of the transfer function at the

given frequency ω. One cannot directly measure ∆G since

G∗ is unknowable, but it may be estimated by the spread of

repeated measurements of the transfer function. Specifically,

we inject white noise for the transfer-function measurements

and take the ratio of the maximum to minimum values

over 10 runs, sampling at 10 kHz for 1 s. Below 500 Hz,

∆G < 1.2, increasing to 2 by 1 kHz. Above that frequency,

we truncate all harmonics in u.

Using the measured G (Fig. 1) and setting ρ = 1/∆G, we

obtain the measured 80 Hz waveforms and residuals shown

in Fig. 4(b) and (e). Comparing to the results obtained with

the inversion-based feedforward method (a) and (d), we see

a noticeable improvement, which we ascribe to two factors:

first, the slight phase shift due to modeling errors in the

inversion-based method is removed. Second, the bandwidth

of the iterative method was 1 kHz, in contrast to the 400

Hz bandwidth of the inversion-based method. Indeed, one

notes that an advantage of the iterative method is that it is

not limited by any particular bandwidth per se; rather, what

counts is how accurate the transfer-function measurement

is at any particular frequency. When ∆G ≫ 1, ρ will

be very small, and the combination of sensor and actuator

noise will prevent any meaningful convergence of u to its

optimal value. But this condition is independent of where

mechanical resonances lie. Of course, in general uncertainties

will be greatest near resonances, since they can be narrow

in piezoscanners and shift around in frequency as a function

of changing mechanical load, etc.

We also compared the driving wave forms for the methods.

Fig. 5(a) shows the non-causal inversion-based driving signal

(solid line). We note how it starts to alter the motion before

the output wave form reverses (dotted line). Fig. 5(b) shows

the same signals for the model-based interative scheme. The

large-amplitude, high-harmonic at 800 Hz does not appear

in the inversion-based input signal, as it is beyond the
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Fig. 4. Waveforms and residual tracking errors for three different control
algorithms. (a) Inversion-based feedforward; (b) Model-based iteration; (c)
Model-free iteration. Measured signal (green) is nearly perfectly superposed
on the tracking signal (red) in all three cases. (d-f) Residual tracking errors
for the respective control algorithms. 80 Hz, 1 µm peak-to-peak amplitude.
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Fig. 5. Driving wave forms. (a) Causal inverse. (b) Non-causal inverse.
(c) Model-based iteration; (d) Model-free iteration. Dashed red line is the
measured sensor signal; solid green line is the actuator signal sent to the
stage. 80 Hz, 1 µm peak-to-peak amplitude.

bandwidth of that controller. Its large amplitude here may

be mostly traced back to the low-pass filter in the analog

feedback loop of the piezo stage.

B. Model-free iterative control

While the model-based iterative control improves the

tracking error noticeably, it is at the cost of additional

complexity. One must first measure the transfer function

repeatedly, ideally under a wide range of circumstances

(including variations in driving amplitude and offset, stage

load, etc.) in order to estimate the uncertainties ∆G. Second,

the actual iteration scheme must be implemented. The second

concern is a one-time effort; the first is more worrisome in

the sense that entire set of possible experiments and their

consequential variations in G must be anticipated.

In order to circumvent these issues, we introduce a model-

free variation of the method of Kim et al..

1) We use the most recent input-output measurement to

estimate G−1 ≈ uk−1/yk−1.

2) We choose ρ = 1/∆G, the value that converges

most rapidly for linear, noiseless dynamics. (For weak

nonlinearity and noise, we do not anticipate that the

optimal value will shift greatly.)

3) We acquire data over a block of N periods to reduce

sensor and actuator noise.

4) We initialize with the naive transfer function, G = 1.

Putting all of this together, we arrive at the following control

algorithm:

u0 = yd , (4)

|uk| = |uk−1|
|yd|

|yk−1|
, k ≥ 1 ,

6 uk = 6 uk−1 + ( 6 yd − 6 yk−1) .

While we have not investigated the theoretical convergence

properties of the model-free algorithm presented here, we

have observed that it performs slightly better than the model-

based iterative algorithm. In Fig. 4, parts (c) and (f) show

the sensor signal and residuals for our new algorithm. Both

waveforms look “perfect” at the scale drawn, while the

residuals for the model-free algorithm are slightly lower.

In Table I, we show the rms and sup-norm error for all

three methods. The model-free method has the lowest error

level, presumably because it eventually develops a model

estimate that is better than the one we used for the model-

based method. Both methods are substantially better than the

non-causal feedforward method presented above. The main

reason for the higher error comes from poorer tracking of

the corners (where the stage reverses its velocity). This is to

be expected, since its bandwidth was lower (0.4 vs. 1 kHz).

TABLE I

STEADY-STATE ERRORS FOR THE DIFFERENT CONTROL ALGORITHMS.

80 HZ, 1 µM PEAK-TO-PEAK AMPLITUDE, 100 PERIODS/ITERATION,

AVERAGED OVER 15 ITERATIONS AFTER AN INITIAL TRANSIENT OF 15

ITERATIONS.

E2(%) E∞(%)
non-causal 8.3 11.1

model-based 1.8 4.4
model-free 1.2 3.5

sensor & actuator noise 0.7 2.0

In Fig. 6, we show the iteration dependence of the rms

errors. The model-free algorithm was based on measuring 1

period/iteration, while the model-based algorithm was given

10 periods/iteration. (If we used only one period, it did not

converge.) As expected, the model-based algorithm initially

had a lower error, as its initial guess was based on previous

measurements of the transfer function while the model-free

algorithm takes yd as its initial guess. Still, after 5 iterations,

the model-free algorithm converged to an error level slightly

below that of the model-based algorithm.

We then tested the robustness of both algorithms. At

iteration 8, we added a mass of 200 gm, which lowered

the resonance from 440 to 400 Hz (10%). The model-free

algorithm recovered again in 3 iterations, while the model-

based algorithm recovered noticeably more slowly. This is

also to be expected: the model-based algorithm mis-estimates

the uncertainties of the now-altered transfer function. At
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Fig. 6. Tracking errors in the model-based and model-free iteration
algorithms. Control-signal updates are calculated using one period for the
model-free and ten periods for the model-based algorithms. Initial transient
error of the model-free algorithm converges to steady state after 3 iterations.
First arrow shows effects of adding a 200 gm mass to stage; second arrow
shows effects of doubling output amplitude to 2 µm. Waveform of 80 Hz.

iteration 21, we doubled the amplitude of the driving signal.

Again, the model-free algorithm recovered rapidly, while the

model-based algorithm was slower.

We also measured the effects of sensor and actuator noise

and found that each contributed about 0.35% rms relative

to the amplitude of driving wave form that we used. This

implies that systematic errors, most likely due to nonlinear

effects, account for the rest of the errors.

V. DISCUSSION

The motivation for introducing our inverse-based feedfor-

ward prefilter and applying it to a closed-loop scanning stage

was to combine the simplicity of working with a closed-loop

scanner with the larger bandwidths made possible by the use

of the approximate inverse to the closed-loop transfer func-

tion. Using a closed-loop stage helps circumvent the delicate

issues involved in modeling piezoelements [23]. We found

that a relatively simple transfer-function measurement could

be used to increase the effective bandwidth of the stage by

a factor of roughly 15, reaching nearly its main mechanical

resonance frequency. The inversion-based feedforward filter

is straightforward to set up and implement.

One issue with the inversion-based feedforward technique

is its lack of robustness. The inversion is helpful only to

the extent the transfer function is known accurately. Devasia

has addressed this issue [34] and found that the optimal

level of feedforward depends inversely on the uncertainty in

the system’s dynamics, for linear systems in the frequency

domain. The conclusion is that one should limit feedforward

to those frequencies where the dynamics are well known. In

the work presented above, the feedforward does this by using

a low-pass filter to turn off its effects for frequencies that

exceed the maximum used in the transfer-function model.

The iterative schemes that we addressed in the second part

of the paper take a fundamentally different approach, in that

one uses the measured output signal to reshape the input sig-

nal, forcing a convergence of the actual output to that desired.

In the formulations of Devasia, Zou, and collaborators, this

iteration is done offline and the result is implemented as a

feedforward filter. In the model-free variant presented here, it

is natural to implement the iteration continuously online. In

modern AFMs, one usually acquires the sensor signal from

the scanning stage anyway. The additional computational

effort to perform the forward and reverse Fourier transforms

is negligible, especially considering that one need update

only every scan periods. (Actually, for noise reduction and

better frequency resolution, one might well want to measure

– and hence update – in blocks of several periods.) Further,

modern AFM controllers use DSP and FPGA processors that

can easily run a variety of real-time processes in parallel. In

the work presented here, the iterations are done continuously

on an AFM scanner stage, but the software has yet to be

integrated with the rest of the AFM control program.

By performing the iterative scheme online, one gains all

the advantages of robustness illustrated above in Fig. 6.

Even for large changes in the driving signal or in the

transfer function, the iteration leads to a rapid recovery. The

robustness to changes in the transfer function are striking

in that they would render the inverse-based feedforward

scheme useless. Each mechanical resonance is “zeroed out,”

and a large change in the transfer function would require

further offline measurements. In the iterative scheme, they

are handled automatically, with no outside intervention. In

effect, the robustness here is reminiscent of that associated

with ordinary feedback. Here, the difference is that the

feedback is over slow time scales (several periods of the

driving frequency) and is thus easy to implement.

One challenge for the iterative control scheme is that

the higher bandwidths, which are an important factor in

the tracking improvements, require larger amplitudes for the

driving waveform. We can trace that back to the combination

of the closed-loop control, with its low-pass filter, and

the fact that we include frequencies above the principal

mechanical resonance of the system. Bypassing the stage’s

feedback loop and applying the control signal directly to

the piezos will partly resolve the problem by making the

system response roll off more slowly at high frequencies. Of

course, one then loses the advantages of having a feedback

controller eliminate the nonlinearities, hysteresis, creep, etc.

of the stage. These problems will be at least partially offset

by the iterative nature of the control algorithm.

Other issues with model-free iterative control that need

to be worked out include the effect of nonlinearities and

methods for correcting external disturbances.

VI. CONCLUSION

We have presented a simple, practical feedforward design

that significantly improves the performance of commercial

piezoelectric translation stages used in atomic force mi-

croscopy and other applications of nanoscience. Increasing

the overall speed of AFM measurements requires revamping

many aspects, including both hardware and software, and the

work presented here is just one part of such an effort.

We then examined an alternate control based on iterative

learning algorithms. We showed that the model-based algo-
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rithm of Devasia, Zou, and collaborators could substantially

improve the performance, at the cost of additional measure-

ments and programming. We then introduced a model-free

variant of the iterative control method that slightly exceeded

the model-based algorithm in performance but was easier to

implement (no model to measure, no parameters to tune) and

more robust to changes in the system transfer function. This

method merits further study.

We began this contribution by noting the common view

of the development of science as a growing, ever-branching

tree. In this contribution, we have given an example of new

connections made between two branches that split away

from each other many years ago. Such “reconnections” have

become increasingly popular in many parts of science in the

guise of “interdisciplinary research,” where it is recognized

that progress on difficult problems requires contributions

from a variety of disciplines. Perhaps a more appropriate

image of the development of science might be that of a

complex, growing network, with numerous and unexpected

connections between different domains.
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