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Abstract

In this paper, several dynamical systems for computing canon-
ical correlations and canonical variates are proposed. These
systems are shown to converge to the actual components rather
than to a subspace spanned by these components. Using Li-
apunov stability theory, qualitative properties of the proposed
systems are analyzed in detail including the limit of solutions
as time approaches infinity.
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1 Introduction
Canonical correlation analysis (CCA) is a statistical technique
that has been used in situations where a large number of vari-
ables of distinct types are to be investigated simultaneously.
For example, in biomedical signal processing, a large number of
physical and psychological variables are analyzed. Discriminant
analysis and regression analysis are particular cases of this gen-
eral technique. Thus, there is an interest in computing the most
significant canonical correlations and corresponding variates of
statistical data. Some of the computational approaches involve
generalizing the singular value decomposition (SVD); see, Ewer-
bring and Luk [1].

Statistically speaking, CCA involves partitioning a collection
of variables into two sets, an X-set and a Y-set. The objective
is then to find linear combinations a = xT X and b = yT Y such
that U and V have the largest possible correlation. Such lin-
ear combinations can give insight into the relationships between
the two sets of variables. Once x and y are computed, further
canonical correlation vectors can be found in the orthogonal di-
rections to the previous ones in the same manner. Standard
CCA methods can be found in [2]-[3].

Assume we are given three real matrices A ∈ IRn×m, B ∈
IRn×n, and C ∈ IRm×m, where IR is the set of real numbers,
m, n, p are positive integers such that p ≤ m ≤ n and B and
C are positive definite. The aim of CCA is to find an n × p
transformation x and a m × p transformation y, such that the
matrix xT Ay is diagonal, xT Bx = I and yT Cy = I. Thus CCA
methods achieve the simultaneous diagonalization of the three
matrices. When B = I, and C = I, we get the familiar singular
value decomposition of the matrix A. Here the symbol I denotes
an identity matrix of appropriate dimension. Generally, CCA
is equivalent to computing the singular value decomposition of

the coherence matrix C = B
−1
2 AC

−1
2 , where B

−1
2 and C

−1
2

are principal square roots of B−1 and C−1, respectively.
The three matrices A,B, C involved in CCA are covari-

ance matrices defined as follow. Suppose that U ∈ IRn×1 and

V ∈ IRm×1 are random vectors having means µU and µV re-
spectively. Then

A = E{(U − µU )(V − µV )T }, B = E{(U − µU )(U − µU )T },

C = E{(V − µV )(V − µV )T },
where E(.) denotes the expectation operator. CCA has been
generalized in several directions. For example, Leurgans et al.[4]
extended CCA to functional data analysis; Kettenring [5] ex-
tended two sets CCA to multi-set CCA based on the principle of
maximizing some generalized measure of correlation; Luijtens et
al.[6] developed linear and nonlinear canonical correlation analy-
sis for group-structured data. In [7] canonical variables used as
optimal predictors. Analysis which is based on information the-
ory is given in [8].

In this paper, several dynamical systems which can be seen
as a generalization of the singular value decomposition are pro-
posed. Some of these techniques are generalization of Oja’s
learning systems for principal component analysis, while oth-
ers use an upper-triangulization process similar to those used in
Sanger-type methods [9].

The following notation will be used throughout. The sym-
bols IR, and IN denote the set of real numbers, and the set of
positive integers, respectively. The derivative of x with respect
to time is written as ẋ. The identity matrix of appropriate di-
mension is expressed with the symbol I. The derivative of a
Lyapunov function V (x) with respect to time along a solution

of a dynamical system is denoted by V̇ . For any square matrix
G, the trace of G which is the sum of the diagonal elements of G
is denoted bt tr(G). The notation ||x||2 denotes the Euclidean
norm of x. It will be assumed in this work that all matrices are
real.

In the sequel, we endow the space IRn×p × IRm×p with the
Riemannian metric 〈(x1 , y1), (x2, y2)〉R = tr(xT

1 Bx2 + yT
1 Cy2),

for any (x1, y1), (x2, y2) ∈ IRn×p×IRm×p and the corresponding
norm square ||(x, y||2R = tr(xT Bx + yT Cy). This dot product

defines a positive definite inner product on IRn×p × IRm×p as
B and C are positive definite. Recall that for any Riemannian
metric 〈., .〉R, an associated gradient vector field grad f(X) is de-
fined by the characterizing property df(X)h = 〈grad f(X), h〉R
for each X, h ∈ IRn×p × IRm×p. Here f : IRn×p × IRm×p →
IR is assumed to be continuously differentiable. Thus, for
example, if f(x, y) = tr(xT Bx + yT Cy), then df(x, y)h =
〈grad f, h〉R = tr(grad fT diag(B, C)h). The gradient associ-
ated with the Riemannian metric 〈., .〉R is seen as grad f(x, y) =[

B 0
0 C

]−1

df(x, y).

2 Preliminary Results
For completeness, basic concepts from dynamical system theory
are summarized in this section. These include Liapunov and
Lagrange stability.
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2.1 Stability of Dynamical Systems

When a Lyapunov function for a system is known, the direct
method is an convenient way of proving stability of equilibria,
as Lyapunov’s theorem can be used without solving the differen-
tial equations. Except for special cases, such as energy functions
for mechanical systems, there are no systematic methods to con-
struct Lyapunov functions. Additionally, testing non-negativity
of a function is not always an easy task. There are two condi-
tions needed for stability, 1) A positive definite function, 2) The
time derivative must be negative definite along any solution of
the system. If in addition, 3) the function is radially unbounded,
then the system is globally stable.

Let g(x) : IRn×p → IRn×p, p ≤ n, be continuously differen-
tiable function and consider the dynamical system

ẋ = g(x). (1)

The point x̄ is an equilibrium point for the system (1) if g(x̄) = 0.
Let Ω ⊂ IRn be a region containing x̄ and V : Ω → IR be contin-
uously differentiable function such that V (x̄) = 0 and V (x) > 0
for each x̄ 6= x ∈ Ω, i.e., V is positive definite. Assume also
that V̇ (x) ≤ 0 for each x ∈ Ω, i.e., V is negative semi-definite.
Then x̄ is stable and V is called a Lyapunov function for the
system (1) at x̄ ∈ Ω. If V (x) < 0 for each x̄ 6= x ∈ Ω, then x̄
is asymptotically stable. If in addition to these conditions, we
have the function V is radially unbounded, i.e., V (x) → ∞ as
||x|| → ∞, then the system is globally stable. The main advan-
tage of using Lyapunov direct method is that Lyapunov theorem
can be used to prove stability of equilibria without solving the
differential equations. However, constructing Lyapunov func-
tions is not always an easy task. It should be noted that many
Lyapunov functions may exist for the same problem. However,
a specific choice of Lypunov functions may provide more useful
results about the system than others.

Geometrically, the condition V̇ ≤ 0 implies that when a tra-
jectory crosses the level surface V (x) = c, it moves inside the
set Ω2 = {x ∈ IRn×p : V (x) ≤ c} and remains there. Since
V is positive definite, then Ω2 is bounded and closed, thus the
system must converge to some limiting value.

The domain of attraction of an equilibrium point x̂ of the sys-
tem (1) is defined as an open set D containing x̂ such that for
any initial point x0 ∈ D, the sequence generated by the dynam-
ical system according to (1) with an arbitrarily small step-size
α > 0 and satisfying xk ∈ D, for all i) remains in D and ii) xk

converges to x̂.
A set S is an invariant set for the system (1) if every trajec-

tory x(t) which starts from a point in S remains in S for all time.
For example, any equilibrium point is an invariant set. The do-
main of attraction of an equilibrium point is also an invariant
set.

We state next a few stability results for nonlinear au-
tonomous systems. The invariant set theorems reflect the in-
tuition that the decrease of a Liapunov function V has to grad-
ually vanish. In other words V̇ has to converge to zero because
V is lower bounded.

Theorem 1 (Local Invariant Set Theorem). Consider an
autonomous system of the form ẋ = g(x), with g continuous and
let V (x) : IRn → IR be a scalar function with continuous first
partial derivatives. Assume that

1. for some l > 0, the set Ωl defined by V (x) ≤ l is bounded.

2. V̇ (x(t)) ≤ 0 for all x in Ωl.

Let R be the set of all points within Ωl where V̇ (x) = 0 and
M be the largest invariant set in R. Then, every solution x(t)
originating in Ωl tends to M as t → ∞.

Proof. See Slotine and Li (1991) [10].
In Theorem 1, the word largest means that M is the union

of all invariant sets within R. Notice that R is not necessarily
connected, nor is the set M . Also, if l in Theorem 1 extends

to the whole space IRn, then global asymptotic stability can be
established.

Another version of Theorem 1 is stated next.

Theorem 2 (Invariance Principle). Let Ω be an open set
in IRn that contains an equilibrium point of the system (1).
Suppose there exists a function V : Ω → IR of class C1 such
that

1. V is bounded below, i.e., there is V0 ∈ IR, such that V (x) ≥
V0 for each x ∈ Ω.

2. V̇ (t) ≤ 0 along any solution of (1).

3. Let E be the set of all points within Ω where V̇ (x) = 0
and M be the largest invariant set in E, i.e., if x(t0) ∈ Ω,
where t0 ∈ IR, then x(t) ∈ Ω for t0 ≤ t ≤ t0 + T , for some
positive T ∈ IR.

Then, every bounded solution x(t) originating in Ω tends to M
as t → ∞.

Proof. The proof of this theorem can be found in [11].
The main difference between Theorems 1 and 2 is that the

region Ωl is dependent on the Liapunov function V , while Ω in
Theorem 2 is not dependent on V .

We state next a well known result about Lagrange stability.
A dynamical system is Lagrange stable if the continuous state
remains bounded from any initial condition. For example, if the
continuous state converges to a stationary set, the dynamical
system is Lagrange stable.

Theorem 3 (A Lagrange Stability Theorem). Let W be a
bounded neighborhood of the origin and let W c be its comple-
ment (W c is the set of all points outside W ). Assume that V (x)
is a scalar function with continuous first partial derivatives in
W c and satisfying:

1. V (x) > 0 for all x ∈ W c,

2. V̇ (x) ≤ 0 for all x ∈ W c,

3. V (x) → ∞ as ||x|| → ∞.

Then each solution of ẋ = g(x), is bounded for all t > 0.

Proof. The proof of this theorem can be found in [12].
The Lyapunov linearization method explores the relation be-

tween the stability of the linearized system with that of the
original nonlinear system.

Theorem 4 (Liapunov’s Linearization Method). Let x =
x̂ be an equilibrium point for the nonlinear system ẋ = g(x),
where g : Ω → IRn is continuously differentiable and Ω is a
neighborhood of x̂. Let the Jacobian matrix A at x = x̂ be:

A =
∂g

∂x
|x=x̂. (2)

Let λi, i = 1, · · · , n be the eigenvalues of A. Then,

1. The point x̂ is asymptotically stable if Re(λi) < 0 for all
eigenvalues of A.

2. The point x̂ is unstable if Re(λi) > 0 for any of the eigen-
values of A.

Here Re(λ) denotes the real part of λ.

Proof. The proof of this theorem can be found in Khalil (2002)
[13].

3 CCA Systems Based on Elliptic Con-
straints

Dynamical systems for computing canonical correlations and
variates may be obtained by optimizing the cost function
tr(xT Ay) over the elliptic constraints xT Bx = I and yT Cy = I,
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where A,B, C are as defined in the introduction. As shown in
[14], the resulting dynamical system is

ẋ = Ay − BxyT AT x,

ẏ = AT x − CyxT Ay.
(3)

Although the system (3) is derived using optimization methods
over elliptic regions, simulations have indicated that other vari-
ants of this system have similar convergence behavior. These
systems are:

ẋ = Ay − BxxT Ay,

ẏ = AT x − CyxT Ay,
(4a)

and
ẋ = Ay − BxyT AT x,

ẏ = AT x − CyyT AT x.
(4b)

To analyze the convergence of the above system define the
set

Ω1 = {x ∈ IRn×p, y ∈ IRm×p : xT Ay+yT AT x is positive definite},
(5)

where m, n, p are positive integers such that p ≤ m ≤ n. The
behavior of the system (3) is analyzed in the following result.

Theorem 5. Let m,n, p ∈ N be positive integers such that
p ≤ m ≤ n and assume that A ∈ IRn×m, B ∈ IRn×n, and
C ∈ IRm×m such that B and C are positive definite. Let
x ∈ IRn×p, y ∈ IRm×p, and consider the dynamical system (3).
Then the system (3) is stable in the sense of Theorem 1 and 2.
Then each full rank equilibrium point of this system is stable.
Additionally, let (x(t), y(t)) be a solution of (3) for t ≥ 0, and
define Ā = limt→∞ x(t)T Ay(t), B̄ = limt→∞ x(t)T Bx(t), and
C̄ = limt→∞ y(t)T Cy(t). If Ā + ĀT is positive definite, then
B̄ = I, C̄ = I and ĀT = Ā.

Outline of Proof: Stability of equilibrium points follows from
Theorem 2 by considering the function V defined by V (x, y) =
1
4
tr((xT Bx − I)2) + 1

4
tr((yT Cy − I)2). It can be shown that

the time derivative of V along the trajectory (x(t), y(t)) of the
system (3) is

V̇ = tr{(xT Bx − I){xT BB−1{Ay − BxyT AT x}

+ (yT Cy − I){yT CC−1{AT x − CyxT Ay}

= tr{(xT Bx − I){xT Ay − xT BxyT AT x}

+ (yT Cy − I)(yT AT x − yT CyxT Ay}

=
1

2
tr{(xT Bx − I){(xT Ay + yT AT x

− xT Bx(yT AT x + xT Ay)}

+
1

2
(yT Cy − I){(xT Ay + yT AT x

− yT Cy(yT AT x + xT Ay)}

=
1

2
tr{(xT Bx − I){(xT Ay + yT AT x}(I − xT Bx)}

+
1

2
(yT Cy − I){(xT Ay + yT AT x)(I − yT Cy)}

≤ 0,

(6)

for all (x, y) ∈ Ω1. Let R be the set of all points within Ω1

where V̇ (x, y) = 0, i.e., (x, y) ∈ Ω2 where Ω2 = {x ∈ IRn×p, y ∈
IRm×p : tr{(xT Ay + yT AT x)(xT Bx − I)2 + (yT Cy − I)2 = 0},
and M be the largest invariant set in R. Then, every solution
(x(t), y(t)) originating in Ω1 tends to M as t → ∞.

To show that B̄ = I, C̄ = I and ĀT = Ā, let B̄, C̄, and Ā be
as defined above, then as t → ∞, the following equations hold:

Ā = B̄ĀT , (7a)

ĀT = C̄Ā. (7b)

From these equations it follows that

Ā = B̄ĀB̄, (7c)

ĀT = C̄ĀT C̄, (7d)

and consequently, for each integer k ∈ N we have

Ā = B̄kĀB̄k ,

ĀT = C̄kĀT C̄k.

Note that B̄ and C̄ behave as if they are identity matrices. In-
deed it can be proved that B̄ = I under the assumption that
Ā+ĀT is positive definite. Let z be an eigenvector of B̄ with cor-
responding eigenvalue λ. This implies that zT Āz = zT B̄ĀB̄z =
λ2zT Āz. Since Ā+ ĀT and hence Ā is invertible, it follows that
λ2 = 1, i.e., B̄2 = I, and therefore B̄ = I since B̄ is positive
definite. Similarly, one can prove that C̄ = I and consequently
ĀT = Ā.

Remark 1: Using Theorem 4, it can be shown that (x, y) =
(0, 0) is an unstable equilibrium point for the systems given in
(3) and (4). In this case the matrix of the linearized systems at

(0, 0) is

[
0 A

AT 0

]
which has positive and negative eigenvalues.

A generalization of Theorem 5 is given in the next result.

Theorem 6. Let m, n, p, A,B, C, x, and y be as in Theorem 5,
and let K : IRn×p × IRm×p →: IRp×p be a continuous function
such that xT Ay+yT AT x = α(K +KT ) for each x and y, where
α is positive number. Consider the following system

ẋ = Ay − BxK(x, y),

ẏ = AT x − CyK(x, y),
(8)

then the system is stable with respect to the set Ω1 (in the sense
of Theorem 2).

Outline of Proof: Let Ω1 be as defined in Theorem 5. We
show that if (x(0), y(0)) ∈ Ω1, then (x(t), y(t)) ∈ Ω1, for t ≥
0. By considering a Liapunov function of the form V (x, y) =
1
4
tr((xT Bx−αI)2) + 1

4
tr((yT Cy −αI)2), it can be shown that

the time derivative of V along the trajectory x(t) and y(t) is

V̇ = tr{(xT Bx − αI){xT BB−1{Ay − BxK(x, y)}

+ (yT Cy − αI){yT CC−1{AT x − CyK(x, y)}

= tr{(xT Bx − αI){xT Ay − xT BxK(x, y)}

+ (yT Cy − αI)(yT AT x − yT CyK(x, y)}

=
1

2
tr{(xT Bx − αI){(xT Ay + yT AT x

− xT Bx(K(x, y) + K(x, y)T )}

+
1

2
(yT Cy − αI){(xT Ay + yT AT x

− yT Cy(K(x, y) + K(x, y)T )}

=
1

2
tr{(xT Bx − αI){(xT Ay + yT AT x}(αI − xT Bx)

+
1

2
(yT Cy − αI){(xT Ay + yT AT x)}(αI − yT Cy)

≤ 0,

(9)

for all (x, y) ∈ Ω1. Note that V̇ is computed with respect to the
Riemannian metric 〈., .〉R defined in the introduction. Hence
the system is stable in the sense of Theorem 2.
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If in Theorem 6, K(x, y) is defined so that K =
xT Ay+yT AT x

α
, then α

2
(K + KT ) = xT Ay + yT AT x, and there-

fore we may consider the following system:

ẋ = Ay − Bx
xT Ay + yT AT x

2
,

ẏ = AT x − Cy
xT Ay + yT AT x

2
,

(10)

which corresponds to α = 2.
Now assume that (x(t), y(t)) is a full rank solution of

(10) for t ≥ 0, then limt→∞ x(t)T Ay(t) is symmetric,
limt→∞ x(t)T Bx(t) = I, and limt→∞ y(t)T Cy(t) = I. To prove
this assertion, it will be assumed for convenience that α = 1 and
thus we have the following system:

ẋ = Ay − Bx(xT Ay + yT AT x),

ẏ = AT x − Cy(xT Ay + yT AT x).
(11)

As in Theorem 5, let (x(t), y(t)) be a full rank solution of
(11) for t ≥ 0 such that Ā+ ĀT is positice definite, where Ā, B̄,
and C̄ are as defined above, then

Ā = B̄(Ā + ĀT ), (12a)

ĀT = C̄(Ā + ĀT ). (12b)

Clearly, (12a) and (12b) imply that ĀB̄ and ĀT C̄ are symmetric
and therefore the following equation holds

(Ā + ĀT )Ā = ĀT (Ā + ĀT ). (13a)

Equation (13a) implies that Ā2 is symmetric, i.e.,

Ā2 = (ĀT )2. (13b)

Theorem 9 (see Appendix) guarantees that ĀT = Ā. Addi-

tionally, Equations (12a) and (12b) yield B̄ = 1
2
I and C̄ = 1

2
I.

3.1 Sanger’s Type Learning Systems

As shown in Theorem 5, x(t) and y(t) do not converge to the
actual canonical variates since Ā is generally not diagonal. The
true canonical variates can be recovered by incorporating an
upper-triangulization in the system (3), similar to that of [9], as
follows:

Theorem 7. Let m, n, p, A,B, C, x, and y be as in Theorem
5, and consider the following system:

ẋ = Ay − Bx{UT (xT Ay) + LT (xT Ay) − dd(xT Ay)},

ẏ = AT x − Cy{UT (xT Ay) + LT (xT Ay) − dd(xT Ay)}.
(14)

Then each full rank equilibrium point of this system is asymp-
totically globally stable over the set Ω1 defined in (5). Addi-
tionally, if (x(t), y(t)) is a full rank solution of (6) for t ≥ 0,
then limt→∞ x(t)T Ay(t) = Σ, limt→∞ x(t)T Bx(t) = I, and
limt→∞ y(t)T Cy(t) = I. If Ā + ĀT is positive definite, then
B̄ = I, C̄ = I and Ā is diagonal. Here Σ is a diagonal matrix
whose diagonal elements are the canonical correlations of the
triplet (A,B, C). The functions UT (.) (LT (.)) set the entries of
the lower (upper) triangular part of (.) to zeros, and keeps the
main diagonal, and the upper(lower)-triangular part of (.) un-
changed. The matrix dd(.) is diagonal whose diagonal elements
are the diagonal entries of (.).

Outline of Proof: Stability of equilibrium points of the system
(14) follows from Theorem 2 and Theorem 7 as follows. Let

V (x, y) = 1
4
tr((xT Bx − I)2 + (yT Cy − I)2), then V (x, y) is

positive semi-definite and the time derivative of V along any
trajectory of (17) is

V̇ (x, y) = tr{(xT Bx − I)(xT Ay + (xT Ay)T

− xT Bx(UT (xT Ay) + UT (xT Ay)T

+ LT (xT Ay) + UT (xT Ay)T − 2dd(xT Ay))

+ (yT Cy − I)(yT AT x + xT Ay − yT Cy(xT Ay + (xT Ay)T

− xT Bx(UT (xT Ay) + UT (xT Ay)T + LT (xT Ay)

+ UT (xT Ay)T − 2dd(xT Ay))}

= −tr({(xT Bx − I)2 + (yT Cy − I)2)}{xT Ay + (xT Ay)T })
≤ 0,

for each x ∈ Ω1. The time derivative V̇ (x, y) is computed with
respect to the Riemannian metric 〈., .〉R defined in the introduc-
tion. Hence the system (14) is stable over the set Ω1.

Now let Ā = U +D +L, where U and L are upper and lower
triangular matrices, respectively and D is diagonal. Note that
the diagonal elements of U and L are zeros. We show that Ā is
diagonal under the assumption that Ā + ĀT is positive definite.
As t → ∞, it follows from (14) that

Ā = B̄(U + D + LT ), (15a)

ĀT = C̄(U + D + LT ). (15b)

Since B̄ and C̄ are symmetric, then (U + D + LT )T Ā and (U +
D + LT )T ĀT are also symmetric:

(U + D + LT )T Ā = ĀT (U + D + LT ). (15c)

(U + D + LT )T ĀT = Ā(U + D + LT ). (15d)

By adding the equations (15c) and (15d) and observing that
Ā + ĀT = U + L + D + UT + LT + D we obtain the following
equations:

(U + D + LT )T (Ā + ĀT ) = (Ā + ĀT )(U + D + LT ),

or equivalently,

(U + D + LT )2T = (U + D + LT )2.

It follows from Theorem 9 (see Appendix) that the last equation
holds only if (U + D + LT )T = U + D + LT , or (U + LT )T =
U + LT . Therefore, (U + LT )T = U + LT = 0.

U = −LT = 0

Hence U = −LT = 0, and Ā = D. This also shows that B̄ = I
and C̄ = I.

Remark 2: A version of Theorem 7 applied to the system (11)
yields the following CCA system:

ẋ = Ay − BxUT (xT Ay + yT AT x),

ẏ = AT x − CyUT (xT Ay + yT AT x).
(16)

Let (x(t), y(t)) be a full rank solution of (14) for t ≥ 0, and
let Ā, B̄, and C̄ be as defined above. Assume that Ā + ĀT =
U + L, where U and L are upper and lower triangular matrices,
respectively and the diagonal elements of L are zeros. Then

Ā = B̄U and ĀT = C̄U. (17)

Since B̄, and C̄ are symmetric, it follows from (17) that

UT Ā = ĀT U and UT ĀT = ĀU. (18)

By adding the equations in (18) we obtain

UT (ĀT + Ā) = (ĀT + Ā)U,

or
UT (U + L) = (UT + LT )U,

4090



from which it follows that

UT L = LT U.

If it is assumed that Ā+ ĀT is positive definite, then L = 0, i.e.,
Ā + ĀT = U . Therefore, since Ā + ĀT is symmetric, we have

Ā + ĀT = D,

for some diagonal matrix D. It remains to show that Ā is di-
agonal. From Equation (18) it follows that UT D = DU , or
equivalently, (LT +D)D = D(D+L). Hence LT D = DL which
implies that L = 0 since D is positive definite. This proves that
Ā = D

2
, and hence B̄ = 1

2
I, C̄ = 1

2
I. Although, the system

(16) may not be a gradient system, numerical simulations not
included here, have indicated that x(t)T Ay(t) converges to a
diagonal matrix whose trace maximizes trace(xT Ay) over the
constraints xT Bx = I, and yT Cy = I.

4 Systems Based on Logarithmic Cost
Function

Faster convergent CCA dynamical systems may be derived
from optimizing the unconstrained cost function F (x, y) =
1
2
tr{log(xT Ay) − xT Bx − yT Cy} over the set Ω1 defined in

(5). Note that the natural logarithm of a square matrix Z, de-
noted by log(Z), is defined if and only if Z is invertible. This
means that log(Z) is defined as long as the spectrum of Z does
not contain the origin.

Thus the gradient flow corresponding to the cost function
F (x, y) is

ẋ = Ay(xT Ay)−1 − Bx,

ẏ = AT x(yT AT x)−1 − Cy.
(19)

It should be noted that (xT Ay)−1 always exists as long as
(x, y) ∈ Ω1. It is immediately clear from Theorem 3 that by
utilizing the function V (x, y) = tr(xT x + yT y), System (19)
is Lagrange stable, i.e., each solution of (19) is bounded for
t ≥ 0. Further convergence analysis of (19) may be estab-
lished via the Liapunov function V (x, y) defined over Ω1 as

V (x, y) = 1
4
tr((xT Bx − I)2 + (yT Cy − I)2). Then V (x, y) is

positive semi-definite (and thus lower bounded) and the time
derivative of V along any trajectory of (19) is

V̇ (x, y) = tr{(xT Bx − I)(xT Ay(xT Ay)−1

+ yT AT x(yT AT x)−1 − xT Bx}

+ (yT Cy − I)(yT AT x(yT AT x)−1 + xT Ay(xT Ay)−1 − yT Cy}

= −tr((xT Bx − I)2 − (yT Cy − I)2) ≤ 0,

for each (x, y) ∈ Ω1. The time derivative V̇ (x, y) is computed
with respect to the Riemannian metric 〈., .〉R defined in the
introduction. Hence the system (19) is stable over the set Ω1.
It should be noted that the set Ω1 may be replaced with the set
Ω3 = {(x, y) : xT Ay is invertible}.

Remark 3: Numerical simulations have indicated that differ-
ent versions of (19), which are of Sanger’s type, have similar
convergent behavior. Two of these variants are given below:

ẋ = AyUT ((xT Ay)−1) − Bx,

ẏ = AT xUT ((xT Ay)−1) − Cy,
(20)

and
ẋ = Ay(UT (xT Ay))−1 − Bx,

ẏ = AT x(UT (xT Ay))−1 − Cy.
(21)

4.1 Convergence Properties of (20) and

(21)
Let (x(t), y(t)) be a full rank solution of (20) for t ≥ 0, and
assume that (x(0), y(0)) ∈ Ω. Let Ā, B̄, and C̄ be as defined
above. Assume that Ā−1 = U+L, where U and L are upper and
lower diagonal matrices, respectively and the diagonal elements
of L are zeros. As t → ∞, equation (20) yields

ĀU = B̄, (22a)

ĀT UT = C̄. (22b)

Substituting U = Ā − L in Equation (20a) gives

Ā(Ā−1 − L) = B̄,

or equivalently, ĀL = I − B̄ which is symmetric. Consequently,
the following equations hold:

ĀL = LT ĀT ,

Ā−1LT = LĀ−T ,

and
(U + L)LT = L(UT + LT ).

It follows from these equations that

ULT = LUT .

Since Ā is assumed to be positive definite, then

L = 0, and Ā = U.

From Equation (22a), U2 = B̄ is symmetric, i.e., (UT )2 = U2.
Theorem 9 guarantees that UT = U = D. Note that only one
equation of (22) is sufficient to prove that Ā is diagonal.

Similarly, to show that Ā, B̄, and C̄ obtained in System
(21) are diagonal, assume that Ā = U + L, where U and L are
upper and lower diagonal matrices, respectively and the diagonal
elements of L are zeros. Hence,

ĀU−1 = B̄, (23a)

and

ĀT U−1 = C̄. (23b)

Since the matrices B̄ and C̄ are symmetric, then

ĀU−1 = U−T ĀT ,

or equivalently,
ĀT U = UT Ā,

which imply that (UT +LT )U = UT (U +L), and hence LT U =
UT L. Since it is assumed that Ā + ĀT is positive definite, then

L = 0, and Ā = U.

Also, from Equation (23b), we obtain the following relations:

ĀT U−1 = U−T Ā,

UT U−1 = C̄,

UT U−1 = U−T U,

(UT )2 = U2.

Applying Theorem 9, it follows that UT = U = D, and hence
B̄ = I and C̄ = I.

Remark 4: Other modifications of the dynamical systems (20)
and (21) can be considered. Some of these systems are given in
the equations (24) and (25) below:

ẋ = AyUT ((xT Ay)−1) − Bx,

ẏ = AT xUT ((yT AT x)−1) − Cy,
(24)

and
ẋ = Ay(UT (xT Ay))−1 − Bx,

ẏ = AT x(UT (yT AT x))−1 − Cy.
(25)

4091



The convergence behavior of Systems (24) and (25) may be
shown as follows. Let x(t), y(t), Ā, B̄, C̄ be as above and assume
that

Ā = U + D + L, (26a)

then the system (24) implies that

Ā(U + D)−1 = B̄, (26b)

and
ĀT (DT + LT )−1 = C̄. (26c)

A few algebraic manipulations of the equations (26a)-(26c) yield
the following relations:

Ā(Ā − L)−1 = B̄ = (Ā − L)−T ĀT , (27a)

(Ā − L)T Ā = ĀT (Ā − L), (27b)

LT Ā = ĀT L. (27c)

By incorporating (26a) into (27c), wo obtain

LT (L + D + U) = (LT + D + UT )L, (28a)

and
LT (D + U) = (D + UT )L. (28b)

Hence L = 0 provided that D + U + D + UT = 2D + U + UT is
positive definite. This implies that

Ā = D + U,

and consequently,

(UT + D)D−1 = D−1(U + D),

UT D−1 = D−1U.

This proves that U = 0 and hence Ā = D, provided that Ā+ĀT

is positive definite.
Similar proof can be applied to the system (25) to show that

Ā, B̄, C̄ are diagonal. Although the above proof shows that Ā is
diagonal, simulations have shown that Iterations (24) and (25)
are very slow.

5 Conclusion
Canonical variate dynamical systems have been derived and an-
alyzed in this paper. Some of these systems were obtained by
utilizing optimization techniques with elliptic constraints, while
others are resulted from unconstrained optimization of appro-
priate cost functions. One may view the proposed flows as gen-
eralization of Oja’s and Sanger’s principal component flows to
canonical correlation analysis. It should be pointed out that
only proof outlines are given for some of the results of this work.
More rigorous proofs are under consideration. Furthermore, nu-
merical stability and convergence need to be explored especially
when dealing with complex data and matrices and also in rela-
tion to non full rank initial conditions.

6 Appendix
In this section, we state some results from matrix theory. These
results provide conditions under which certain matrices are sym-
metric or diagonal.

Theorem 8. Let A,D1,D2, D3 ∈ IRn×n and assume that di +
d′j 6= 0 for each i 6= j, where di and d′j are eigenvalues of D1

and D2, respectively. If D1A + AD2 = D3, then A is diagonal.
Specifically, this result holds true if D1 and D2 are both positive
definite or both negative definite diagonal matrices.

Proof: Assume that A = [aij ], D1 = diag(d1, · · · , dn), and
D2 = diag(d′1, · · · , d′n). For each i 6= j we have aijdj +d′iaij = 0
or (d′j + di)aij = 0. Since d′j + di 6= 0 by assumption, then

aij = 0 for i 6= j, i.e., A is diagonal.

Theorem 9. Let A ∈ IRn×n and assume that all eigenvalues
of A + AT are positive. If A2 = (AT )2, then AT = A.

Proof: Let F = A + AT , then

A2 = (AT )2 = (F − A)2,

A2 = (F − A)2 = F 2 − AF − FA + A2,

AF + FA = F 2.

Let F = UΣUT be an eigendecomposition of F , where Σ is
diagonal, and U is orthogonal. Then

AUΣUT + UΣUT A = UΣ2UT .

Pre- and post-multiplying the last equation with UT and U
yield:

UT AUΣ + ΣUT AU = Σ2.

It follows from Theorem 8 that

UT AU = Σ1

for some diagonal matrix Σ1. Hence A can be expressed as

A = UΣ1UT = AT .

References

[1] L. M. Ewerbring and F. T. Luk, ”Canonical correlations
and generalized SVD: Applications and new algorithms,” J.
Comput. Applied Math., 27 (1989), pp. 37-52.

[2] T.W. Anderson, Introduction to Multivariate Statistical
Analysis, Wiley, New York,1958.

[3] K.V. Mardia, J.T. Kent, J.M. Bibby, Multivariate Analy-
sis,Academic Press, New York, 1979.

[4] S.E. Leurgans, R.A. Moyeed, B.W. Silverman, ”Canon-
ical correlation analysis when the data are curves,” J.
Roy.Statist.Soc.Ser.B 55 (3)(1993)725-740.

[5] J.R. Kettenring, ”Canonical analysis of several sets of vari-
ables,” Biometrika 58 (1971), 433 451.

[6] K. Luijtens, F. Symons, M. Vuylsteke-wauters, Linear and
non-linear canonical correlation analysis: an exploratory tool
for the analysis of group-structured data, J.Appl.Statist.21
(3)(1994)43 61.

[7] V. J. Yohai; M. S. Garcia Ben, ”Canonical Variables as Op-
timal Predictors,” The Annals of Statistics, Vol. 8, No. 4.
(Jul., 1980), pp. 865-869.

[8] Xiangrong Yin, ”Canonical correlation analysis based on
information theory,” Journal of Multivariate Analysis 91
(2004)161 176.

[9] T. D. Sanger, ”Optimal unsupervised learning in a single-
layer linear feedforward network,” Neural Networks, 2:459-
473, 1989.

[10] J. J. E. Slotine and W. Li. Applied nonlinear Comtrol.
Prentice Hall, 1991.

[11] R. Balan, ”An Extension of Barbashin-Krasovski-LaSalle
Theorem to a Class of Nonautonomous Systems,” technical
report, Princeton University, 1995.

[12] J. LaSalle, ”Some Extensions of Liapunov’s Second
Method,” IRE Transactions on Circuit Theory, Volume 7,Is-
sue 4,Dec 1960 Page(s):520-527.

[13] Hassan K. Khalil, Nonlinear Systems, 3rd edition. Prentice
Hall, 2002.

[14] M.A. Hasan, ”Lagrangian Gradient for Principal Singu-
lar Component Analysis,” IEEE International Symposium on
Circuits and Systems, 2007. ISCAS 2007. 27-30 May 2007,
Page(s):2315-2318.

4092


