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Abstract— The paper addresses the problem of analysis and
static output feedback control synthesis for strict quadratic
dissipativity of linear time-invariant systems with state-space
symmetry. As a particular case of dissipative systems, we
consider the mixed H∞ and positive real performance cri-
terion and we develop an explicit expression for calculating
the H∞ norm of these systems. Subsequently, an explicit
parametrization of the static output feedback control gains that
solve the mixed H∞ and positive real performance problem is
obtained. Computational examples demonstrate the use and
computational advantages of the proposed explicit solutions.

I. INTRODUCTION

Since the introduction of the notion of dissipative systems

in [12], and subsequently its generalization in [2], it has

played a significant role in systems, circuits, and controls.

Dissipativeness is a generalization of the concept of passivity

in electrical networks and other dynamical systems that

dissipate energy in some abstract sense [5]. In the past

two decades, there has been an enormous interest in the

problems of analysis and synthesis of H∞ and positive real

(or passivity-based) control systems. The H∞ control design

approach is based on the small gain theorem, while the

positive real approach is based on the positivity theorem

[15]. The paper [9] studies the problem of synthesizing a

stabilizing controller for a LTI plant such that the closed-loop

system is strictly positive real. The authors in [4] address the

problem of finding an output feedback controller to make

the closed-loop system strictly positive real using an LMI

formulation. In an H∞ control framework, the small gain

theorem is used to ensure robust stability by requiring that

the loop-gain be less than one over all frequencies. It is noted

that that phase information is not used in checking stability.

On the other hand, in the positivity theorem widely used in

the analysis of passive control systems, phase information

is taken into account. Based on the positivity theorem, the

phase of a positive real system is less than 90 degrees, so

that the closed-loop transfer function of a negative feedback

connection of two positive real systems has a phase-lag

less than 180 degrees. This guarantees stability regardless

of the loop-gain. The small-gain and positivity theorems

both deal with gain and phase performances separately, and

therefore may lead to conservative results when used in

applications [14]. The notion of dissipativeness provides not

only a flexible trade-off between gain and phase but also an

appropriate framework for less conservative robust control
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design, specially in applications where both gain and phase

properties are important to consider.

Symmetric state-space system representations appear in

many different engineering fields, such as electrical and

power networks, structural systems, and chemical reactions.

In particular, physical systems with only one type of energy

storage capability, such as mechanical systems with only

potential energy or only kinematic energy, and electrical

systems with only electric energy or only magnetic energy

(e.g., RL or RC circuits) provide models of such symmetric

systems [1]. Moreover, systems with zeros interlacing the

poles (ZIP) can be modeled as symmetric systems [8].

Stability criteria for state-space symmetric systems have been

examined in [13]. The H∞ control of symmetric systems has

been addressed in [11].

In this paper we are concerned with the problem of

quadratic dissipative control for linear time-invariant state-

space symmetric systems. First, we establish necessary and

sufficient conditions for quadratic dissipativeness of LTI

state-space symmetric systems. Then, we focus on the mixed

H∞ and positive real performance analysis and control

problem for such systems. This problem addresses a trade-

off between passivity and H∞ performance taking into

account both gain and phase information resulting in less

conservative results. The objective of the present work is to

show that by exploiting the particular structure of symmetric

systems, explicit solutions for the above problems can be

achieved. For this purpose, a particular solution of the LMI

formulation for quadratic dissipativity is obtained for stable

symmetric systems. Then, an explicit expression for the

mixed H∞ and positive real performance for a symmetric

system is developed that requires only the computation of

the maximum eigenvalue of a matrix which contain the

system data. Next, we derive explicit expressions for the

optimally achievable closed-loop H∞ performance level and

the optimal control gains of the mixed H∞ and positive real

output feedback control synthesis problem. It is noticed that

the static output control synthesis problem is solved in the

above framework. In general, the solution of static output

feedback synthesis problems are extremely cumbersome due

to the lack of convexity of the corresponding synthesis

formulations. However, by exploiting the symmetry in the

proposed problems explicit analytical solutions of the static

output feedback problem will be derived.

II. PRELIMINARIES

We first present a formal definition of state-space symmet-

ric systems, and we review the concept of dissipativity for

dynamical systems. Also, some algebraic results that will be
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useful later in the proofs of the main theorems of the paper

are introduced.

A. Definition of Symmetric Systems

Consider the following state-space representation for a

linear time-invariant system

ẋ(t) = Ax(t) + Bw(t), x(0) = 0

z(t) = Cx(t) + Dw(t) (1)

where x(t) ∈ R
n is the state vector, w(t) ∈ R

m is the vector

of exogenous inputs, z(t) ∈ R
p is the vector of controlled

outputs, and {A,B, C, D} denote the state-space matrices.

We say that the state-space representation (1) is symmetric

if the following conditions hold

A = AT , B = CT , D = DT . (2)

The above system property is often referred to as internal

or state-space symmetry to make a distinction from external

or system symmetry that requires G(s) = GT (s), where

G(s) = C(sI − A)−1B + D is the transfer function repre-

sentation of the system. Obviously, state-space symmetry (2)

implies external symmetry, but the converse is not true, that

is, there exist symmetric transfer matrices for which there is

no symmetric realization.

B. Dissipativity of Dynamical Systems

In this section, we review the concept of dissipativity in

dynamical system and we present the LMI formulation for

quadratic dissipativity for linear time invariant (LTI) systems.

Consider a dynamical system represented by

ẋ(t) = f(x(t), w(t)), x(0) = x0

z(t) = g(x(t), w(t)) (3)

where x(t) ∈ R
n is the state vector, w(t) ∈ R

m is the input,

z(t) ∈ R
p is the output, and f and g are smooth real vector

functions.

Let us introduce the following quadratic energy supply

function E associated with the system (3).

E(w, z, T) =≺ z,Qz ≻T +2 ≺ z, Sw ≻T + ≺ w, Rw ≻T

(4)

where Q, S and R are real matrices of appropriate dimen-

sions with matrices Q and R symmetric, and ≺ u, v ≻T=
∫ T

0
uT vdt for u,v ∈ Ln

2e. Next, we recall the notion of

quadratic dissipativeness [12].

Definition 1: Given matrices Q, S and R where Q and R

are symmetric, the system (3) with energy supply function E

is called (Q,S, R)-dissipative if for some real function β(.)
with β(0) = 0,

E(w, z, T) + β(x0) ≥ 0, ∀w ∈ Lq
2e, ∀T ≥ 0 (5)

Furthermore, if for some scalar α > 0

E(w, z, T)+β(x0) ≥ α ≺ w,w ≻T, ∀w ∈ Lq
2e, ∀T ≥ 0

(6)

then (3) is called strictly (Q,S, R)-dissipative.

Given a system in input/state/output form and a supply

rate, the question that arises is if there exists a storage such

that the dissipation inequality is satisfied. If such a non-

negative storage exists, we call the system dissipative with

respect to the supply rate. The problem of constructing a

nonnegative storage has been extensively studied for general

systems and, in particular, for linear systems with a supply

rate that is a quadratic function of the input and output

variables. In the case of linear systems with quadratic supply

rates, it has been shown that both the constructed storage and

the required supply are quadratic. In this case, the dissipation

inequality becomes a linear matrix inequality (LMI) as we

will discuss later in this section.

Remark 1: The notion of strict (Q,S, R)-dissipativity in-

cludes H∞ performance and passivity as special cases rep-

resented in one of the following categories:

1) When Q = −γ−1I , S = 0 and R = γI , strict

(Q,S, R)-dissipativity reduces to the H∞ norm con-

straint.

2) When Q = 0, S = I , R = 0, (6) reduces to the strict

positive realness.

3) When Q = −γ−1θI , S = (1 − θ)I , R = γθI ,

θ ∈ (0, 1), (6) represents a mixed H∞ and positive

real performance. In this case θ represents a weighting

parameter that defines the trade-off between H∞ and

positive real performance.

We make the following assumptions concerning the system

(1) and the weighting matrices Q, S and R.

R + DT S + ST D + DT QD > 0 (7)

Q− , −Q ≥ 0 (8)

The following result presents necessary and sufficient

conditions for the state-space representation (1) to be strictly

(Q,S, R)-dissipative [14].

Theorem 1: Let Q, S, R be given matrices where Q and

R are symmetric, and consider the system (1) subject to

assumptions (7) and (8). Then the system (1) is asymptoti-

cally stable and strictly (Q,S, R)-dissipative, if there exists

a matrix P > 0 such that






AT P + PA PB − CT S CT Q
1

2

−

⋆ −(R + DT S + ST D) DT Q
1

2

−
⋆ ⋆ −I






< 0 (9)

where Q− = −Q > 0.

The next lemmas will be useful in the proofs of the main

results of the paper.

Lemma 1: [3] Consider matrices Γ and Λ such that Γ has

full column rank, and Λ is symmetric positive definite. Then

Λ ≥ ΓΓT if and only if λmax(ΓT Λ−1Γ) ≤ 1.

Lemma 2: (Finsler’s Lemma) [7]. Consider matrices M

and Z such that M has full column rank and Z = ZT . Then

the following statements are equivalent:

1) There exists a scalar µ such that

µMMT − Z > 0. (10)
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2) The following condition holds

M⊥ZM⊥T < 0. (11)

If the above statements hold, then all scalars µ satisfying

(10) are given by

µ > λmax[M†(Z − ZM⊥T (M⊥ZM⊥T )−1M⊥Z)M†T ].
(12)

Lemma 3: Consider the following LMI with a matrix

parameter P

m
∑

i=1

(AiPBi + BT
i PAT

i ) < 0 (13)

where A1, ..., Am and B1, ..., Bm are given matrices. Sup-

pose that for every P > 0 that is a positive definite solution

of (13), P−1 is also a solution of (13). Then, the identity

matrix is a solution of (13), that is

m
∑

i=1

(AiBi + BT
i AT

i ) < 0

Proof. Consider the eigenvalue decomposition (EVD) of

P0 > 0 as follows

P0 = UΣ0U
T , UT = U−1, Σ0 = diag(σ1, ..., σn) > 0.

Then P−1
0 = UΣ−1

0 UT , where Σ−1
0 = diag( 1

σ1

, ..., 1
σn

) and

since σ1 > 0, there exists 0 ≤ α1 ≤ 1 such that α1σ1 +
(1 − α1)σ

−1 = 1. Define P1 = α1P0 + (1 − α1)P
−1
0 =

UΣ1U
T , where Σ1 = diag(1, σ̄2, ..., σ̄n) with σ̄i = α1σi +

(1 − α1)σ
−1
i for i = 2, ..., n. Then, because of convexity

of (13), P1 > 0 satisfies (13) and hence P−1
1 also satisfies

(13). Since σ̄2 > 0, there exists 0 ≤ α2 ≤ 1 such that

α2σ̄2 + (1 − α2)σ̄
−1
2 = 1. Defining P2 = α2P1 + (1 −

α2)P
−1
1 = UΣ2U

T where Σ2 = diag(1, 1, ¯̄σ3, ..., ¯̄σn) with
¯̄σi = α2σ̄i + (1 − α2)σ̄

−1
i for i = 3, ..., n we obtain that

P2 > 0 satisfies (13). By repeating this process we obtain

that Pn = UΣnUT = I for Σn = I is a solution of (13) and

this concludes the proof. ¤

In the next section, we propose a simple formulation to

determine whether or not the symmetric system (1)-(2) is

asymptotically stable and strictly dissipative, without having

to solve the above linear matrix inequality (9). Subsequently,

we provide an explicit solution of the mixed H∞ and positive

real performance analysis problem for symmetric systems.

III. STABILITY AND DISSIPATIVITY OF SYMMETRIC

SYSTEMS

For simplicity of the formulations in this section, we

assume D = 0 in (1). The results will be extended to the

case where D 6= 0 later in this section.

Lemma 4: Consider the system (1) that satisfies the state-

space symmetry conditions (2) with D = 0. Also, assume

that Q = QT , S, and R = RT are given weighting matrices

in (4) subject to assumptions (7) and (8). The system (1)-

(2) is asymptotically stable and strictly (Q,S,R)-dissipative

if and only if there exists a positive scalar α satisfying the

following inequality

2αA + B(Q− + (αI − S)R−1(αI − ST ))BT < 0 (14)

Proof. Let us consider the following Lyapunov matrix

P = αIn (15)

where α is a positive scalar and In is the identity matrix.

Taking (15) into account, the LMI (9) results in






2αA αB − BS BQ
1

2

−

⋆ −(R + DS + ST D) DQ
1

2

−
⋆ ⋆ −I






< 0 (16)

Then, (14) is obtained by applying Schur complement for-

mula to the latter inequality assuming that D = 0. Proof

of the necessity of (16) follows similar lines as the proof of

Theorem 2, that will be presented next, and it is omitted here

for brevity. ¤

Remark 2: It is noted that the problem of checking

asymptotic stability and dissipativity of the system (1) re-

quires solving the LMI problem (9). Lemma 4 states that for

symmetric systems this condition collapses to an LMI that

includes only one scalar decision variable α.

In the following, we study the special case of Lemma 4

for the mixed H∞ and positive real performance problem

stated in Remark 1. Note that the extreme values of θ are

interpreted as θ −→ 0 which corresponds to positive realness

of the system, and θ −→ 1 which corresponds to the H∞
performance.

Theorem 2: Consider the following stable symmetric sys-

tem

ẋ(t) = Ax(t) + Bw(t), x(0) = 0

z(t) = Cx(t) (17)

where A = AT and B = CT . Let θ ∈ (0, 1) be a given scalar

weight representing a trade-off between H∞ and positive real

performances. The H∞ norm of the system can be explicitly

obtained from the following relation.

γ̄ = f(θ) × λmax(−BT A−1B) (18)

where f(θ) is given by

f(θ) = 1 +

√

θ2 + (θ − 1)2 − 1

θ
(19)

Proof. Considering the symmetry conditions A = AT ,

B = CT , and substituting Q = −γ−1θI , S = (1− θ)I , and

R = γθI into (9) result in








AP + PA PB − (1 − θ)B
√

θ
γ
B

BT P − (1 − θ)BT −γθI 0
√

θ
γ
BT 0 −I









< 0

(20)

Now, we consider the Lyapunov matrix P > 0 to be

P = αP1, with α and P1 being positive scalar and matrix,

respectively. After substituting P in the above inequality and

using Schur complement, (20) can be written as

αAP1 + αP1A +
α2

γθ
P1BBT P1 −

(1 − θ)α

γθ
BBT P1

− (1 − θ)α

γθ
P1BBT +

(1 − θ)2 + θ2

γθ
BBT < 0 (21)
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Pre- and Post-multiplying (21) by P−1
1 , we obtain a similar

condition with respect to P−1
1 , that is,

αP−1
1 A + αAP−1

1 +
α2

γθ
BBT − (1 − θ)α

γθ
P−1

1 BBT

− (1 − θ)α

γθ
BBT P−1

1 +
(1 − θ)2 + θ2

γθ
P−1

1 BBT P−1
1 < 0

(22)

Setting α2 = θ2 + (θ − 1)2, (21) and (22) will result in the

same inequality with respect to P1 and P−1
1 , respectively.

From Lemma 3 we obtain that P1 = I is a solution to the

above inequalities. Substituting P = αI into (21), we obtain

f(θ)BBT ≤ −γA (23)

where f(θ) is defined as in (19). Now, making use of Lemma

1, (23) can be written as

γ ≥ f(θ) × λmax(−BT A−1B) (24)

and this concludes the proof. ¤

Remark 3: For the case of strict H∞ performance (i.e., for

θ = 1), the bound obtained from Theorem 2 is determined

to be

γ = λmax(−BT A−1B) (25)

which is the same explicit formula as given in [11].

In the next theorem we consider the symmetric system in

(1)-(2), where now D is a non-zero matrix.

Theorem 3: Let θ ∈ (0, 1) be a given scalar weight

representing a trade-off between H∞ and positive real per-

formances. The stable state-space symmetric system (1)-(2)

has an H∞ norm given by

γ̄ = max{λmax[−f(θ)−1D], λmax[−f(θ)BT A−1B

+(2 − 2

θ
+ f(θ)−1)D]} (26)

Proof. Similar to the proof of Theorem 2 we consider

P = αI . Substituting the system matrices, the corresponding

weighting matrices, and P = αI into the matrix inequality

(9) leads to





2αI (α + θ − 1)BT B

⋆ −γθI − 2(1 − θ)D D

⋆ ⋆ −γ
θ
I



 < 0 (27)

This inequality can be rewritten in the form

γMMT − Z > 0

where M and Z are defined as following

M =





0 0√
θI 0
0 1√

θ
I



 , Z =





2αA (α + θ − 1)B B

⋆ 2(θ − 1) D

⋆ ⋆ 0



 .

(28)

Note that

M⊥ =
[

I 0 0
]

.

Hence, the solvability condition (11) in Finsler’s Lemma 2 is

satisfied since it results in 2αA < 0. It is also noted that the

H∞ norm of the symmetric system is given by (12). Since

M† =

[

0 1√
θ
I 0

0 0
√

θI

]

the formula in (12) provides the following expression for the

H∞ norm of the symmetric system

γ̄ = λmax

[

(α+θ−1)2

2αθ
Ω + 2(θ−1)

θ
D α+θ−1

2α
Ω

α+θ−1
2α

Ω θ
2α

Ω

]

(29)

where Ω = −BT A−1B. The right hand side of the above

equality can be rewritten as

λmax(

[

α+θ−1
θ

I 0
I I

]









α+θ−1
2α

I 0
θ
2α

I 0
2(θ−1)
α+θ−1I I − 2(θ−1)

α+θ−1I
θ

α+θ−1I − θ
α+θ−1I









T 







Ω 0
0 Ω
D 0
0 D









)

Taking into account the fact that λi(AB) = λi(BA) for all

nonzero eigenvalues and any pair of matrices A and B of

compatible dimensions, we obtain that

γ̄ = λmax

[

−α+θ−1
θ

Ω + (2 − 2
θ

+ θ
α+θ−1 )D

(α−θ+1
θ

− θ
α+θ−1) )D

− θ
2α

Ω + θ
α+θ−1D

− θ
α+θ−1D

]

. (30)

Similar to the proof of the previous theorem, setting α2 =
θ2+(θ−1)2 makes the latter matrix an upper triangular one,

and consequently the maximum eigenvalue is determined

from (26). ¤

IV. THE MIXED H∞ AND POSITIVE REAL CONTROL

SYNTHESIS PROBLEM

Now consider the following state-space system represen-

tation

ẋ(t) = Ax(t) + B1w(t) + B2u(t)

z(t) = C1x(t) + D11w(t) (31)

y(t) = C2x(t)

where x(t) ∈ R
n is the state vector, w(t) ∈ R

m1 is the vector

of exogenous inputs, u(t) ∈ R
m2 is the vector of control

inputs, z(t) ∈ R
p1 is the vector of controlled outputs, and

y(t) ∈ R
p2 is the vector of measured outputs. We call this

system state-space symmetric if the system state-space data

satisfy the following symmetry conditions

A = AT , B1 = CT
1 , B2 = CT

2 , D11 = DT
11. (32)

The static symmetric output feedback mixed H∞ and posi-

tive real control synthesis problem is to design a symmetric

static output feedback gain K such that the control law

u(t) = −Ky(t) (33)

renders the closed-loop system stable and guarantees a mixed

H∞ and positive real performance.
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The closed-loop system of the open-loop system (31) and

the controller (33) becomes

ẋ(t) = (A − B2KBT
2 )x(t) + B1w(t)

z(t) = C1x(t) + D11w(t). (34)

Note that the closed-loop system (34) is also symmetric.

The following result provides explicit expressions for the

H∞ norm of the closed-loop system and the corresponding

controller gain for the special case of mixed H∞ and positive

real performance described earlier.

Theorem 4: Consider the symmetric system represented

by (31) where D11 = 0. The achievable level of H∞
performance can be computed from

γbound = f(θ) × λmax[BT
1 B⊥T

2 (−B⊥
2 AB⊥T

2 )−1B⊥
2 B1]

(35)

where θ ∈ (0, 1) represents the trade-off between H∞ perfor-

mance and positive real performance and f(θ) is defined in

(19). For any γ ≥ γbound, a static symmetric output feedback

H∞ control gain which makes the closed-loop system stable

with H∞ norm less than γ can be selected as

K ≥ B
†
2[Σ − ΣB⊥T

2 (B⊥
2 ΣB⊥T

2 )−1B⊥
2 Σ]B†T

2 (36)

where Σ is defined by

Σ = A +
f(θ)

γ
B1B

T
1 . (37)

Proof. Substituting the closed-loop system matrices (34) into

(9), and taking Q = −γ−1θI , S = (1 − θ)I , and R = γθI

into account along with applying Schur complement while

assuming D11 = 0, we obtain

B2KBT
2 > A +

f(θ)

γ
B1B

T
1 (38)

Note that f(θ) is defined in (19), where the trade-off pa-

rameter θ is known. Now, applying Finsler’s lemma on (38)

results in the following solvability condition

B⊥
2 (A +

f(θ)

γ
B1B

T
1 )B⊥T

2 < 0 (39)

Applying Lemma 1 on (39) results in (35) which provides a

bound on the H∞ norm γ. Inequality (36) is also obtained

as the result of Finsler’s lemma. ¤

Remark 4: It should be noted that the solution of a static

output feedback control problem, in general, results in a

non-convex formulation with no efficient solution available

[10]; however, the results of Theorem 4 provides an explicit

solution without having to solve a bilinear-matrix-inequality

(BMI) problem.

Remark 5: The solution of the symmetric strictly positive

real output feedback control problem is obtained when θ = 0.

For θ = 0, we obtain f(0) = 0 and hence γbound = 0,

and a static symmetric output feedback gain that renders the

closed-loop system strictly positive real is given by

K ≥ B
†
2[A − AB⊥T

2 (B⊥
2 AB⊥T

2 )−1B⊥
2 A]B†T

2 .

V. NUMERICAL EXAMPLES

In this section, we validate our mixed H∞ and positive real

performance analysis and static output feedback synthesis

results using numerical examples.

Example 1: We consider a state-space symmetric system

with the randomly generated data given in [6]. Let us con-

sider the mixed H∞ and positive real performance analysis

problem for the system represented by (A,B1, C1, D). We

vary the weight θ in the interval (0, 1) and plot the H∞
norm of the open-loop system versus θ determined from

Theorem 3 in comparison with the H∞ norm of the system

computed using MATLAB. This comparison is illustrated in

Figure 1 where it is observed that the proposed formulation

for the H∞ norm computation matches the actual norm of

the symmetric system.

Example 2: As a second example, we consider the RL

circuit network shown in Figure 2. We choose the currents of

the inductors L1, L2 and L3 as state variables xi, i = 1, 2, 3,

the disturbance voltage Vd as the disturbance input w, and the

current I as the output z. Assume that L1 = L2 = L3 = 1,

and R1 = 1, R2 = 2, R3 = 3, R4 = 4. The open-loop system

we obtain is a symmetric system as in (1) with the following

data

A = AT =





−2 2 0
2 −5 3
0 3 −7



 , B = CT =





1
0
0



 , D = 1.

We plot the H∞ norm of the open-loop system determined

from Theorem 3 and the H∞ norm of the system computed

using MATLAB versus θ in Figure 3. It is shown that the

two profiles are identical.

Example 3: In order to validate the synthesis condition

results presented in Theorem 4, we consider the symmetric

system in (31) with system matrices A and B1 given in

the Example 1 and the control input matrix given in [6].

We vary the trade-off parameter θ in the interval (0, 1) and

compute the best achievable level of the H∞ performance of

the closed-loop system γopt using (35). Then, we design the

output feedback control (33) with the control gain computed

using (36) which guarantees the closed-loop system H∞
performance for any γ > γopt. For each θ ∈ (0, 1), we

assume the desired level of the closed-loop system H∞
norm to be γ = 1.01γopt. Comparison between the actual

H∞ norm of the closed-loop system and the desired γ is

illustrated in Figure 4. It is observed that for any θ the closed-

loop system H∞ norm is exactly the desired value. It should

be noted that the controller designed for each θ results in

improved disturbance attenuation for the closed-loop system

compared to the open-loop system. This comparison can be

found in [6].

VI. CONCLUSION

We addressed the dissipative analysis and output feedback

control synthesis problem for LTI state-space symmetric

systems. We have derived explicit necessary and sufficient

conditions for quadratic dissipativeness and we have de-

veloped an explicit expression for the H∞ norm of such
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Fig. 1. Profiles of the H∞ norms vs. θ for Example 1
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systems for the special case of mixed H∞ and positive real

performance. Then, we developed explicit formulas for the

mixed H∞ and positive real static output feedback control

law, along with an explicit expression for the achievable H∞
norm of the closed-loop LTI symmetric system.
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