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Abstract— In this paper, we analyze the energy dynamics of
process networks comprising of a chemical reactor and a feed
effluent heat exchanger (FEHE). Using singular perturbation
analysis, we show that, in the case of tight energy integration,
the energy dynamics of the network evolves over two time
scales, with the enthalpy of individual units evolving in the fast
time scale and the overall network enthalpy evolving in the
slow time scale. We describe a model reduction procedure to
derive the non-stiff slow model which can be used for controller
design. The theoretical results are illustrated via a simulation
case study.

I. INTRODUCTION

Feed Effluent Heat Exchangers (FEHEs) are key compo-

nents in the design of heat integrated processes (e.g., [1]). A

FEHE transfers the heat available with the hot effluent stream

from a chemical reactor to the cold reactor inlet stream, thus

leading to a positive feedback of energy. Because of this

positive feedback of energy, there is a potential for open-loop

instability ([2], [3], [4], [5], [6], [7]) and complex dynamics

[8], which in turn demands that an appropriate control system

be implemented. A generic set up for the energy integration

system with a FEHE is shown in Fig. 1.

The typical control objectives in such networks are con-

trolling the outlet stream composition (a product quality

specification), the final effluent temperature (a separation

system specification) and the holdup of the network. Several

papers ([3], [9], [10]) have focused on this control problem

within a multi-loop linear control framework.

In this paper, we develop a generic dynamic analysis

of reactor-FEHE networks documenting that in the case

of tight energy integration, the energy dynamics of such

networks exhibits a two-time scale behavior. We present a

model reduction procedure based on singular perturbations

to derive non-stiff models in each time scale. We then

propose a controller design framework that alleviates the

issues typically associated with controllers synthesized based

on stiff process models. Finally, the theoretical concepts

developed are illustrated via a case study.

II. MODELING AND MODEL REDUCTION OF

FEHE-INTEGRATED PROCESSES

Let us consider a more detailed alternative representation

of the network in Fig. 1, shown in Fig. 2, whereby the cold

and hot passes of the FEHE (of duty htr) are represented sep-

arately. To improve dynamic operability and allow for startup

strategies, a reactor-FEHE network is usually accompanied

Fig. 1. A heat integrated process with a FEHE (T: Temperature)

Fig. 2. Abstract representation of the network

by a furnace and/or cooler and a bypass stream. In Fig. 2,

the process block contains the reactor and the furnace and/or

cooler. Let hin, hc, hc and hout be the enthalpy flowrates

associated respectively with the inlet, cold leg output, process

output and network output streams, and Hc, Hh and Hr the

enthalpies of the cold and hot leg of the FEHE, and the

enthalpy of the process, respectively. Let q denote the rate of

energy generation/consumption for the process (e.g., through

the heat of reaction or the furnace/cooler duty).

With the above notation, the energy balance for the units

of the network in Fig. 2 takes the form:

Ḣc = hin − hc + htr

Ḣr = hc − hr + q

Ḣh = hr − htr − hout (1)

We specifically consider the case of an adiabatically

operated reactor with moderately exothermic/endothermic

reactions (in the case of highly exothermic/endothermic

reactions, the adiabatic operation is impractical). The FEHE

is designed (e.g., by providing a large heat transfer area)

to facilitate large recovery and recycle of energy, leading

to tight energy integration. In this case, the energy recycle

is large compared to the energy input through the feed
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(hin,s/htr,s = ε << 1 where the subscript s denotes

the steady state values). The energy input term q is also

of comparable magnitude to the energy input of the feed

stream (qs/hin,s = O(1)) which follows from the moderate

heat effects due to reactions and the large recycled energy

leading to small furnace/cooler duties. The internal and

external energy flows will be of similar magnitude to those

of the energy recycle and the energy input respectively

(i.e., hc,s/htr,s = O(1), hout,s/hin,s = O(1)). We can

now define the O(1) steady state ratios kc = hc,s/htr,s and

kr = hr,s/htr,s and scaled enthalpy flows uc = hc/hc,s,

ur = hr/hr,s and ut = htr/htr,s. The model in Eq. (1) then

becomes:

Ḣc = hin +
1

ε
hin,s(−kcuc + ut)

Ḣr =
1

ε
hin,s(kcuc − krur) + q

Ḣh =
1

ε
hin,s(krur − ut) − hout (2)

Owing to the presence of the small parameter ε, the above

model is in a singularly perturbed form, having the potential

to exhibit a dynamic behavior with two time scales. In

what follows, we aim to elucidate this behavior and start by

defining the fast, “stretched” time scale τ = t/ε, in which

the model of the network becomes:

dHc

dτ
= εhin + hin,s(−kcuc + ut)

dHr

dτ
= hin,s(kcuc − krur) + εq

dHh

dτ
= hin,s(krur − ut) − εhout (3)

In the limiting case ε → 0, corresponding to an infinitely

high energy recycle, we obtain the following description of

the fast dynamics of the network:

dHc

dτ
= hin,s(−kcuc + ut)

dHr

dτ
= hin,s(kcuc − krur)

dHh

dτ
= hin,s(krur − ut) (4)

In order to focus on the slow dynamics of the network, let

us consider the same limit case in the original time scale t,
obtaining:

0 = −kcuc + ut

0 = kcuc − krur

0 = krur − ut (5)

which represent a set of quasi-steady state conditions for the

fast dynamics (4). Notice that only two of the constraints

in (5) are independent, indicating the possibility of a slow

component being present in the dynamic behavior of the

network. In order to delineate this slow component, we

consider the limiting case ε → 0 in the original time scale

t, under the constraints (5). In this case, the terms z1 =
limε→0(−kcuc+ut)/ε, −(z1+z2) = limε→0(kcuc−krur)/ε

and z2 = limε→0(krur − ut)/ε become indeterminate

(remaining, however, finite). With the above considerations,

we obtain an expression of the slow energy dynamics of

the network in the form of a differential-algebraic equation

system:

Ḣc = hin + hin,sz1

Ḣr = −hin,s(z1 + z2) + q

Ḣh = hin,sz2 − hout (6)

0 = −kcuc + ut

0 = krur − ut

The constraints of Eq. (6) can be differentiated and an

ODE representation (state space realization) of the DAE

system (6) can be obtained once the enthalpy flowrates uc,

ur and ut are specified via appropriate energy transfer and

energy flow correlations in terms of temperature gradients,

heat transfer parameters, etc. Note that the order of this state

space realization would be at most one. It is however, easy

to observe that the overall energy balance for the network

Ḣtotal = hin − hout + q (7)

with Htotal = Hc+Hr+Hh is devoid of any large terms, and

that Htotal therefore only evolves over a slow time horizon.

Htotal would therefore be an appropriate variable choice to

describe the slow dynamics of the network. Note also that

the description in Eq. (7) is one-dimensional as stated above.

Remark II.1 The arguments about the magnitude of the

energy flow q that were used in the derivations above imply

that q is small at steady state. This is not necessarily true

during process startup, when a significant amount of energy

needs to be accumulated in the process, and in which case

the energy input associated with q may be very large.

Remark II.2 The above analysis indicates that the control

objectives related to the energy balance of the individual

units of the network should be addressed using the large

internal enthalpy flows, while the control and, more impor-

tantly, optimization of the energy utilization at the level of the

entire network should be undertaken using the small energy

flows of the network as manipulated inputs. This is contrary

to the case of reactor - external heat exchanger network

with a large energy throughput, wherein the entire energy

dynamics of the network evolve in the fast time-scale [11].

Remark II.3 We can note an analogy of this analysis with

the case of material recycle [12], wherein for the case with

large material recycle, the dynamics of the individual units

evolve in the fast time scale and the dynamics of the overall

network evolve in a slow time scale.

III. CASE STUDY

We now consider the specific prototype network shown in

Fig. 3. It consists of a CSTR, a furnace, and a FEHE with

a bypass on the hot stream. We assume that m reactions

involving n species are being carried out in the CSTR.
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Fig. 3. FEHE, furnace and a CSTR

The hot outlet stream of the reactor is used to partially

preheat the cold feed in the FEHE. The reactor input is

further heated to the required temperature in the furnace.

C represents the vector of concentrations of all species

and Co represents the vector of initial concentrations. r =
[

r1 r2 . . . rm

]T
represents the vector of reaction rates

and Sn×m represents the matrix of stoichiometric coeffi-

cients. ∆H =
[

∆H1 ∆H2 . . . ∆Hm

]T
represents the

vector of heats of reactions. Fin is the volumetric flow rate

of the input stream to the network and F is the reactor outlet

flow rate; V , VH , VC and Vf are the holdups of the reactor,

the FEHE hot and cold streams and the furnace respectively.

Tin is the cold leg inlet temperature to the FEHE. TH and TC

are the hot and cold leg temperatures for the FEHE. Ti and

TR are the reactor inlet and outlet temperatures and Texit is

the network exit temperature. QH is the furnace heat duty.

For simplicity, we assume constant heat capacities and

densities, no phase change in the FEHE, no heat loses and

constant holdups for the FEHE. The dynamic model of the

network then takes the form:

dV/dt = Fin − F

dC/dt = Fin(Co − C)/V − Sr

dTR/dt = Fin(Ti − TR)/V − ∆HT r/ρcp

∂TH/∂t = −vH∂TH/∂z − (UA/ρcp) (TH − TC) /VH

∂TC/∂t = vC∂TC/∂z + (UA/ρcp) (TH − TC) /VC (8)

dTi/dt = Fin(TC(z=0)
− Ti)/Vf + QH/ρcpVf

with,

Texit = αTR + (1 − α)TH(z=L)

THz=0
= TR

TCz=L
= Tin

where vH and vC are the velocities of the fluid in the hot

and cold compartments of FEHE, L is the length of the

exchanger, z is the spatial coordinate, and α is a bypass

ratio defined as:

α =
flow rate of the bypass stream

flow rate of the original stream (F )

Comparing this network with the one in Fig. 2, we see

that the process block consists of the furnace and the CSTR.

The energy generation/consumption term q is:

q = QH ± Qgen (9)

where Qgen is the heat generation term for the reac-

tions. hin represents the enthalpy flowrate of the inlet

stream at temperature Tin and hout represents the enthalpy

flowrate of the outlet stream at temperature Texit. We

consider the case wherein most of the energy carried by

the hot stream is transfered to the cold stream and thus

a large amount of energy is recycled into the network

via the FEHE. We define ε as the ratio of the energy

input through the cold feed to the energy increase of this

stream due to the heat transfered from the hot stream

i.e., ε = [Finρcp(Tin − Tref )]s / [Finρcp(TC,z=0 − Tin)]s
where Tref is the reference temperature. In order to fa-

cilitate such a large recovery of heat, the FEHE must

provide a sufficiently large heat transfer area. Specifi-

cally, from the energy balance on the cold stream of the

FEHE, at steady state, we have [UA(TH,av − TC,av)]s =
[Finρcp(TC,z=0 − Tin)]s which leads to UA/Fin,sρcp =
k(O(1))/ε (TH,av and TC,av are the average temperatures for

the hot and the cold leg of the FEHE). We define the O(1) ra-

tios kr = [Finρcp(TR − Tref )]s / [Finρcp(TC,z=0 − Tin)]s,

kc = [Finρcp(TC,z=0 − Tref )]s / [Finρcp(TC,z=0 − Tin)]s,

kf = [Finρcp(Ti − Tref )]s / [Finρcp(TC,z=0 − Tin)]s,

ur = [Finρcp(TR − Tref )] / [Finρcp(TR − Tref )]s,

uc = [Finρcp(TC,z=0 − Tref )] / [Finρcp(TC,z=0 − Tref )]s
and uf = [Finρcp(Ti − Tref )] / [Finρcp(Ti − Tref )]s. The

energy dynamics equations in Eq. (8) thus become:

dTR

dt
=

[Fin(Tin − Tref )]s
V

[

kfuf − krur

ε

]

−
∆HT r

ρcp

dTi

dt
=

[Fin(Tin − Tref )]s
Vf

[

kcuc − kfuf

ε

]

+
QH

ρcpVf

∂TH

∂t
= −vH

∂TH

∂z
−

kFin,s

ε

(

TH − TC

VH

)

∂TC

∂t
= vC

∂TC

∂z
+

kFin,s

ε

(

TH − TC

VC

)

(10)

Lets now apply the results derived in section II to the

model (10). As shown in section II, the enthalpies Hc, Hh

and Hr have a component in the fast time scale. These

enthalpies correspond to the temperatures of the cold and hot

leg of the FEHE and the reactor respectively. The network

exit temperature Texit is related to the temperature of the

hot leg FEHE and the reactor temperature by α1. So, we can

address the control of Texit in the fast time scale using α
as the manipulated input to reject the disturbances affecting

the FEHE dynamics (e.g., Tin). This is consistent with the

observation in remark II.2 regarding manipulating the large

internal flows to address the unit level control objectives.

Considering the dynamics in Eq. (10) in the original time

scale and taking the limit ǫ → 0, we obtain the quasi steady

state constraints:

1Here the bypass ratio α is assumed to be small, which is consistent with
the assumption of a high rate of energy recovery and recycle.
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TABLE 1

NOMINAL VALUES OF PROCESS PARAMETERS

Parameter Value Parameter Value

cAo 1000 mol/m3 ko 1.2667 ×107s−1

Tin 300 K E 142870 J/mol

cA 54.79 mol/m3 ∆H -54.828 KJ/mol
TR 922.39 K UA 83680 W/K

Texit 364.86 K ρcp 4.184×106 J/m3/K
Ti 910 K Fin 5.7667×10−4 m3/s

TC,z=0 873.48 K F 5.7667×10−4 m3/s
QH 8.82×104 W V 0.1 m3

α 0.1 VH 0.1 m3

L 1 m VC 0.09 m3

ε 0.0471 Vf 0.01 m3

0 = kfuf − krur i .e., Ti = TR

0 = kcuc − kfuf i .e., TC |z=0 = Ti

0 = −kFin,s(TH − TC)/VH

0 = kFin,s(TH − TC)/VC

The last two constraints are not linearly independent and

lead to TH(z, t) = TC(z, t) which is a thermal equilibrium

condition. We now define the total network enthalpy as:

Htotal = ρcp (VHTH + VCTC + VfTi + V TR) (11)

The dynamics of the network in the slow time scale is

then given by:

dV/dt = Fin − F

dC/dt = Fin(Co − C)/V − Sr(C, Htotal)

dHtotal/dt = −∆HT r(C, Htotal) + QH (12)

0 = TH − TC

0 = TC |z=0 − Ti

0 = Ti − TR

Note that the energy dynamics in the slow time scale is

one dimensional as predicted in section II. We will illustrate

these concepts through a simulation example.

IV. SIMULATION RESULTS

We consider a case where a first order irreversible exother-

mic reaction A → B is carried out in the CSTR shown in

Fig. 3. The reactant A is fed to the network at concentration

cAo and at temperature Tin. The control objectives are to

control the outlet concentration of the reactor i.e., cA, the

network exit temperature i.e., Texit and the network holdup.

The nominal values of the state variables and the process

parameters are given in Table 1

The dynamics of this network will be in the form of

Eq. (8). The partial differential equations were discretized

by a finite difference approximation (taking 100 equidistant

nodes) and the resulting ODE system was solved using

MATLAB’s ODE solver for stiff differential equations. Fig.

4 shows the various energy flows in the network at the steady

state. We see that the internal energy flows have higher order

of magnitude as compared to the external energy flows. Fig.

Fig. 4. Steady state energy flows

5 shows the evolution of hot and cold leg exit temperatures

of the FEHE, for a 1% perturbation from the steady state.

The plots show a two time scale behavior with a fast transient

behavior followed by a slow dynamics. The evolution of the

total enthalpy of the network for the same perturbed system,

confirms its evolution in the slow time scale.
We address the control of Texit in the fast time scale using

a simple PI control law with αo = 0.1, Kc = 0.0018K−1

and τI = 10s.

α = αo + Kc

»

(Texit,sp − Texit) +
1

τI

Z t

0

(Texit,sp − Texit)dτ

–

We next proceed to the control objectives in the slow

time scale. We have to control cA and V (y2). Control of

concentration, in this case, is equivalent to the control of

reactor temperature and so, we control TR(y1) instead of

cA. To derive the controllers, we require ODE description of

the model (12). With the slow energy dynamics expressed in

terms of TR (rather than the overall network enthalpy) the

“algebraic” variables are:

z =

2

4

z1

z2

z3

3

5 =

2

4

[Fin/V (Tin − Tref )]s limε→0(kfuf − krur)/ε
[Fin/Vf (Tin − Tref )]s limε→0(kcuc − kfuf )/ε

kFin/VH limε→0(TH − TC)/ε

3

5

The quasi steady state constraints are differentiated to get

ODE description of the slow dynamics, described by (13).

dV

dt
= Fin − F

dcA

dt
=

Fin(cAo − cA)

V
− koe

(E/RTR)cA

dTR

dt
= z1 − (∆H/ρcp) koe

(E/RTR)cA

z1 = z2 + (∆H/ρcp) koe
E/RTR)cA +

QH

ρcpVf

z2 = −
k

VC
(V z1 + Vfz2) −

QH

ρcpVf

z3 = 0 (13)

The available manipulated inputs are QH(u1) and F (u2).
From Eq. (13), the relative degree vector for this sys-

tem is
[

r1 r2

]

=
[

1 1
]

. So, using [13], we design

an input/output linearizing controller to induce first order

responses in TR and V .

β1,1(dTR/dt) + β1,0TR = v1

β2,1(dV/dt) + β2,0V = v2 (14)
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Fig. 5. Evolution of FEHE exit temperatures and the network enthalpy for
the perturbed system

with, β1,1= 10s, β1,0=0.001, β2,1= 20s and β2,0=0.002. To

get an offset free response, we used external PI controllers

with, KC,1=0.008, τI,1=950s, KC,2=0.01 and τI,2=1100s.

A. Results

We first test the performance of this controller in the

presence of disturbances and modeling errors. We consider

that there is +10% error in ∆H . The corresponding response

in the presence of unmeasured disturbances is shown in

Fig. 6. We see that the proposed controller gives good

performance in rejecting the disturbance even in the presence

of large modeling errors, indicating that the controller is

well conditioned. We also note the time scales on which

the controllers operate i.e., the Texit is controlled in the fast

time scale while TR is controlled over a slower time horizon.

In the next simulation run, the output tracking performance

of the controller is studied for +5% change in the set point

of TR, in the presence of unmeasured disturbance. The

corresponding results are shown in Fig. 7. We see that the

controller derived based on the reduced order model shows

excellent performance in tracking the desired trajectory.

V. CONCLUSIONS

In this paper, we analyzed networks of reactor and FEHE

with tight energy integration. We showed that the dynamics

of this network possesses stiffness and shows a two time

scale behavior. Using singular perturbation analysis, we

derived the reduced order models for the network in each

time scale, and we identified the control objectives and the

handles (manipulated inputs) available in each time scale. We

demonstrated the derived results through a simulation case

study. The controllers derived on the basis of the reduced

order models are well conditioned and show good output

tracking performance.
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Fig. 6. Closed loop response in the presence of +10% modeling error in
∆H and unmeasured disturbances
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Fig. 7. Closed loop response for +5% change in TR,set, in the presence
of +10% modeling error in ∆H and unmeasured disturbances
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