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Abstract— The problem of feedback control of distributed
processes is considered. Typically this problem is addressed
through model reduction where finite dimensional approxima-
tions to the original infinite dimensional system are derived. The
key step in this approach is the computation of basis functions
that are subsequently utilized to obtain finite dimensional
ODE models using the method of weighted residuals. The
most common approach for this task is the Karhunen-Loeve
expansion combined with the method of snapshots. However,
this approach requires a priori availability of a sufficiently
large ensemble of PDE solution data, a requirement which
is difficult to satisfy. In this work we focus on the recursive
computation of eigenfunctions using a relatively small number
of snapshots. The empirical eigenfunctions are continuously
modified as additional data from the process becomes available.
We use ideas from the recursive projection method to keep
track of the dominant invariant eigenspace of the covariance
matrix which is subsequently utilized to compute the empirical
eigenfunctions required for model reduction. This dominant
eigenspace is continuously modified with the addition of each
snapshot with possible increase or decrease in its dimension-
ality, while simultaneously the computational burden is kept
relatively small. The proposed approach is applied to control
temperature in a jacketed tubular reactor where first order
chemical reaction is taking place and the closed-loop system is
successfully stabilized at an unstable steady-state.

I. INTRODUCTION

Most of the processes relevant to the chemical process

industry necessitate the consideration of transport phenom-

ena (fluid flow, heat and mass transfer) often coupled with

chemical reactions. Examples range from reactive distillation

in petroleum processing to plasma enhanced chemical vapor

deposition, etching and metallorganic vapor phase epitaxy

(MOVPE) in semiconductor manufacturing. Mathematical

descriptions of these transport-reaction processes can be

derived from dynamic conservation equations and usually

involve highly dissipative (typically parabolic) partial differ-

ential equations (PDEs). The problem of feedback control of

such processes is nontrivial owing to the spatially distributed

description of their dynamics.

The standard approach for feedback control of these

systems involves the formulation of a finite dimensional

approximation to the original infinite dimensional systems

by spatial discretization using Galerkin’s method [1]. This
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method yields a system of ordinary differential equations

(ODEs) that describe the dominant dynamic behavior of

the PDEs, which can be subsequently utilized to design

feedback controllers. However, a drawback of this approach

is that for nonlinear PDE systems typically a large number of

eigenmodes are required to accurately capture the dynamics

of the PDE when using Galerkin’s method. Consequently,

the dimensionality of the ODE approximation is large which

leads to complex controller design and high dimensionality

of the resulting controllers.

To overcome this issue, nonlinear model reduction tech-

niques for highly dissipative PDEs were recently employed

to formulate approximate low-order ODE models. In these

investigations spatial discretization was carried out using the

method of weighted residuals, using empirical eigenfunctions

as basis functions. These eigenfunctions were generated by

the application of Karhunen-Loève expansion (KLE, also

known as proper orthogonal decomposition, principle com-

ponent analysis and method of empirical eigenfunctions, [2],

[3], [4]) on an ensemble of solution data of the PDEs for

the span of process parameters. The motivation behind this

approach was the presence of finite number of dominant

spatial modes in the solution of highly dissipative PDEs

which govern its long time dynamics, while the remaining

infinite dimensional (stable) fast modes relax to these finite

dimensional slow dynamics [5], [6]. The principle reason that

allows model reduction is that the spatiotemporal behavior

of the given PDE system is accounted for in the shape of the

empirical eigenfunctions. Previous studies that focus on con-

troller synthesis using KLE include [7]. Model reduction has

also been extensively used for efficient solution of process

optimization problems for spatially distributed processes [8],

[9]. Alternatively, the frameworks of inertial and approximate

inertial manifolds has also been employed towards control of

distributed process systems [10].

Unfortunately, computation of eigenfunctions either

through the direct solution of eigenvalue-eigenfunction prob-

lem of the spatial differential operator or empirically using

the method of snapshots is a challenging task. Barring certain

special cases, such as linear PDEs, analytical solutions to

the eigenvalue-eigenvector problem of the spatial differential

operator do not exist. Some studies have focussed on the

linearization of the nonlinear operator around a steady-

state [1], however, such eigenfunctions are applicable only

locally in the neighborhood of the steady-state where the

linearization takes place. Alternatively, method of snapshots

has been extensively utilized to empirically compute the

eigenfunctions of nonlinear PDEs. This approach relies on

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeB08.3

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 940



the a priori availability of a large ensemble of PDE solution

data (snapshots) which excites all of the possible spatial

modes in the solution of the PDE system. Unfortunately,

generating such an ensemble is not straightforward.

An alternative way is initially compute the eigenfunctions

using the available ensemble of snapshots and continuously

refine the eigenfunctions online as more snapshots of the

process become available. The computations of the empirical

eigenfunction requires the solution of the eigenvalue problem

of the covariance matrix of the snapshots which might

become expensive for online computations. In this article, we

describe a procedure to recursively compute the empirical

eigenfunctions of a given PDE system. The approach is

motivated from the recursive projection method (RPM, [11])

and relies on the computation or approximation of the

eigenspace of the covariance matrix corresponding to its

significant eigenvalues. This dominant eigenspace is updated

recursively as new snapshots from the process are added

to the ensemble, simultaneously increasing or decreasing its

dimensionality if required. We maintain that as long as the

dimensionality of the dominant eigenspace remains small,

the computational burden remains small and can be easily

performed online. We present an application of the above

approach to control temperature in a catalytic rod where

an exothermic reaction is taking place. A finite dimensional

adaptive controller is designed which stabilizes the process

to an unstable steady-state.

II. MATHEMATICAL PRELIMINARIES

We focus on the problem of feedback control of spatially

distributed processes described by highly dissipative PDEs

of the following state-space description:

∂x

∂t
= A(x) + f(x, t)u,

y = h(x)
(1)

subject to the mixed-type boundary conditions:

q(x,
dx

dη
, . . . ,

dno−1x

dηno−1
) = 0 on Γ (2)

and the following initial condition

x(z, 0) = x0(z). (3)

In the above PDE system, x(z, t) ∈ Rn denotes the vector

of state variables, y denotes the vector of controlled outputs,

t is the time, z = [z1, z2, z3]∈ Ω ⊂ R
3 is the vector of

spatial coordinates, Ω is the domain of definition of the

process and Γ is its boundary. A(x) is a dissipative, possibly

nonlinear, spatial differential operator which includes higher-

order spatial derivatives, f(t, x) and h(x) are nonlinear,

vector function which are assumed to be sufficiently smooth

with respect to their arguments, u(t) ∈ Rp is the vector of

design variables which are assumed to be piecewise contin-

uous functions of time, g(x,
dx

dη
, . . . ,

dno−1x

dηno−1
) is a nonlinear

vector function which is assumed to be sufficiently smooth

(no, an even number, is the order of the PDE of Eq.1),
dx

dη

∣

∣

∣

∣

Γ

denotes the derivative in the direction perpendicular to the

boundary and x0(z) is a smooth vector function of z. We

assume that for a given set of initial and boundary conditions

and for each piecewise continuous vector function d(t) ∈ Rp,

the system of Eqs. 1-3 has a unique solution. We also define

the inner product and norm in L2[Ω], where L2[Ω] is the

space of square integrable functions defined in Ω, as follows:

(φ1, φ2) =

∫

Ω

φ1(z)φ2(z)dz, ||φ1||2 = (φ1, φ1)
1/2 (4)

where φ1, φ2 ∈ L2[Ω].

III. PROBLEM FORMULATION AND SOLUTION

METHODOLOGY

The control problem is formulated as deriving a feedback

control law d(t) = G(x(t)) such that the closed-loop

system is stabilized at a desired set point. The following

methodology is adopted to achieve the above task:

1) Generate an ensemble of PDE solution data either

experimentally or numerically.

2) Obtain a finite dimensional approximation to the in-

finite dimensional system of Eq. 1 using KLE and

method of snapshots. Design a state feedback con-

troller based on the finite dimensional approximation

using the methodology described in section III-D.

3) Recursively modify the eigenfunctions and the finite

dimensional approximation as new process measure-

ments become available. This step may involve addi-

tion or deletion of eigenfunctions, if required. Adjust

the feedback control law taking the modified finite

dimensional approximation into account.

The following subsections are intended to describe each of

the above steps in detail.

A. Derivation of finite dimensional approximations using

method of weighted residuals

We derive finite-dimensional approximations of the

infinite-dimensional PDE system of Eq.1 by using the

method of weighted residuals. To simplify the notation, we

consider the system of Eq.1 with n = 1. In principle, x(z, t)
can be represented as an infinite series in terms of a complete

set of basis functions φk(z). We can obtain an approximation

xN (z, t), by truncating the series expansion of x(z, t) up to

order N , as follows:

xN (z, t) =
N

∑

k=1

akN (t)φk(z)
N→∞

−→ x(z, t) =
∞
∑

k=1

ak(t)φk(z)

(5)

where akN (t), ak(t) are time-varying coefficients.

Substituting the expansion of Eq.5 into Eq.1, multiplying

the PDE with the weighting functions, ψν(z), and inte-

grating over the entire spatial domain, the following finite-

dimensional ODE approximation to the system of Eq. 1 is
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obtained,

−
N

∑

k=1

ȧkN (

∫

Ω

ψν(z)φk(z)dz)

+

∫

Ω

ψν(z)A(
N

∑

k=1

akN (t)φk(z))dz

+

∫

Ω

ψν(z)f(t,
N

∑

k=1

akN (t)φk(z))udz = 0

(6)

where akN (t) is the approximation of ak(t) obtained by an

N -th order truncation.

B. Computation of empirical eigenfunctions using KLE

In this section, we use the solution data of the system

of Eq.1 to construct global basis functions using KLE. The

motivation for studying this approach is provided by the

occurrence of dominant spatial patterns in the solution of

several dissipative PDEs, which should be accounted for in

the shape of the basis functions. This approach will be useful

in the context of systems of dissipative PDEs that involve

nonlinear spatial differential operators and spatially-varying

coefficients that lead to non-symmetric solution profiles.

KLE is a procedure used to compute an optimal set of

empirical eigenfunctions from an appropriately constructed

set of solutions of the PDE system of Eq.1, obtained from

high-order discretizations (e.g., using standard packages or

process data directly). In this work, the ensemble of solu-

tions is constructed by computing the solutions of the PDE

system of Eq.1 for different values of d(t), and different

initial conditions. Specifically, we construct a representative

ensemble using the following procedure (see also [12], [13]

for a detailed discussion on ensemble construction):

• First, we create a set of different initial conditions.

• We then discretize the interval in which each design

variable dm (m = 1, . . . , p) is constrained to be

into mdm
(not necessarily equispaced) subintervals.

The discrete values of dm are denoted by dm,j , j =
1, . . . ,mdm

− 1.

• We also descritize the time-interval into ndm
time

subintervals (also not necessarily equispaced).

• Subsequently, we compute a set of time profiles for each

of the design variables dm(t) by assigning values for

dm(t) at different time instants tj , dm,j , and subse-

quently computing dm(t) for the entire time interval of

process operation using linear interpolation.

• Finally, we compute an ensemble of PDE solution data

for all possible combinations of initial conditions and

profiles of d(t).

Application of KLE to this ensemble of data provides

an orthogonal set of basis functions (known as empirical

eigenfunctions) for the representation of the ensemble, as

well as a measure of the relative contribution of each basis

function to the total energy (mean square fluctuation) of the

ensemble. A truncated series representation of the ensemble

data in terms of the dominant basis functions has a smaller

mean square error than a representation by any other basis

of the same dimension [14]. This implies that the projection

on the subspace spanned by the empirical eigenfunctions

will on average contain the most energy possible compared

to all other linear decompositions, for a given number of

modes. Therefore, the KLE yields the most efficient way for

computing the basis functions (corresponding to the largest

empirical eigenvalues) capturing the dominant patterns of the

ensemble.

For simplicity of the presentation, we describe the KLE

in the context of the system of Eq.1 with n = 1 and assume

that there is available a sufficiently large set of solutions

of this system for different values of d, {v̄κ}, consisting

of K sampled states, v̄κ(z), (which are typically called

“snapshots”). The reader may refer to [15], [14], [3], [4] for a

detailed presentation and analysis of the KLE. We define the

ensemble average of snapshots as < v̄κ >:=
1

K

K
∑

κ=1

v̄κ(z)

(we note that non-uniform sampling of the snapshots and

weighted ensemble average can be also considered; see,

for example, [12]). Furthermore, the ensemble average of

snapshots < v̄κ > is subtracted out from the snapshots i.e.,:

vκ = v̄κ− < v̄κ > (7)

so that only fluctuations are analyzed. It is useful to analyze

fluctuations in variables rather than the actual variables

because usually fewer functions are required to fit them [3].

The issue is how to obtain the most typical or characteristic

structure (in a sense that will become clear below) φ(z)
among these snapshots {vκ}. Mathematically, this problem

can be posed as the one of obtaining a function φ(z) that

maximizes the following objective function:

Maximize
< (φ, vκ)2 >

(φ, φ)

s.t. (φ, φ) = 1, φ ∈ L2([Ω])

(8)

which, other words, implies that the projection of v̄k on the

subspace spanned by φ(z) captures maximum energy. Here,

(x, y) denotes complex inner-product defined as:

(x, y) =

∫

Ω

x̄(z)y(z)dz (9)

The constraint (φ, φ) = 1 is imposed to ensure that

the function, φ(z), computed as a solution of the above

maximization problem, is unique. An alternative way to

express the constrained optimization problem of Eq. 8 is to

solve for φ such that:

dL̄(φ + δψ)

dδ
(δ = 0) = 0, (φ, φ) = 1 (10)

where L̄ =< (φ, vκ)2 > −λ((φ, φ)−1) is the correspond-

ing Lagrangian functional and δ is a real number.

Using the definitions of inner product and ensemble

average,
dL̄(φ + δψ)

dδ
(δ = 0) can be computed from the
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following expression:

dL̄(φ + δψ)

dδ
(δ = 0) =

∫

Ω

({
∫

Ω

< vκ(z)vκ(z̄) > φ(z)dz

}

− λφ(z̄)

)

ψ(z̄)dz̄

(11)

Since ψ(z̄) is an arbitrary function, the necessary conditions

for optimality take the form:
∫

Ω

< vκ(z)vκ(z̄) > φ(z)dz = λφ(z̄), (φ, φ) = 1 (12)

Introducing the two-point correlation function:

K(z, z̄) =< vκ(z)vκ(z̄) >=
1

K

K
∑

κ=1

vκ(z)vκ(z̄) (13)

and the linear operator:

R :=

∫

Ω

K(z, z̄)dz̄ (14)

the optimality condition of Eq.12 reduces to the following

eigenvalue-eigenfunction problem of the integral operator:

Rφ = λφ =⇒

∫

Ω

K(z, z̄)φ(z̄)dz̄ = λφ(z) (15)

The computation of the solution of the above integral eigen-

value problem is, in general, a very expensive computational

task. To circumvent this problem, Sirovich, in 1987, intro-

duced the method of snapshots [3], [4]. The central idea of

this technique is to assume that the requisite eigenfunction,

φ(z), can be expressed as a linear combination of the

snapshots i.e.:

φ(z) =
∑

k

ckvk(z) (16)

Substituting the above expression for φ(z) on Eq.15, we

obtain the following eigenvalue problem:

∫

Ω

1

K

K
∑

κ=1

vκ(z)vκ(z̄)
K

∑

k=1

ckvk(z̄)dz̄ = λ
K

∑

k=1

ckvk(z) (17)

Defining:

Bκk :=
1

K

∫

Ω

vκ(z̄)vk(z̄)dz̄ (18)

the eigenvalue problem of Eq.17 can be equivalently written

as:

Bc = λc (19)

The solution of the above eigenvalue problem (which can be

obtained by utilizing standard methods from linear algebra)

yields the eigenvectors c = [c1 · · · cK ] which can be used

in Eq.16 to construct the eigenfunction φ(z). From the

structure of the matrix B, it follows that is symmetric and

positive semi-definite, and thus, its eigenvalues, λκ, κ =
1, . . . ,K, are real and non-negative. The relative magnitude

of the eigenvalues represents a measure of the fraction

of the “energy” embedded in the ensemble captured by

the corresponding eigenfunctions. Furthermore, the resulting

eigenfunctions form an orthogonal set, i.e.:
∫

Ω

φi(z)φj(z)dz = 0, i 6= j (20)

Remark 1: The value of mdm
should be determined based

on the effect of the design variable dm on the solution of the

system of Eq.1 (if, for example, the effect of the variable d1

is larger that the effect of the variable d2, then md1
should

be larger than md2
).

Remark 2: It should be noted that the kernel in Eq. 12

is not symmetric for cylindrical or spherical geometries

[16]. However, the reformulated problem given by Eq. 19

is symmetric irrespective of spatial geometry.

Remark 3: The basis that we compute using KLE is specific

to the process under investigation and independent of the

specific optimization problem we try to solve. Therefore, the

same basis can be used to perform computationally efficient

optimizations with respect to different objective functionals

associated with the same underlying set of partial differential

equations.

Remark 4: Even though it is expected that the use of

more basis functions in the series expansion of Eq.5 would

improve the accuracy of the computed approximate model

of Eq.6, the use of empirical eigenfunctions corresponding

to very small eigenvalues should be avoided because such

eigenfunctions are contaminated with significant round-off

errors.

Remark 5: Iterative methods, such as Krylov subspace

methods can be used to reduce the computational cost

associated with the computation of the system eigenvalues

and eigenfunctions.

C. Recursive update of empirical eigenfunctions

The algorithm presented in the previous subsection re-

quires a priori availability of a sufficiently large ensemble

of PDE solution data to compute empirical eigenfunctions.

However, in practice it is difficult to generate such an ensem-

ble so that all possible spatial modes are contained within

the corresponding snapshots. The resulting eigenfunctions,

therefore, are representative of the corresponding ensemble

only. During simulations situations may arise when the exist-

ing eigenfunctions fail to accurately represent the dynamics

of the PDE system. One possible solution is to continue

augmenting the ensemble of snapshots and subsequently re-

computing the eigenfunctions as more information regarding

the process becomes available. However, this would require

the solution of the eigenvalue-eigenvector problem of Eq.

19, which may become computationally expensive and hence

unsuitable for online computations. In this work we propose

an algorithm that allows for recursive update of empirical

eigenfunctions once new measurements from the process

become available. The algorithm is based on the partition of

the eigenspace of the covariance matrix into two subspaces;

one containing the unstable or marginally stable modes
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(denoted as P) and the other containing the rest of highly

stable modes (denoted as Q). Such a partition is possible

from the fact that the dynamics of highly dissipative PDEs

is finite (typically small) dimensional. The orthonormal basis

for the subspace P is recursively maintained upon the arrival

of new snapshots, possibly by increasing or decreasing the

size of the basis if required, while the orthonormal basis for

Q can be computed from the fact that Q is the orthonormal

complement of P in RK . We maintain that the extra work

required for the above process is small as long as the

dimension of P is small.

Let CK denotes the covariance matrix obtained from

K snapshots. We assume that out of K possible eigen-

vectors, m have the corresponding eigenvalues such that
K

∑

i=m+1

λi/
K

∑

i=1

λi ≤ ǫ, where ǫ is an arbitrarily chosen small

parameter. An orthonormal basis for the subspace P can be

obtained as:

Z = [φ1, φ2, . . . , φm], Z ∈ RK×m (21)

where φ1, φ2, . . . denote the eigenvectors of CK correspond-

ing to eigenvalues λ1, λ2, . . . . Note that the eigenvectors

φ1, φ2, . . . , φm define the dominant dynamics of the PDE

system of Eq. 1. The projectors P and Q onto subspaces P

and Q can be computed as

P = ZZT , Q = I − ZZT (22)

where I denotes the identity matrix of dimension K. Now

our task is to obtain the new the basis Z as new snapshots of

the process become available. The algorithm outlined in the

following computes an approximation to Z without requiring

the solution of the eigenvalue-eigenvector problem of the

covariance matrix. The algorithm requires the dimensionality

of the covariance matrix to remain constant, which we

achieve by discarding the oldest snapshot from the ensemble.

As a new snapshot from the process become available, the

subspace P may change in the following three ways. The di-

mension of the subspace P may increase, that is eigenvalues

corresponding to one or more highly stable eigenvectors from

Q either become marginally stable or unstable. Another pos-

sibility is that the eigenvalues corresponding to eigenvectors

in Z may decrease and join the cluster of small eigenvalues

of CK . In this case, the basis Z should be updated and

its dimension should be simultaneously decreased. A third

possibility is that the dimensionality of P remains unchanged,

however the basis Z needs to be updated in order to account

for the newly added snapshot. In the following, the above

steps are explained in detail.

1) Increasing the size of the basis: In this section we

consider the case when an isolated real eigenvalue λm+1

leaves the cluster of highly stable eigenvalues when a new

snapshot is added to CK . We assume the during each step

at most one eigenvalue-eigenvector pair joins the unstable

subspace P. Define cq = QCKQ, then the following power

iteration produces iterates that asymptotically lie in the

dominant eigenspace of cq

q(v+1) = (cq)
vq(0) (23)

provided the initial iterate q(0) has a nonzero component in

that direction.

2) Decreasing the size of the basis: As new snapshots are

added and old snapshots are eliminated from the ensemble,

the dominant eigenspace of CK continuously changes. Power

iteration in the previous section identifies scenarios when one

of the eigenvalues become dominant. However, it is likely

that during the process some of the dominant eigenvalues

decrease in magnitude and join the remaining eigenvalues

corresponding to Q. In such cases, it is required to decrease

the size of basis Z such that it spans the dominant eigenspace

only. To test whether it is required to decrease the size of

the basis we introduce the following m × m matrix

H = ZT CKZ ∈ Rm×m. (24)

The eigenvalues of H are a subset of the eigenvalues of CK

and can be computed with little computational effort as long

as m remains small. If only m̂, with m̂ < m, eigenvalues

of H are dominant, then span{ZV } provides a good ap-

proximation to the dominant eigenspace of CK , where the

basis V ∈ Rm × m̂ is obtained from the eigenvectors of

H corresponding to its m̂ dominant eigenvalues. Hence, the

step

Z = orth(ZV ) (25)

where orth(·) denotes Gram-Schmidt orthonormalization,

automatically reduces the size of the basis whenever re-

quired.

3) Maintaining the accuracy of the basis: The following

one step orthogonal power iteration is performed in order to

maintain the accuracy of the basis after each step

Z = orth(CKZ). (26)

It can be shown that the orthogonal projections P and Q
should satisfy Q ∗ CKP = 0. Hence, the accuracy of the

basis can also evaluated by computing the matrix E =
(I − ZZT )CK(ZZT ). If E becomes too large than a few

additional steps of power iteration can be performed.

D. Finite dimensional controller design - Feedback lin-

earization

In this section we employ feedback linearization to design

state feedback controller for the system of Eq. 6. To simplify

the development, we represent the system in the following

compact form:

ȧ = f(a) + g(a)u = f(a) +
∑m

i=1 gm(a)um

ym = Sa
yci = hi(a), i = 1, . . . ,m

(27)

where f(a) =

∫

Ω

ψν(z)A(
N

∑

k=1

akN (t)φk(z))dz, g(a) =

∫

Ω

ψν(z)f(t,
N

∑

k=1

akN (t)φk(z))dz, ym is the measured output
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vector, S denotes the measurement sensor shape function,

and yci is the ith controlled output. We assume that the

relative degree ri of the system of Eq. 27 is well defined

and less than p.

We use feedback linearization to design state feedback

controllers which have the following general form:

u = p(a) + Q(a)v (28)

where p(x) is a smooth vector function, Q(a) is a smooth

matrix, and v ∈ Rm is the constant reference input vector.

Based on relative degree of the system, we assign the

following closed-loop behavior to the controlled outputs yci:

m
∑

i=1

ri
∑

k=0

βik
dkyci

dtk
= v. (29)

Combining Eq. 27 with Eq. 29 and assuming that the char-

acteristic matrix C0(a) of the system of Eq. 27 is invertible,

we can derive the state feedback controller of the following

form that guarantee output behavior as described by Eq. 29:

u = {[β1r1
. . . βmrm

]C0(a)}−1{v −
m

∑

i=1

ri
∑

k=0

βikLk
fhi(a)}.

(30)

IV. APPLICATION TO DIFFUSION-REACTION PROCESS

In this section we apply the proposed finite dimensional

adaptive control methodology to a standard diffusion reaction

process with nonlinearities [8]. Specifically, we consider an

elementary exothermic reaction A → B taking place in a

catalytic rod. The temperature of the rod is adjusted by means

of an actuator located along the length of the rod. Assuming

that the reactant A is present in excess, the spatial profile of

the dimensionless temperature inside the rod is described by

the following parabolic PDE:

∂x

∂t
=

∂2x

∂z2
+ βT (e−γ/(1+x) − e−γ) + βU (b(z)u(t) − x)

(31)

subject to the following boundary conditions:

x(0, t) = 0, x(π, t) = 0, x(z, 0) = x0(z) (32)

where x denotes the dimensionless rod temperature, z is the

spatial coordinate along the axis of the rod, βT denotes the

dimensionless heat of reaction, γ denotes the dimensionless

activation energy, βU denotes the dimensionless heat transfer

coefficient, u(t) denotes the magnitude of actuation, and b(z)
accounts for the spatial profile of the actuator. Two differ-

ent spatial distributions for the actuator were investigated.

Initially b(z) = H(z − 0.3π) − H(z − 0.7π), where H(·)
denotes the standard Heaviside function, was considered

which described a spatially distributed actuator centered at

the midpoint of the rod. A point actuator located at the center

of the rod was also considered such that b(z) = δ(z−0.5π),
where δ(·) denotes the Dirac function. The nominal values

of the parameters are: βT = 16, γ = 2, and βU = 2. Fig. 1

shows the evolution of the PDE for u(t) = 0 from an initial

condition that is very close to the steady-state x(z, t) = 0.

It can be seen that the system evolves away from the the

above steady-state to another steady-state characterized by a

non-uniform distribution of temperature across the rod with

the maximum reaching at z = π/2. Hence, we conclude that

the steady-state x(z, t) = 0 is an unstable steady-state. Our

task is to design a feedback controller that stabilizes the rod

temperature to the above open-loop unstable steady-state.
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Fig. 1. Profile of the state of the PDE of Eq. 1 with u(t) = 0.

A. Simulation results

In order to obtain a finite dimensional approximation of the

infinite dimensional system of Eq. 31, initially an ensemble

of 100 snapshots was generated by keeping u(t) = 0. Note

that it is not required to perform an exhaustive sampling

of the state-space of the PDE by evolving the system from

a number of different initial conditions and magnitudes of

actuation during the ensemble generation phase. Application

of KLE along with the method of snapshots resulted in a

single dominant eigenfunction which captured more then

98% of the energy embedded in the ensemble. During closed-

loop simulations, it was assumed that process measurements

are available every ts = 0.1 seconds. The finite dimensional

process model and the control law were adjusted after each

new process measurement.
1) Spatially distributed actuation: Fig. 2 shows the spa-

tiotemporal profile of the rod temperature under closed

loop operation with spatially distributed actuation b(z) =
H(z − 0.3π)−H(z − 0.7π). We observe that the controller

is successfully able to stabilize the process at open-loop

unstable steady-state. Fig. 3a shows the corresponding profile

of the control action u(t). Fig. 3b presents the variation

in the number of empirical eigenfunctions employed to

obtain the reduced-order process model. As mentioned be-

fore, originally a single eigenfunction captured most of the

energy of the ensemble of snapshots. However, as more

process measurements from the closed-loop operation were

included in the ensemble while simultaneously old snapshots

were removed, a new eigenfunction joined the dominant

eigenspace at t =. Consequently, the dimensionality of the

reduced-order ODE model was increased to m = 2 from

m = 1. In addition, the eigenfunctions were being constantly

modified to account for continuously changing ensemble of

snapshots. This has been demonstrated in Fig. 4 and 5 which

shows the temporal profiles of the two eigenfunctions.
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Fig. 2. Closed-loop temperature profile for distributed control action.
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Fig. 3. (a) Profile of the magnitude of actuation for distributed control
action, (b) Number of empirical eigenfunctions (also the order of the reduced
ODE model) as a function of time for distributed control action.
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Fig. 4. Temporal profile of the dominant eigenfunction with spatially
distributed control actuation.
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Fig. 5. Temporal profile of the second eigenfunction with spatially
distributed control actuation.

2) Point actuation: Fig. 6 shows the spatiotemporal pro-

file of the rod temperature under closed loop operation with

point actuation b(z) = δ(z − 0.5π). We observe that the

controller is successfully able to stabilize the process at open-

loop unstable steady-state. Fig. 7a shows the corresponding

profile of the control action u(t). Fig. 7b presents the

variation in the number of empirical eigenfunctions em-

ployed to obtain the reduced-order process model. Similarly

to the previous case, as more process measurements from

the closed-loop operation were included in the ensemble

while simultaneously old snapshots were removed, a new

eigenfunction joined the dominant eigenspace at t =. Conse-

quently, the dimensionality of the reduced-order ODE model

was increased to m = 2 from m = 1. In addition, the

eigenfunctions were being constantly modified to account

for continuously changing ensemble of snapshots. This has

been demonstrated in Fig. 8 and 9 which show the temporal

profiles of the two eigenfunctions.
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Fig. 6. Closed-loop temperature profile for point control action.
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Fig. 7. (a) Profile of the magnitude of actuation for point control action,
(b) Number of empirical eigenfunctions (also the order of the reduced ODE
model) as a function of time for point control action.
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Fig. 8. Temporal profile of the dominant eigenfunction with localized
control actuation.
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Fig. 9. Temporal profile of the second eigenfunction with localized control
actuation.
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