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Abstract— A hierarchical framework based on Model Predic-
tive Control (MPC) for autonomous vehicles is presented. We
formulate a predictive control problem in order to best follow a
given path by controlling the front steering angle while fulfilling
various physical and design constraints.

We start from the low-level active steering-controller pre-
sented in [3], [9] and integrate it with a high level trajectory
planner. At both levels MPC design is used. At the high-level,
a trajectory is computed on-line, in a receding horizon fashion,
based on a simplified point-mass vehicle model. At the low-
level a MPC controller computes the vehicle inputs in order to
best follow the desired trajectory based on detailed nonlinear
vehicle model.

This article presents the approach, the method for imple-
menting it, and successful preliminary simulative results on
slippery roads at high entry speed.

I. INTRODUCTION

In Model Predictive Control (MPC) a model of the plant

is used to predict the future evolution of the system [19].

Based on this prediction, at each time step t a performance

index is optimized under operating constraints with respect

to a sequence of future input moves in order to best follow

a given trajectory. The first of such optimal moves is the

control action applied to the plant at time t. At time t+1, a

new optimization is solved over a shifted prediction horizon.

Parallel advances in theory and computing systems have

enlarged the range of applications where real-time MPC can

be applied [2], [4], [14], [15], [24]. Yet, for a wide class

of “fast” applications the computational burden of Nonlin-

ear MPC is still a serious barrier for its implementation.

As an example, in [9] we have implemented a nonlinear

MPC controller on a passenger vehicle for an Active Front

Steering (AFS) system at 20 Hz, by using the state of the

art of optimization solvers and rapid prototyping systems.

We have shown that its real time execution is limited to

low vehicle speed, because of its computational complexity.

Nevertheless, the capability of handling constraints in a sys-

tematic way makes MPC a very attractive control technique,

especially for applications where the process is required to

work in wide operating regions and close to the boundary of

the set of admissible states and inputs.

The work presented in this paper is the continuation of

a study on the application of MPC techniques to vehi-
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cle dynamics control problems. In our first work [3] we

investigated the potentiality of nonlinear MPC in solving

an autonomous path following problem via AFS. The re-

sulting Nonlinear MPC (NMPC) controller showed good

performance but the computational complexity limited its

implementation to low vehicle speed. In order to decrease

the computational complexity, in [9], [10] we presented a

LTV MPC approach to the path following via AFS problem.

Experimental results [9] demonstrated the capability of the

controller to stabilize the vehicle up to 72 Kph in a double

lane change manoeuvre on slippery (snow covered) surfaces.

In [8], [12], [13] additional control variables are considered.

In particular we allow independent braking at the four wheels

and active differentials (i.e., independent tractive torques

at the four wheels). The interested reader can refer to

the paper [9] for a detailed review of alternative existing

approaches to autonomous vehicle dynamics control.

In all the aforementioned literature we assume that the

trajectory is known over a finite horizon and computed by

simple geometrical considerations in order to avoid given

obstacles. In this paper we start from the low-level controller

presented in [3], [9] and integrate it with a high level trajec-

tory planner. At both levels MPC design is used. At the high-

level, a trajectory is computed on-line, in a receding horizon

fashion, based on a simplified point-mass vehicle model by

means of nonlinear MPC. At the low-level a Linear-Time-

Varying (LTV) MPC controller [9] computes the vehicle

inputs in order to best follow the desired trajectory based

on a more detailed nonlinear vehicle model.

The approach is systematic, model-based and can be

generalized to any number of vehicle control inputs. In this

article, the scheme is implemented for an active-steering

problem and simulation are performed at high speeds on icy

roads. Preliminary simulative results are presented, discussed

and compared with the scheme presented in [9] which lacks

of the higher-level planning algorithm. Lastly, we show how

additional constraints introduced in [9] for stabilizing the

vehicle are not need with the approach presented in this paper

under the same driving conditions.

The paper is structured as follows. In Section II, we

present a generic hierarchical architecture of guidance and

navigation control systems for autonomous vehicles and

explain the architecture considered in this paper. In Sec-

tion III we describe the vehicle models used for trajectory

planning and low level control. Sections IV and V present

the formulations of the trajectory planning and the low level

control problems, respectively. Section VI closes the paper

by presenting the considered scenario and the simulations
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results.

II. HIERARCHICAL FRAMEWORK FOR AUTONOMOUS

GUIDANCE
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Fig. 1. Simplified Architecture for Fully-Autonomous Vehicle Guidance
System

The architecture in Figure 1 describes the main elements of

an autonomous vehicle guidance system and it is composed

of four modules: the trajectory/mode generator, the trajec-

tory/mode replanning, the low-level control system, and the

vehicle and the environmental model. The trajectory/mode

planning module pre-computes off-line the vehicle trajec-

tory together with the timing and conditions for operation

mode change. In the aerospace field, examples of operation

mode selection include aeroshell parachute deployment or

heatshield release, in the automotive filed this could include

switching between two or more types of energy source (i.e.,

gas, electricity, hydrogen) or (in a very futuristic scenario)

morphing between different vehicle shapes.

The trajectory and the mode of operation computed off-

line can be recomputed on-line during the drive by the

trajectory/mode replanning module based on current mea-

surements, at fixed points or on the occurrence of certain

events (such as tracking errors exceeding certain bounds,

hardware failure, excessive wind, the presence of a pop-up

obstacle).

The low-level control system commands the vehicle ac-

tuators such as front and rear steering angles, four brakes,

engine torque, active differential and active suspensions

based on sensor measurements, states and parameters esti-

mations and reference commands coming from the trajec-

tory/mode replanning module. Such reference commands can

include lateral and longitudinal positions, pitch, yaw and

roll rates. The low-level control system objective is to keep

the vehicle as close as possible to the currently planned

trajectory despite measurement noise, unmodeled dynamics,

parameteric uncertainties and sudden changes on vehicle

and road conditions which are not (or not yet) taken into

account by the trajectory replanner. In particular, when a

vehicle is operating near its stability limit, these additional

noises, disturbances and uncertainties must be considered,

possibly through detecting the vehicle’s internal state, and

compensated for. For example, if rear tires saturates, a skillful

driver would switch his/her steering input from the usual

steering command for trajectory following to a counter-

steering one for stabilizing the vehicle.

We remark that the scheme in Figure 1 is an oversimplified

scheme and that additional hierarchical levels could be

present both in the trajectory/mode replanning module and

in the low-level control system module. The union of the

first three modules is often referred to as Guidance and

Navigation Control System (GNC system).

Typically the trajectory replanner and the low-level con-

trol system modules do not share the same information

on environment and vehicle. For instance, the replanning

algorithms can use information coming from cameras or

radars which may not be used at the lower level. Also,

typically, the frequency at which the trajectory replanning

module is executed is lower than the one of the lower

level control system. The design of both modules makes

use of vehicle and environment models with different levels

of detail. The fidelity of the dynamical model used for the

design of the two modules is dictated, among many factors,

by a performance/computational resource compromise and

in the literature there is no accepted standard on this. One of

the possible control paradigms for the two modules consists

in using a high-fidelity vehicle model for designing the

lower level controller while the trajectory planner relies

on a rougher/less detailed dynamical model of the vehicle.

Clearly, the higher the fidelity of the models used at the

higher level is, the easier the job for the lower level control

algorithm becomes.

Studies on GNC algorithms vary in (i) the focus (trajectory

replanner and/or the low-level control system) (ii) the type

of vehicle dynamical model used, (iii) the type of control

design used, and (iv) inputs and sensors choice. In [17] the

trajectory replanner module is based on a receding horizon

control design. The planning problem is formulated as a

constrained optimization problem minimizing a weighted

sum of arrival time, steering and acceleration control efforts.

The vehicle model is a simple rear-centered kinematic model

with acceleration, speed, steering, steering rate and rollover

constraints. The lower level control module uses two sepa-

rated PIDs to control longitudinal and lateral dynamics. The

longitudinal controller acts on throttle and brakes while the

lateral controls on the steering angle.

The GNC architecture in [22] is similar to [17]. The

trajectory planning task is posed as a constrained opti-

mization problem. The cost function penalizes obstacles

collision, distance from the pre-computed offline trajectory

and the lateral offset from the current trajectory. At the lower

level, a PI controller acts on brakes and throttle to control

the longitudinal dynamics. A simple nonlinear controller,

instead, is used to control the lateral dynamics through the

steering angle. Details on the vehicle dynamical model used

in [22] are not disclosed. In [21] a scheme similar to the

one in [17] is used to design a GNC systems for for a flight

control application.

In [23], an explicit MPC scheme has been applied at the

lower level control to allocate four wheel slips in order to get

a desired yaw moment. The steering angle is not controlled.

In this paper we present an approach to GNC based on

MPC for the trajectory replanning module and for the low-
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level control system module. In particular we consider a path

following scenario, where a vehicle has to autonomously fol-

low a desired path by controlling the front steering angle. At

the high level, an MPC scheme, based on an oversimplified

vehicle, model replans the path by taking into account the

limitation imposed by the estimated road friction coefficient.

At the low-level, an MPC active steering controller tries

to best follow the computed desired path by using a more

detailed vehicle model.

Compared to the lower level control algorithms presented

in the aforementioned literature, our approach (i) is model

based and uses the vehicle model (1) and the highly nonlinear

tire model (see Section III-A), (ii) includes constraints on

inputs and states in the control design, (iii) is systematic

and multivariable and can accommodate new actuators and

higher fidelity models. Moreover we have experimentally

validated the low-level controller presented in this paper with

a dSPACETM AutoBoxTM system which is a standard rapid

prototyping system used in automotive industries [5].

III. MODELING

Next we introduce the vehicle models used for predictive

active steering control design and trajectory planning. In

particular, in Section III-A a nonlinear sixth order vehicle

model which captures the most important nonlinearities

associated to lateral and yaw stabilization of the vehicle is

briefly described. The model is based on a nonlinear Pacejka

tire model. In Section III-B a simple point-mass vehicle

model is presented.

A. Bicycle model

A “bicycle model” [18] is used to model the dynamics of

the car under the following

Assumption 1: At front and rear axles, the left and right

wheels are lumped in a single wheel.

Figure 2 depicts a diagram of the vehicle model under

the Assumption 1. The following notation is used: ẏ and ẋ
are the lateral and longitudinal vehicle velocities in the body

frame, respectively, ψ is the vehicle orientation (yaw angle)

in the inertial frame, ψ̇ is the yaw rate, Y and X are the

lateral and longitudinal position of the vehicle in the inertial

frame, respectively, δf is the front steering angle, αf is

front tire slip angle (i.e., the angle between the tire velocity

vector and the tire longitudinal axis), Fcf
and Flf are

the front lateral (or cornering) and longitudinal tire forces,

respectively. By replacing the second subscript f with r, the

variables for the rear axis are defined similarly .

Under the Assumption 1, the planar motion of the vehicle

in an inertial frame, subject to lateral, longitudinal and yaw

dynamics, is described through a sixth order nonlinear model.

The detailed model equations are not reported here and can

be found in [3], [9], [11]. The nonlinear dynamics can be

compactly written as follows:

dξ(t)

dt
= f (ξ(t), u(t)) , (1)

where she state and input vectors are ξ =
[ẏ, ẋ, ψ, ψ̇, Y, X]′ and u = δf , respectively.

Fig. 2. The simplified vehicle “bicycle model”.

Remark 1: In the bicycle model presented in [3], [9],

[11] and used in this paper, the normal forces at the four

wheels are assumed constant. This assumption stems from

the observation that on low friction surfaces, due to limited

lateral and longitudinal accelerations, load transfers can be

neglected.

The function f in (1) is a complex nonlinear function of

states and input. The most relevant sources of nonlinearities

are the cornering and longitudinal tire forces Fc and Fl,

respectively (see Figure 2). We use a Pacejka tire model [1]

to compute the tire forces. This is a semi-empirical nonlinear

model that takes into consideration the interaction between

the longitudinal force and the cornering force in combined

braking and steering. A thorough presentation of the Pacejka

tire model can be found in [3], [9].

B. Point-Mass Vehicle Model

The point-mass model introduced in this section describes

in a simple way the motion of a vehicle along a prescribed

path. We assume that the path is defined in the inertial

frame XY through a sequence of pairs (X(t), Y (t)), t ≥ 0.

We make use of the the following simplifying assumptions:

Assumption 2: The vehicle exactly follow the prescribed

path (X(t), Y (t)), t ≥ 0.

Assumption 3: The vehicle acceleration is bounded by the

constant µg, where µ is the road friction coefficient and g is

the gravitational acceleration.

Under the Assumptions 2 and 3 the motion of the vehicle

along the path is described by the following system of

constrained differential equations:

v̇x(t) = ax(t), (2a)

v̇y(t) = v2
x(t)c(t) (2b)

where vx and vy are the velocities tangential and normal to

the path, ax is the longitudinal vehicle acceleration, c(t) is

the path curvature at time t and is computed as follows:

c(t) =
Ẋ(t)Ÿ (t) − Ẏ (t)Ẍ(t)
(

Ẋ2(t) + Ẏ 2(t)
)

3
2

.
(3)
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According to the Assumption 3 the system (2)-(3) is

subject to the following constraint:
√

a2
x(t) + v̇4

x(t)c2(t) ≤ µg, ∀t ≥ 0. (4)

Remark 2: The constraint (4) on the longitudinal and lat-

eral accelerations stems from the limitation of the maximum

force transmission to the road surface [16].

IV. RECEDING HORIZON TRAJECTORY REPLANNING

Next we show how the trajectory replanning task can be

formulated as a receding horizon problem. We discretize the

model (2) and equation (3) with the sampling time T . We

assume that at each sampling time t a desired trajectory is

provided over a finite time horizon of N steps, with N ∈
Z

+, in terms of a sequence of pairs (Xr
i , Y r

i ), with i =
t + 1, . . . , t + N . Consider the following cost function:

Jrepl(At, Xt, Yt, vdes, X r
t , Yr

t )

=
t+N
∑

i=t+1

α1

[

(Xi − Xr
i )

2
+ (Yi − Y r

i )
2
]

+
t+N−1
∑

i=t

[

α2

(

v̇xi,t
− vdes

)2
+ α3a

2
xi,t

]

,

(5)

where At = [axt,t
, . . . , axt,t+N−1

], Xt =
[Xt+1, . . . ,Xt+N ], Yt = [Yt+1, . . . , Yt+N ], vdes is

the desired vehicle velocity, X r
t = [Xr

t+1, . . . , X
r
t+N ]

and Yr
t = [Y r

t+1, . . . , Y
r
t+N ].

In the cost function (5) the first summand penalizes the

deviation of the replanned path (Xi, Yi) from the desired

path (Xr
i , Y r

i ) , i = t, . . . , t + N , the second summand

penalizes the deviation of the vehicle longitudinal velocity

from the desired velocity vdes, while the third summand pe-

nalizes the longitudinal acceleration. These three summands

are weighted through the tuning parameters α1, α2 and α3.

At each time t = kTNt, k ∈ Z
+, we solve the following

optimization problem:

min
At, Xt,Yt

Jrepl(At, Xt, Yt, vdes,X
r
t ,Yr

t )

subj. to v̇xk+1,t
= v̇xk,t

+ Taxk,t
, (6a)

√

a2
xk,t

+ v̇4
xk,t

c2
k,t ≤ µg, (6b)

‖axk,t
‖ ≤ amax, (6c)

k = t + 1, . . . , N.

vxt,t
= ẋ(t), (6d)

where amax is the maximum longitudinal acceleration.

Remark 3: We highlight that, for the sake of read-

ability, in the equation (6b) the dependency of ck,t

on Xk,Xk−1,Xk−2, Yk, Yk−1, Yk−2 is dropped, i.e., ck,t is

used instead of ck,t(Xk,Xk−1,Xk−2, Yk, Yk−1, Yk−2).
Once a solution A∗

t , X ∗
t , Y∗

t of problem (6) has been

found, the first Nt samples, with Nt ∈ Z
+ and N ≥ Nt, of

the sequences X ∗
t and Y∗

t are sent to the low-level control

as reference trajectory. At time t + NtT the problem (6) is

solved over a shifted horizon based on new measurements

of vehicle longitudinal speed and lateral and longitudinal

positions in the inertial frame.

V. RECEDING HORIZON ACTIVE-STEERING

CONTROLLER

In this section we design a low level AFS controller, in

order to follow a path defined by desired references for the

heading angle ψ and the lateral position Y . The control

objective is to minimize the vehicle position and orientation

errors by varying the front steering angle δf .

In this paper, in order to solve the path following problem

stated above, we adopt the approach in [9]. This is a low

complexity MPC algorithm based on successive on line lin-

earizations of a nonlinear vehicle model. In particular at each

time step a linear approximation of the bicycle model (1)

is computed. Based on this linear model approximations,

a Quadratic Programming (QP) problem is formulated and

solved in receding horizon in order to compute the front

steering angle minimizing the deviation from a desired path

over a future finite horizon. We refer to the MPC approach

in [9] summarized above as Linear Time Varying (LTV)

MPC.

Remark 4: In [9] it is shown that performance enhance-

ment and vehicle stability at high speed are achieved by

adding a constraint on tire slip angle to the LTV MPC

formulation. This is a non standard state and input constraint

included in order to forbid the system from entering a

strongly nonlinear and possibly unstable region of the tire

characteristic.

VI. PRESENTATION AND DISCUSSION OF RESULTS

Next we present two approaches to the considered path

following via AFS problem.

The first approach is based on the trajectory replanning

algorithm presented in Section IV and the low level LTV

MPC AFS control presented in Section V. In particular we

assume that the trajectory replanning algorithm is executed

every NtT seconds. Moreover we assume that the replanning

frequency is lower than the low level AFS control frequency

(i.e., NtT ≫ Ts, where 1/Ts is the low level AFS control

frequency) and NtT ≥ HpTs. At each time t = kNtT , k ≥ 0
a replanned trajectory (Xt,Yt), is computed starting from

desired vehicle velocity vdes and path (X r
t , Yr

t ), the current

vehicle longitudinal speed and the vehicle lateral and longitu-

dinal positions in the inertial frame at times t, t−1 and t−2.

The replanned trajectory is fed into the low level LTV MPC

AFS control, presented in Section V, until time t+(Nt−1)T .

At time t+NtT the trajectory is replanned starting from new

states measurements.

The union of the trajectory replanning algorithm and the

low level AFS control will be referred to as Approach 1 in

the following.

Remark 5: We observe that the result of the trajectory

replanning is a replanned trajectory in terms of longitudinal

and lateral positions in the inertial frame. In the low level

AFS control, instead, the desired trajectory is defined in

terms of heading angle ψ and the lateral distance Y . We

point out that, given the replanned trajectory in terms of lon-

gitudinal Xt and lateral Yt positions in the inertial frame, the
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corresponding vehicle orientation can be computed through

numerical derivative of the signal Y∗
t with respect to X ∗

t .

The second approach is based on the use of the low

level AFS LTV MPC control with constraints on the tire

slip angles (see Remark 4) only. In particular the desired

trajectory (X r
t , Yr

t ), t ≥ 0 is fed into the AFS LTV MPC

controller. In the following this approach will be referred to

as Approach 2.

The two approaches have been implemented to perform a

sequence of double lane changes at different entry speeds on

slippery surfaces (snow or ice).

We point out that the difference between Approaches 1

and 2 resides in the reference trajectory generation. In par-

ticular, in Approach 1 the reference trajectory (Xi,Yi), i =
t, . . . , NT is provided to the low level AFS control system by

the trajectory planning presented in Section IV. In Approach

2 the desired reference trajectory (X r
i , Yr

i ), i = t, . . . , NT
is provided directly to the low level AFS controller.

In Figure 3 the simulation results of the Approach 1

are presented when a double lane change is performed on

a snowy surface (µ = 0.3) at 70 Kph. The following

parameters have been used for the trajectory replanning

algorithm:

• Sampling time: T = 0.3 s
• Replanning horizons: N = 15, Nt = 8;

• Weights: α1 = 1, α2 = 0 and α3 = 0;

• Maximum longitudinal acceleration: amax = 0.

Since in the considered simulation scenario the vehicle is

coasting while performing the double lane change, in the re-

planning algorithm (i) the deviation from the desired vehicle

velocity has not been penalized (ii) the vehicle longitudinal

acceleration is constrained to zero.

The following tuning parameters have been used for the

low level AFS control:

• Sampling time: Ts = 0.05 s
• weights on tracking errors: Qψ = 5, QY = 300, Qij =

0 for i 6= j;

• weights on input rates: R = 1;

• weights on input: S = 1;

• horizons: Hp = 17, Hc = 1;

• bounds on tire slip angles: ±∞.

In Figure 4 the simulation results of the Approach 2 are

presented in the same scenario as Approach 1. The following

tuning parameters have been used:

• weights on tracking errors: Qψ = 5, QY = 100, Qij =
0 for i 6= j;

• weights on input rates: R = 10;

• weights on input: S = 1;

• horizons: Hp = 30, Hc = 1;

• bounds on tire slip angles: ±6 deg.

The Root Mean Squared (RMS) and maximum tracking

errors are summarized in Table I.

By comparing the RMS and maximum tracking errors

reported in Table I we observe similar performance of the

two approaches in the considered scenario. Nevertheless, we

observe that the prediction horizon in the low level control

Controller ψrms Yrms ψmax Ymax

[deg] [m] [deg] [m]

Approach 1 2.94 · 10
2

4.46 · 10
1 8.20 1.23

Approach 2 2.83 · 10
2

5.30 · 10
1 8.38 1.42

TABLE I

RMS AND MAXIMUM TRACKING ERRORS OF APPROACHES 1 AND 2

WHEN A DOUBLE LANE CHANGE MANOEUVRE IS PERFORMED ON SNOW

AT 70 KPH.

of Approach 2 is almost twice the prediction horizon of low

level control in Approach 1. This significant reduction of the

low level controller complexity is allowed by the usage of the

upper level trajectory replanning which accounts for vehicle

stability limits in generating the reference trajectory. We also

observe that the stabilizing constraints on the tire slip angles

(see Remark 4) are not necessary in the low level control

in Approach 1. In fact, in Approach 1, the vehicle is not

required to operate at the limits of stability in order to track

the replanned trajectory. By comparing the tuning parameters

of the low level controls in the two approaches, we finally

observe that in Approach 2 the low level controller has been

detuned compared to low level control in Approach 1. In

particular we observe that the weight on the lateral position

tracking error in Approach 2 is significantly lower compared

to Approach 1. Furthermore the input rate in Approach 2 is

more penalized compared to Approach 1.
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