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Abstract
Principal singular component analysis has recently been pro-
posed and analyzed by the author. It is a generalization of the
principal singular subspace analysis which has been investigated
in the literature. In this paper an unconstrained weighted cost
function is utilized to develop dynamical systems that converge
to the actual principal singular vectors of a given matrix. Sta-
bility analysis that reveals the domains of attraction of these
systems is also given.
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1 Introduction
Computing a few number of singular triplets of a matrix is an
essential task in many algorithmic development for various fields
in signal processing, control theory, and applied mathematics.
By a singular triplet for a matrix A ∈ IRn×m, we mean (u, σ, v) ,
where u, v are unit vectors such that uT Av = σ, where uT u = 1,
vT v = 1, and σ is a positive number. These vectors are equi-
librium points for a gradient system obtained from optimizing a
quadratic cost function. These equilibrium points are shown to
be stable with a domain of attraction that can be enlarged by
incorporating an additional parameter.

Conventional methods for computing the singular value de-
composition are given in [1]-[2]. Generalization of Oja’s algo-
rithm for obtaining the SVD of a rectangular matrix is con-
sidered in [3, 4]. Cross-correlation neural network for extract-
ing the cross-correlation features between two high-dimensional
data streams is developed in [5]-[6]. Algorithms that are based
on optimization over unitary constraints are developed in [7]-[8].
In the aforementioned methods, either the whole set of singular
or eigenvectors are computed or a basis for subspace spanned
by the principal singular vectors rather than the actual singular
vectors.

Thus the main objective of this paper is to develop and study
dynamical systems for solving the principal singular component
analysis (PSCA) problems, and to provide both discrete and
analog neural systems for solving computational problems in
real-time. Additionally, understanding the properties and fea-
tures of such dynamical systems is helpful in determining do-
mains of attractions and invariant sets of dynamical systems
of many principal singular subspace (PSS) and principal/minor
component analyzers (PCA/MCA).

The following notation will be used throughout. The symbols
IR, and IN denote the set of real numbers, and the set of positive
integers, respectively. The derivative of x with respect to time
is written as x′. The identity matrix of appropriate dimension
is expressed with the symbol I. Finally, the derivative of a
Lyapunov function V (x) with respect to time is denoted by V̇ .

The notation ||x|| denotes the Euclidean norm of x. It will be
assumed in this work that all matrices are real.

2 Preliminary Results
For completeness, basic concepts from dynamical system theory
are summarized in this section. These include Liapunov and
Lagrange stability.

2.1 Stability of Dynamical Systems
The Lyapunov direct method provides a convenient way of prov-
ing stability of equilibria, as Lyapunov’s theorem can be used
without solving the associated differential equations. However,
it is not always easy to construct Lyapunov functions or test
their time derivatives for non-negative definiteness.

Let g(x) : IRn×p → IRn×p, p ≤ n, be continuously differen-
tiable function and consider the dynamical system

x′ = g(x). (1)

The point x̄ is an equilibrium point for the system (1) if g(x̄) = 0.
Let Ω ⊂ IRn×p be a region containing x̄ and V : Ω → IR be
continuously differentiable function such that V (x̄) = 0 and
V (x) > 0 for each x̄ 6= x ∈ Ω, i.e., V is positive definite.

Assume also that V̇ (x) ≤ 0 for each x ∈ Ω, i.e., V̇ is nega-
tive semi-definite. Then x̄ is stable and V is called a Lyapunov
function for the system (1) at x̄ ∈ Ω. If V (x) < 0 for each
x̄ 6= x ∈ Ω, then x̄ is asymptotically stable. If in addition to
these conditions, we have the function V is radially unbounded,
i.e., V (x) → ∞ as ||x|| → ∞, then the system is globally stable.
The main advantage of using Lyapunov direct method is that
Lyapunov theorem can be used to prove stability of equilibria
without solving the differential equations. However, construct-
ing Lyapunov functions is not always an easy task. It should
be noted that many Lyapunov functions may exist for the same
problem. However, a specific choice of Lypunov functions may
provide more useful results about the system than others.

Geometrically, the condition V̇ ≤ 0 implies that when a tra-
jectory crosses the level surface V (x) = c, it moves inside the
set Ω2 = {x ∈ IRn×p : V (x) ≤ c} and remains there. Since
V is positive definite, then Ω2 is bounded and closed, thus the
system must converge to some limiting value.

The domain of attraction of an equilibrium point x̂ of the sys-
tem (1) is defined as an open set D containing x̂ such that for
any initial point x0 ∈ D, the sequence generated by the dynam-
ical system according to (1) with an arbitrarily small step-size
α > 0 and satisfying xk ∈ D, for all i) remains in D and ii) xk
converges to x̂.

A set S is an invariant set for the system (1) if every trajec-
tory x(t) which starts from a point in S remains in S for all time.
For example, any equilibrium point is an invariant set. The do-
main of attraction of an equilibrium point is also an invariant
set.
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We state next a few stability results for nonlinear au-
tonomous systems. The invariant set theorems reflect the in-
tuition that the decrease of a Liapunov function V has to grad-
ually vanish. In other words V̇ has to converge to zero because
V is lower bounded. Proofs of the results below can be found in
[9]-[11].

Theorem 1 (Local Invariant Set Theorem). Consider an
autonomous system of the form x′ = g(x), with g continuous
and let V (x) : IRn → IR be a scalar function with continuous
first partial derivatives. Assume that

1. for some l > 0, the set Ωl defined by V (x) ≤ l is bounded.

2. V̇ (x) ≤ 0 for all x in Ωl.

Let R be the set of all points within Ωl where V̇ (x) = 0 and
M be the largest invariant set in R. Then, every solution x(t)
originating in Ωl tends to M as t → ∞.

Proof. See Slotine and Li (1991) [9] and [10].
In Theorem 1, the word largest means that M is the union

of all invariant sets within R. Notice that R is not necessarily
connected, nor is the set M .

We state next a well known result about Lagrange stability.
A dynamical system is Lagrange stable if the continuous state
remains bounded from any initial condition. For example, if the
continuous state converges to a stationary set, the dynamical
system is Lagrange stable.

Theorem 2 (Lagrange Stability Theorem)[10]. Let W be
a bounded neighborhood of the origin and let W c be its comple-
ment (W c is the set of all points outside W ). Assume that V (x)
is a scalar function with continuous first partial derivatives in
W c and satisfying:

1. V (x) > 0 for all x ∈ W c,

2. V̇ (x) ≤ 0 for all x ∈ W c,

3. V (x) → ∞ as ||x|| → ∞.

Then each solution of x′ = g(x), is bounded for all t > 0.

The Lyapunov linearization method explores the relation be-
tween the stability of the linearized system with that of the
original nonlinear system.

Theorem 3 (Liapunov’s Linearization Method). Let x =
x̂ be an equilibrium point for the nonlinear system ẋ = g(x),
where g : D → IRn is continuously differentiable and D is a
neighborhood of x̂. Let the Jabobian matrix A at x = x̂ be:

A =
∂g

∂x
|x=x̂. (2)

Let λi, i = 1, · · · , n be the eigenvalues of A. Then,

1. The point x̂ is asymptotically stable if Re(λi) < 0 for all
eigenvalues of A.

2. The point x̂ is unstable if Re(λi) > 0 for any of the eigen-
values of A.

Here Re(λ) denotes the real part of λ.

To analyze systems involving a matrix A ∈ IRn×m, it will be
assumed that the singular value decomposition of A is

A = uΣvT + u2Σ2vT
2 , (3)

where Σ = diag(σ1 , · · · , σp) and Σ2 = diag(σp+1, · · · , σn) are
diagonal matrices so that σi > σj for i = 1, · · · , p and j =

p + 1, · · · , n. The matrices u, v ∈ IRn×p and u2, v2 ∈ IRn×n−p

are orthogonal, i.e., uT u = I, vT v = I and uT
2 u2 = I, vT

2 v2 = I,

uT u2 = 0, vT v2 = 0. It can be easily verified that the matrix

U =
1
√

2

[
u −u
v v

]
, (4a)

is orthogonal, i.e., UT U = I, and that

UT ĀU =

[
Σ 0
0 −Σ

]
, (4b)

where

Ā =

[
0 A

AT 0

]
. (4c)

Thus Ā can be expressed as

Ā = UΣ̄UT + U2Σ̄2UT
2 , (4d)

where

Σ̄ =

[
0 Σ
Σ 0

]
, Σ̄2 =

[
0 Σ2

Σ2 0

]
,

U2 =
1
√

2

[
u2 −u2

v2 v2

]
.

(4e)

Note that U2 is orthogonal, i.e., UT
2 U2 = I.

U2 =
1
√

2

[
u2 −u2

v2 v2

]
, (4d)

which is orthogonal, i.e., UT
2 U2 = I.

In the next section, the gradient and the Hessian matrices
for some matrix functions are given using the first and second
order differentials.

2.2 First and Second Order Differentials
Let F be twice continously differentiable function, the first and
second order differentials of F are defined by

dF =
∂F (x + εdx)

∂ε
|ε=0, (5a)

and

d2F =
∂2F (x + εdx)

∂ε2
|ε=0. (5b)

To compute the gradient and the Hessian matrix for a cost func-
tion F , the first and second order differentials need to be derived
first. In the next result, the first and second order differentials
for linear, quadratic, and quartic functions are computed.

Lemma 4. Let A ∈ IRn×n, b ∈ IRn×p, D ∈ IRp×p and consider
the functions defined over IRn×p by

F1(z) = tr(bT z),

F2(z) = tr(zT ĀzD),

F3(z) = tr((zT z)2).

(6)

Then the first and second order differentials of F1, F2 and F3

are given by:

dF1(z) = tr(bT dz), d2F1 = 0, (7a)

dF2 = tr{dzT ĀzD + zT ĀdzD)},

d2F2(z) = tr{2dzT ĀdzD},
(7b)

dF3 = 4tr{dzT zzT z},

d2F3(z) = 4tr{dzT dzzT z + dzT zdzT z + dzT zzT dz)}.
(7c)

Proof: The proof is a direct application of the definitions (5a)
and (5b).

2.3 Gradient and Hessian Matrices
The computation of derivatives can be performed simply based
on the following lemma [12].

Lemma 5. Let φ be a twice differentiable real-valued function
of an n × p matrix. Then, the following relationships hold:

dφ(X) = tr(AT dX) ⇔ ∇φ(X) = A (8a)

d2φ(X) = tr(B(dX)T CdX) ⇔ Hφ(X) =
1

2
(BT ⊗C + B ⊗CT )

(8b)

4667



d2φ(X) = tr(B(dX)CdX) ⇔ Hφ(X) =
1

2
Krn(BT ⊗C+CT⊗B)

(8c)
where d denotes the differential, and A, B, and C are matrices,
each of which may be a function of X. The gradient of φ with
respect to X and the Hessian matrix of φ at X are defined as

∇φ(X) =
∂φ(X)

∂X

Hφ(X) =
∂

∂(vecX)T

(
∂φ(X)

∂(vecX)T

)T

(8d)

where vec is the vector operator and stands for the operation of
stacking the columns of a matrix into one column, and ⊗ denotes
the Kronecker product. The matrix Kpn denotes the pn × pn

commutation matrix; KT
pn = K−1

pn = Kpn and Kpm(A ⊗ C) =

(C ⊗ A)Kqn, where A ∈ IRm×n and C ∈ IRr×q .

In the next section, dynamical systems for principal singular
component analysis for a general rectangular matrix are derived
from the optimization of two cost functions, G1 and G2 defined
as follow:

G1(x, y) = tr(xT AyD) −
α

4
tr{(xT x + yT y)2}, (9)

G2(x, y) = tr(xT AyD) −
α

4
tr{(xT x)2 + (yT y)2}, (10)

where A ∈ IRn×m, D ∈ IRp×p, x ∈ IRn×p, y ∈ IRm×p, and
α > 0 is sufficiently large number.

3 Properties of the Cost Functions

The cost functions G1 and G2 can be shown to be upper
bounded and both −G1 and −G2 are radially unbounded. Thus
gradient systems that converge to the PSC of the given matrix
A can be derived.

To gain some insight of the above cost function defined in
(2), we consider the scalar case as in the following example.

Example 1: Let F (x, y) = axyd − 1
4
(x2 + y2)2, where a > 0

and d > 0. The objective is to find the minima and maxima of
F . The gradient and the Hessian matrix of F can be verified to
be

∇F (x, y) =

[
ayd − x(x2 + y2)
axd − y(x2 + y2)

]
, (11a)

and

∇2F (x, y) =

[
−3x2 − y2 ad

ad −3y2 − x2

]
. (11b)

The equilibrium points of F are solutions of the equations

ady = x(x2 + y2)

adx = y(x2 + y2).
(11c)

Clearly, the point (x, y) = (0, 0) is one of the solutions for ∇F =
0. If x 6= 0, then y 6= 0 and y

x
= x

y
. Thus x2 = y2, or

equivalently y = ±x. Now if y = x, then x = y = ±
√

ad. Note
that y = −x yields da = −2x2 which is not possible since ad
is positive. This implies that ∇F = 0 at (x, y) = (0, 0) and

(x, y) = (
√

ad
2

,
√

ad
2

). Now, the Hessian matrix evaluated at

the equilibrium point (x, y) = ±(
√

ad
2

,
√

ad
2

).

∇2F =

[
−4x2 ad

ad −4y2

]
=

[
−4ad ad

ad −4ad

]
. (12)

The last matrix is negative definite provided that ad is positive.

If (x, y) = (0, 0), then HF (0, 0) =

[
0 ad
ad 0

]
which is indefinite

matrix. Thus (0, 0) is a saddle point.

One can make the observation that the function F has one
saddle point, and two maximizers (±x̂,±ŷ), i.e., if (x̂, ŷ) is a
maximizer then −(x̂, ŷ) is also a maximizer.

To compute the gradient and Hessian matrices of G1 and G2,

let z =

[
x
y

]
, then G1 and G2 can be expressed as

G1(x, y) = G1(z) =
1

2
tr(zT ĀzD) −

α

4
tr{(zT z)2},

where Ā =

[
0 A

AT 0

]
is symmetric, and D is diagonal matrix

and all its eigenvalues are positive and distinct.
Similarly,

G2(x, y) = G2(z) =
1

2
tr(zT ĀzD) −

α

4
tr{(zT B̄z)2 + (zT C̄z)2},

where B̄ =

[
I 0
0 0

]
, and C̄ =

[
0 0
0 I

]
.

It follows from Lemma 4 that the first and second order dif-
ferentials of G1 are

dG1 =
1

2
tr{dzT ĀdzD + zT ĀdzD) − αdzT zzT z}, (13)

d2G1 =
1

2
tr{2dzT AdzD − αdzT dzzT z − αdzT zdzT z

− αdzT zzT dz},
(14a)

and those of G2 are

dG2 =
1

2
tr{dzT Ādz + zT Ādz) − αdzT B̄zzT B̄z

− αdzT C̄zzT C̄z},
(14b)

d2G2 =
1

2
tr{2dzT Ādz − αdzT B̄dzzT B̄z

− αdzT B̄zdzT B̄z − αdzT B̄zzT B̄dz − αdzT C̄dzzT C̄z

− αdzT C̄zdzT C̄z − αdzT C̄zzT C̄dz}.

(14c)

Therefore, by applying Lemma 5, and assuming that α = 1 for
convenience, the gradient and the Hessian matrix for G1 are
respectively given by

∇G1 = ĀzD + ĀT zD − z(zT z)

=

[
AyD − x(xT x + yT y)

AT xD − y(xT x + yT y)

]
,

(15a)

and

HG1 = D ⊗
[

0 A
AT 0

]
− (xT x + yT y) ⊗

[
I 0
0 I

]

− I ⊗
[

xxT xyT

yxT yyT

]
− K

[
x
y

]
⊗ [xT yT ] .

(15b)

Here K is a permutation matrix such that K

[
x
y

]
⊗[xT yT ] =

[xT yT ] ⊗
[

x
y

]
K2, for some permutation matrix K2.

Similarly, the gradient and the Hessian matrix for G2 are
respectively given by

∇G2 =

[
AyD − x(xT x)
AT xD − y(yT y)

]
, (16a)

and

HG2 = D ⊗
[

0 A
AT 0

]
− (xT x) ⊗

[
I 0
0 0

]

− (yT y) ⊗
[

0 0
0 I

]
− I ⊗

[
xxT 0
0 0

]

− K

[
x
0

]
⊗

[
x
0

]
− K

[
0
y

]
⊗ [ 0 yT ] ,

(16b)
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for some permutation matrix K.
Thus, gradient dynamical systems for maximizing G1 and

G2 may be expressed by

x′ = AyD −
1

2
x(xT x + yT y),

y′ = AT xD −
1

2
y(xT x + yT y),

(17)

and

x′ = AyD −
1

2
xxT x,

y′ = AT xD −
1

2
yyT y,

(18)

respectively.
In the next few sections, the dynamical systems (17) and

(18) will be analyzed in terms of stability, convergence, and the
limiting behavior as t → ∞.

4 Stability Analysis of the System (17)

The stability of the system (17) can be established as in the
following theorem:

Theorem 6. Let B ∈ IRN×N be symmetric invertible matrix
and consider the following system

z′ = BzD − zzT z, (19)

where z ∈ IRN×p, and D ∈ IRp×p is diagonal matrix and all
its eigenvalues are distinct and positive. Then the equilib-

rium points z = ±u
√

ΣD are stable with domain of attrac-
tion Ω = {z ∈ IRn×p : z 6= 0}. The columns of the matrix
u ∈ IRn×p consist of eigenvectors corresponding to the p largest
eigenvalues of B, i.e., uT Bu = Σ is diagonal and that the di-
agonal elements of Σ are ordered so that tr(ΣD) is maximum.
The zero equilibrium point is unstable. Additionally, the set
Ω = {z : zT B−1z = D} is invariant set for the system (19).

Outline of Proof: To show that the system is stable, let
V (z) = 1

4
tr{(zT B−1z − D)2}, then V is lower bounded and

radially unbounded. The time derivative of V is given by

V̇ = −tr{(zT B−1z − D)2zT z} ≤ 0. (20)

Since V is radially unbounded, the system (19) is globally sta-

ble. Note that V̇ = 0 if and only if (zT B−1z − D)zT = 0
or equivalently, (zT B−1z)2 = DzT B−1z. Since D is diagonal
and all its eigenvalues are distinct, then zT B−1z is diagonal.
Consequently, if B is positive definite and z is full rank, then
zT B−1z = D.

To show that the system (17) is stable we first note that this

system follows from (19) by setting B = Ā and z =

[
x
y

]
. How-

ever, Theorem 6 may not apply since the matrix Ā is symmetric
but may not be invertible unless A is a square invertible matrix.
To alleviate this problem, the matrix B may be modified so that
B = Ā + αI for sufficiently large α, in which case B is positive
definite. Hence the new system is

x′ = AyD −
1

2
x(xT x + yT y − αD),

y′ = AT xD −
1

2
y(xT x + yT y − αD).

(21)

It should also be noticed that the system (21) can be shown
to be Lagrange stable for any matrix A by using the function
V (x, y) = 1

2
tr(xT x + yT y) in which case the time derivative of

V along the trajectory of (21) is

V̇ =
1

2
tr{xT AyD + DyT AT x − 2(xT x)2 − 2(yT y)2}. (22)

Since the term tr{(xT x)2 + (yT y)2} dominates 1
2
tr{xT AyD +

DyT AT x} for large ||x||+||y||, there exists a number R such that

V̇ ≤ 0 for all (x, y) ∈ W c where W = {(x, y) : x ∈ IRn×p, y ∈
IRm×p : ||x||+ ||y|| ≤ R}. Theorem 2 implies that the system is
Lagrange stable.

The limiting behavior of the systems (21) may be analyzed
as in the following results.

Proposition 7. Let A ∈ IRn×m, D ∈ IRp×p, x ∈ IRn×p, and
y ∈ IRm×p and consider the dynamical system (21). Then, the
equilibrium points of (17), i.e., the solutions of ∇G1(x, y) = 0
are

x̂ = u

√
ΣD

2
,

ŷ = v

√
ΣD

2
,

(23)

where u, v and Σ are as defined in (3) and (4). Let
P = limt→∞ x(t)T x(t), Q = limt→∞ y(t)T y(t), and B =
limt→∞ x(t)T Ay(t). Assume that ΣD has distinct eigenvalues,
then P = Q = ΣD and B = Σ2D. The maximum of G1 is

1

2
tr(ΣD) =

1

2

p∑

i=1

σidi. (24)

Hence the elements of Σ are ordered so that if di < dj then
σi < σj .

Outline of Proof: Let x(t) and y(t) be solutions of (21) for
t ≥ 0, and let P , Q, and B be as defined above. We will prove
the result assuming that P and Q are invertible. As t → ∞ we
have

BD = P (P + Q − αD),

BT D = Q(P + Q − αD).
(25)

For convenience we assumed that α = 1. From these equations,
we have P−1B = Q−1BT , and hence B = PQ−1BT . Let
S = PQ−1, then each eigenvalue of S is real and positive, (see
Appendix Proposition 11). This implies that B = SBT and
BST = BT . By subtracting the last two equations, we obtain
B(I − ST ) = (S − I)BT . Let w be an eigenvalue of I − S
with corresponding eigenvector λ, then since the eigenvalues of
S are real we obtain λwT (B + BT )w = 0. Since B + BT is
positive definite, then λ = 0. This shows that the matrix I −
S is nilpotent, i.e., (I − S)k = 0 for some k. One can show
by induction that (I − S)k−1 = 0, and therefore S = I, or
equivalently, P = Q. It follows from the equations (25) that
BD = 2P 2 and BT D = 2Q2 = 2P 2, and therefore, B = BT ,
and BD = DB. From Proposition 9 (see Appendix), B = D1 for
some diagonal matrix D1. This also shows that P 2 is diagonal.
Since it is assumed that all eigenvalue of ΣD are distinct, then
P = Q =

√
ΣD, and B = Σ2D.

Thus to determine the equilibrium points we may assume
that x̂ = u

√
D1 and ŷ = v

√
D1 for some diagonal matrix D1.

From the equation ∇G1(x̂, ŷ) = 0 it follows that

AŷD = x̂(x̂T x̂ + ŷT ŷ − αD), (26a)

AT x̂D = ŷ(x̂T x̂ + ŷT ŷ − αD). (26b)

Therefore,

uΣ
√

D1D = u
√

D1(D1 + D1 − αD), (27a)

vΣ
√

D1D = v
√

D1(D1 + D1 − αD). (27b)

Hence 2D1 − αD = ΣD, or

D1 =
ΣD + αD

2
.
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Consequently,

x̂ = u

√
ΣD + αD

2
,

ŷ = v

√
ΣD + αD

2
.

(28)

Next, we show that the eigenvalues of HG1 are non-positive.
It will be assumed that α = 0. Thus the Hessian matrix at the
equilibrium point (23) is

HG1 = D ⊗
[

0 A
AT 0

]
− DΣ ⊗

[
I 0
0 I

]

− I ⊗
[

uDΣuT uDΣvT

vDΣuT vDΣvT

]

− K

[
u
√

DΣ
v
√

DΣ

]
⊗

[√
DΣuT

√
DΣvT

]
.

(29)

The eigenvalues associated with the block eigenvector matrix

I⊗
[

u2 −u2

v2 v2

]
are the eigenvalues of D⊗

[
0 Σ2

−Σ2 0

]
−DΣ⊗

[
I 0
0 I

]
which are either of the form diλj −diλi = di(λj −λi) or

−diλj −diλi = di(λj +λi). Here λi and λj are eigenvalues of Σ
and Σ2, respectively. Since λj < λi, it follows that eigenvalues
of (29) corresponding to these eigenvectors are negative. The

eigenvalues of the matrix D ⊗
[

0 A
AT 0

]
corresponding to the

eigenvectors I ⊗
[

u
v

]
are those of the matrix D ⊗ Σ. Similarly,

the eigenvalues of the matrix D ⊗
[

0 A
AT 0

]
corresponding to

the eigenvectors I ⊗
[
−u
v

]
are those of the matrix −D ⊗ Σ.

Thus to determine the eigenvalues of HG1 corresponding to

the eigenvectors I ⊗
[

u
v

]
and I ⊗

[
−u
v

]
, we have the following

cases:

1. The eigenvalues of the matrix DΣ⊗
[

I 0
0 I

]
corresponding

to the eigenvectors I ⊗
[

u
v

]
and I ⊗

[
−u
v

]
are those of

the matrix DΣ ⊗ I.

2. The eigenvalues of the matrix I ⊗
[

uΣDuT uΣDvT

vΣDuT vΣDvT

]

corresponding to the eigenvectors I ⊗
[

u
v

]
, and I ⊗

[
−u
v

]

are those of the matrix I ⊗ DΣ.

3. The eigenvalues of the

matrix K

[
u
√

DΣ
v
√

DΣ

]
⊗

[√
DΣuT

√
DΣvT

]
correspond-

ing to the eigenvectors I ⊗
[

u
v

]
, and I ⊗

[
−u
v

]
are those

of the matrices ±
√

DΣ ⊗
√

DΣ.

Thus by combining (1) through (3) it is sufficient to show
that the eigenvalues of the matrices

D ⊗ Σ − DΣ ⊗ I − I ⊗ ΣD − K
√

ΣD ⊗
√

ΣD, (30)

and
−D ⊗ Σ − DΣ ⊗−I ⊗ ΣD − K

√
ΣD ⊗

√
ΣD, (31)

are negative or zero. Since K
√

ΣD ⊗
√

ΣD =
√

ΣD ⊗
√

ΣDK,
and KT = K = K−1, then the eigenvalues of the matrix (30)

are of the form λjdi −λidi −λjdj ±
√

λjdjλidi ≤ 0. Similarly,

the eigenvalues of the matrix (31) are of the form −λjdi−λidi−
λjdj±

√
λjdjλidi < 0. This shows that each eigenvalue of HG1

is negative or zero.

5 Stability Analysis of the System (18)

Similar analysis may be applied to prove stability of the system
(18). as indicated in a previous section, this system is based on
the gradient of the function G2 defined in (10). The gradient
and the Hessian matrix are given in (16a) and (16b). It will
be shown that the system converges to the principal singular
components of a matrix A by showing that the eigenvalues of
the Hessian matrix HG2 are negative as in the following result.

Proposition 8. Let A ∈ IRn×m, D ∈ IRp×p, x ∈ IRn×p, and
y ∈ IRm×p and consider the function G2 : IRn×p × IRm×p → IR
defined by G2(x, y) = tr{xT AyD) − 1

4
tr{(xT x)2 + (yT y)2}.

Then, the equilibrium points of (18), i.e., the solutions of
∇G2(x, y) = 0 are

x̂ = u
√

ΣD,

ŷ = v
√

ΣD,
(32)

where u, v and Σ are as defined in (3). Let P =
limt→∞ x(t)T x(t), Q = limt→∞ y(t)T y(t), and B =
limt→∞ x(t)T Ay(t). Then P = Q = ΣD and B = Σ2D. The
maximum of G2 is

1

2
tr(ΣD) =

1

2

p∑

i=1

σidi. (33)

Hence the elements of Σ are ordered so that if di < dj then
σi < σj .

Proof: We first show that P,Q and B are diagonal and that
P = Q. As t → ∞ we have

BD = P 2,

BT D = Q2.
(34)

Since P and Q are symmetric, then BD = DBT and BT D =
DB. By adding the two equations, we obtain (B + BT )D =
D(B + BT ). From Proposition 9 (see Appendix) it follows that
B + BT = D1 for some diagonal matrix D1. If the eigenvalues
of DD1 are all distinct, then P = Q = D2 for some diagonal
matrix D2. Hence BD = DBT = D(D1 − B) or BD + DB =
DD1. From Proposition 10 (see Appendix), we obtain that B is
diagonal. Since the eigenvalues of ΣD are assumed distinct, it
follows that P = Q is diagonal. To find the equilibrium points
of the system, i.e., ∇G2(x̂, ŷ) = 0, assume that P = Q = D2,
x̂ = u

√
D2 and ŷ = v

√
D2 for some diagonal matrix D2. From

the equation ∇G2(x̂, ŷ) = 0 it follows that

AŷD = x̂x̂T x̂,

AT x̂D = ŷŷT ŷ.

Hence,

uΣ
√

D2D = u
√

D2D2,

vΣ
√

D2D = v
√

D2D2,

from which it follows that D2 = ΣD. This shows that the
equilibrium points of the system (18) are of the form x̂ = u

√
ΣD

and ŷ = v
√

ΣD.
The Hessian matrix at the equilibrium point (32) is

HG2 = D ⊗
[

0 A
AT 0

]
− ΣD ⊗

[
I 0
0 I

]

− I ⊗
[

uΣDuT 0
0 vΣDvT

]

− K

[
u
√

ΣD
0

]
⊗

[√
ΣDuT 0

]

− K

[
0

v
√

ΣD

]
⊗

[
0

√
ΣDvT

]
.

(35)
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To compute the eigenvalues of HG2(x̂, ŷ), one may use an analy-
sis similar to that in the proof of Proposition 7, which shows that
all eigenvalues of HG2 are negative or zero.

Clearly, tThe eigenvalues of the ma-

trix I ⊗
[

uΣDuT 0
0 vΣDvT

]
corresponding to the eigenvectors

I ⊗
[

u
v

]
, and I ⊗

[
−u
v

]
are those of the matrix ±I ⊗ DΣ.

Also, the eigenvalues of the matrix K

[
u
√

ΣD
0

]
⊗

[√
ΣDuT 0

]
corresponding to the eigenvectors I ⊗

[
u
v

]
and

I ⊗
[
−u
v

]
are those of the matrix

√
ΣD ⊗

√
ΣD.

The eigenvalues of the matrix K

[
0

v
√

ΣD

]
⊗

[
0√

ΣDvT

]
cor-

responding to the eigenvectors I ⊗
[

u
v

]
are those of the matrix

±
√

ΣD ⊗
√

ΣD.
As in Proposition 7, since K

√
ΣD⊗

√
ΣD =

√
ΣD⊗

√
ΣDK,

and KT = K = K−1, then the eigenvalues of the Hessian matrix

HG2 are either of the form λjdi−λidi−λjdj ±
√

λjdjλidi ≤ 0,

or −λjdi −λidi −λjdj ±
√

λjdjλidi < 0. This shows that each

eigenvalue of HG2 is negative or zero.
Finally, the eigenvalues associated with the block eigenvector

matrix I⊗
[

u2 −u2

v2 v2

]
are the eigenvalues of D⊗

[
0 Σ2

−Σ2 0

]
−

DΣ ⊗
[

I 0
0 I

]
which are either of the form diλj − diλi =

di(λj − λi) or −diλj − diλi = di(λj + λi). Here λi and λj

are eigenvalues of Σ and Σ2, respectively. Since λj < λi, it
follows that eigenvalues of HG2(x̂, ŷ) in (35) corresponding to
these eigenvectors are negative or zero.

Now, the value of G2 at the equilibrium points are of the form
1
2

∑p

k=1
dkσk , which is maximum only if the diagonal elements

of Σ are ordered so that if di < dj then σi < σj .

6 Conclusion

This paper represents an attempt to utilize dynamical system
theory for deriving systems that converge to the principal sin-
gular components of a given matrix. Specifically, using an un-
constrained optimization problems, gradient dynamical systems
for computing the principal singular components of arbitrary
matrix are derived. Invariant sets and domain of attractions of
these systems are determined. Also it shown that these systems
are globally convergent in that they converge to the actual sin-
gular triplets starting from any full rank initial conditions. The
limiting behavior of these systems is influenced by incorporating
a diagonal matrix D. It should be stated that the work presented
here requires more detailed analysis and generalization. Exten-
sion of the proposed rules to complex data and matrices can be
achieved with minor modifications.

7 Appendix

In this appendix, we list a number of results that are used in
proving some of the propositions of this work.

Proposition 9. Let D,A ∈ IRn×n be positive definite matrices
and assume that D is diagonal having distinct eigenvalues. If
AD = DA, then A is diagonal.

Proof: Assume that A = [aij ] and D = diag(µ1, · · · , µn), then
for each i, j we have aijµj = µiaij or (µj − µi)aij = 0. Thus
aij = 0 for i 6= j, i.e., A is diagonal.

Proposition 10 [13]. Let B, D ∈ IRp×p and assume that D is
diagonal and all eigenvalues of D are distinct. If BD + DB is
diagonal, then B is diagonal.

Proposition 11. Let A, B, C ∈ IRn×n, then the matrices
ABC,BCA, CAB are similar and thus have the same set of
eigenvalues.
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