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Abstract— In this paper we extend our previous results
on coordinated control of rotating rigid bodies to the case
of teams with heterogenous agents. We assume that only a
certain subgroup of the agents (the leaders) are vested with
the main control objective, that is, maintain constant relative
orientation amongst themselves. The rest of the team must meet
relaxed control specifications, namely maintain their respective
orientations within certain limits dictated by the orientation
of the leaders. The proposed control laws respect the limited
information each rigid body has with respect to the rest of its
peers (leaders or followers) as well as with the rest of the team.
Each rigid body is equipped with a control law that utilizes the
Laplacian matrix of the associated communication graph, which
encodes the communication links between the team members.
Similarly to the linear case, the convergence of the multi-agent
system relies on the connectivity of the communication graph.

I. INTRODUCTION

Cooperative distributed control strategies for multiple ve-

hicles have gained increased attention in recent years in

the control community, owing to the fact that such strate-

gies provide attractive solutions to large-scale multi-agent

problems, both in terms of complexity and computational

load. A typical control objective for a team of agents

is the state-agreement or consensus problem. This design

objective has been extensively pursued in the recent years.

Several results are based on treating the vehicle as a single

integrator [11],[1],[5],[14] or double integrator [16],[10],[6].

A common analysis tool that is frequently used to model

these distributed systems is algebraic graph theory [4].

Extending the previous results to systems whose dynamics

are nonlinear is a nontrivial task. A large and important class

(in terms of applications) of systems whose dynamics are

nonlinear are systems of rotating rigid bodies. Motivated

by the fact that – despite the nonlinear dynamics – linear

controllers can stabilize a single rigid body [19], in this paper

we propose a control strategy that exploits graph theoretic

tools for cooperative control of multiple rigid bodies. We

extend our previous work [2] in this area to address cases

of teams with heterogenous agents. For some applications

(i.e., Earth monitoring or stellar observation using a satellite

cluster with a large baseline) it may be necessary for some

satellites to acquire and maintain a certain (perhaps nonzero)

relative orientation among themselves. One of the primary

control objective is therefore to stabilize a subgroup of the
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agent team (leaders) to certain relative orientations. The

orientations of the rest of the team (followers) are to remain

within a certain orientation boundary, determined by the

convex hull of the leaders’ orientations. At the same time,

each agent is allowed to communicate its state (orientation

and angular velocity) only with certain members of the team.

These constraints limit the information exchange between the

agents. The proposed control law for each agent respects the

limited information each rigid body has with respect to the

rest of the team.

Cooperative control of multiple rigid bodies has been

addressed recently by many authors, notably [7], [20], [8],[9].

While these papers use distributed consensus algorithms to

achieve the desired objective, the specific algebraic graph

theoretic framework (that is, the use of graph Laplacians)

encountered in this work has not been considered in these

papers. Moreover, in [12],[13], the author uses a different

parameterization for the rigid body dynamics and does not

include the type of leader-follower structure, used in this

paper. Thus, the stability analysis is different than the current

paper.

The rest of the paper is organized as follows: Section

II describes the system and the problem treated in this

paper. Section III presents the control law used for the

followers to converge to the convex hull of the leaders’

orientations, while in Section IV, the relative orientation

controller for the leaders is provided. The case of lack of

global objective is treated in Section V. Simulations that

support the theoretical results are contained in Section VI,

while Section VII summarizes the results of this work and

indicates possible extensions.

II. SYSTEM AND PROBLEM DEFINITION

We consider a team of N rigid bodies (henceforth called

agents) indexed by N = {1, . . . , N} . The dynamics of agent

i are given by [19]:

Jiω̇i = S (ωi) Jiωi + ui, i ∈ N , (1)

where ωi ∈ R
3 is the angular velocity vector, ui ∈ R

3 is the

acting torque vector, and Ji is the symmetric inertia matrix of

agent i, all expressed in the ith agent’s body fixed frame. The

matrix S(·) denotes a skew-symmetric matrix representing

the cross product between two vectors, i.e. S(v1)v2 = −v1×
v2.

In this paper, the orientation of the rigid bodies with

respect to the inertial frame will be described in terms of the

Modified Rodriguez Parameters (MRPs)[15], [17]. We hasten

to point out that this choice can be done without loss of

generality. If necessary, the analysis in terms of quaternions

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeB03.5

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 801



can be carried out by the interested reader mutatis mutandis

following the developments below. The use of the MRPs,

nonetheless, simplifies the analysis and the ensuing formulas.

Another advantage of the MRPs is the fact that it can

parameterize the attitude for eigenaxis rotations up to 360

deg. In contrast, other three-dimensional parameterizations

are limited to eigenaxis rotations of less than 180 deg; see

[18], [15] for more details.

Using the MRPs, the kinematics of agent i are given by:

σ̇i = G (σi)ωi, i ∈ N , (2)

where G : R
3 7→ R

3×3 is given by

G (σi) =
1

2

(

1 − σT

iσi

2
I3 − S (σi) + σiσ

T

i

)

.

The matrix G(σi) has the following properties [19]:

σT

iG (σi)ωi =

(

1 + σT

iσi

4

)

σT

iωi, (3)

G (σi)GT (σi) =

(

1 + σT

iσi

4

)2

I3. (4)

We assume that the agents belong to either one of the two

subsets, namely, the subset of leaders N l, or to the subset

of followers N f , i.e. N l
⋂

Nf = ∅ and N l
⋃

N f = N .

A first objective of each leader is to converge to a desired

relative orientation with respect to the rest of the leaders.

We assume that each leader is assigned to a specific subset

N l
i ⊆ N l of the rest of the leaders, called the ith’s leader

agent leader communication set. This is the set of leaders the

ith leader can communicate in order to achieve the desired

objective. The control objective of each leader i ∈ N l is to

be stabilized in a desired relative orientation σd
ij with respect

to each member j ∈ N l
i . Moreover, it is assumed that the

communication topology is bidirectional in the sense that

j ∈ N l
i if and only if i ∈ N l

j for all i, j ∈ N l, i 6= j.

A second objective is for the leaders to “drag” the follow-

ers along so that, at the final leader configuration, the latter

are “contained” within the convex hull of the leader orienta-

tions. This is a sub-case of the containment control problem

dealt with in multi-agent systems. This problem has also been

encountered in [3]. The reader is referred to that reference

for a discussion on specific applications of this problem. For

this objective, both the leaders and the followers are assigned

to a specific subset Ni ⊆ N of the rest of the team called

ith agent leader-follower communication set. This is the set

of other agents the ith agent can communicate with in order

to achieve the desired objective (that is, containment of the

followers’ final orientations in the convex hull of the leaders’

orientations). For this case we assume that for each leader

i ∈ N l, the sets Ni, N
l
i are disjoint, i.e. Ni ∩ N l

i = ∅,

for all i ∈ N l. Hence, for this objective the leader-follower

communication set of each leader contains only followers.

The previous two control objectives can be encoded by two

different communication graphs, that are defined with respect

to the limited communication of the agents as follows:

1) The leader communication graph Gl = {V l, El, C} is

an undirected graph that consists of: (i) a set of vertices

V l = N l indexed by the leaders of the multi-agent

team, (ii) a set of edges, El = {(i, j) ∈ V l × V l|i ∈
N l

j} containing pairs of nodes that represent inter-

leader formation specifications, and (ii) a set of labels

C = {cij}, where (i, j) ∈ El, that specify the desired

inter-agent relative positions in the leader formation

configuration.

2) The leader-follower communication graph G = {V, E}
is an undirected graph that consists of: (i) a set of

vertices V = {1, ..., N} indexed by the team members

and (ii) a set of edges, E = {(i, j) ∈ V × V |i ∈ Nj}
containing pairs of nodes that represent inter-agent

communication specifications.

III. CONTROL DESIGN AND STABILITY ANALYSIS

A. Tools from Algebraic Graph Theory

In this section we first review some tools from algebraic

graph theory [4] that we use in the sequel.

For an undirected graph G with n vertices, the adjacency

matrix A = A(G) = (aij) is the n × n symmetric matrix

given by aij = 1, if (i, j) ∈ E and aij = 0, otherwise.

If there is an edge connecting two vertices i, j, that is,

(i, j) ∈ E, then i, j are called adjacent. A path of length

r from a vertex i to a vertex j is a sequence of r + 1
distinct vertices starting with i and ending with j such

that consecutive vertices are adjacent. If there is a path

between any two vertices of G, then G is called connected.

Otherwise it is called disconnected. The degree di of vertex

i is the number of its neighboring vertices, that is, di =
{#j : (i, j) ∈ E} = |Ni|. Let ∆ be the n × n diagonal

matrix with elements di on the diagonal. The (combinatorial)

Laplacian of G is the symmetric positive semidefinite matrix

L = ∆ − A. For a connected graph, the Laplacian has a

simple zero eigenvalue and the corresponding eigenvector is

the vector of ones, denoted by
−→
1 .

B. Multiple Stationary Leaders

In this paper, the leaders are responsible for a global

objective and their evolution is independent of the followers’

motion. In this section we assume first that the leaders

have converged to some desired final orientations with zero

angular velocity, i.e., we have

σi = σd
i , ωi = 0, i ∈ N l. (5)

Consider the case when the leaders must “drag” the

followers to a configuration where the orientations of the

latter are “contained” within the convex hull of the leader ori-

entations in the final formation configuration. In the multiple

satellites scheme, this case implies, for instance, coverage of

a specific area. In this case the leaders’ orientations dictate

the “boundary” of the area to be covered.

The control law of the followers is given by:

ui = −GT (σi)
∑

j∈Ni

(σi − σj) −
∑

j∈Ni

(ωi − ωj), i ∈ N f

(6)
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Let u, ω, σ ∈ R
3N be the stack vectors of all the control

inputs, the angular velocities and the orientations of the

multi-agent team, respectively. Consider

V (σ, ω) =
N

∑

i=1

(

1

2
ωT

iJiωi

)

+
1

2
σT (L ⊗ I3) σ

as a candidate Lyapunov function, where L is the Laplacian

of the leader-follower communication graph G. Differentiat-

ing with respect to time we obtain

V̇ (σ, ω) =
N
∑

i=1

(ωT

iJiω̇i) + σT (L ⊗ I3) σ̇ =

=
N
∑

i=1

(

uT

iωi +
∑

j∈Ni

(σi − σj)
T
G (σi) ωi

)

,

and since ωi = 0, for all i ∈ N l, from (6) we get

V̇ (σ, ω) =
∑

i∈N f

ωT

i







ui + GT (σi)
∑

j∈Ni

(σi − σj)







= −
∑

i∈N f

ωT

i

∑

j∈Ni

(ωi − ωj)

(7)

Quoting again the fact that ωi = 0, for all i ∈ N l, we get

V̇ (σ, ω) = −ωT (L ⊗ I3) ω ≤ 0.

The last inequality implies that V remains bounded. The

level sets of V define compact sets in the product space of

the angular velocities and relative orientations of the agents.

Specifically, the set Ωc = {(ω, σ) : V (σ, ω) ≤ c} for c > 0
is closed by continuity of V . For all (ω, σ) ∈ Ωc we have

ωT

iJiωi ≤ 2c ⇒ ‖ωi‖ ≤
√

2c
λmin(Ji)

. Furthermore,

σT (L ⊗ I3)σ ≤ 2c ⇒
1

2

N
∑

i=1

∑

j∈Ni

‖σi − σj‖
2 ≤ 2c.

Hence, ‖σi − σj‖
2 ≤ 4c, for all (i, j) ∈ E. Connectivity of

G ensures that the maximum length of a path connecting two

vertices of the graph is at most N − 1. Hence ‖σi − σj‖ ≤
2
√

c (N − 1), for all i, j ∈ N .

By LaSalle’s invariance principle, the system converges to

the largest invariant set inside the set

M = {(ω, σ) : (ωT (L ⊗ I3)ω = 0)} .

Since L ⊗ I3 is positive semidefinite, if follows that

(L ⊗ I3)ω = 0 which implies that

Lω1 = Lω2 = Lω3 = 0, (8)

where ω1, ω2, ω3 ∈ R
N are the stack vectors of the three

coefficients of the agents’ angular velocities, respectively.

Connectivity of the leader-follower communication graph

implies that L has a simple zero eigenvalue with correspond-

ing eigenvector
−→
1 . Equation (8) now implies that ω1, ω2, ω3

are eigenvectors of L that correspond to the zero eigenvalue,

thus they belong to span{
−→
1 }. Hence ωi = ωj for all

i, j ∈ N , implying that all ωi’s converge to a common value

ω∗ at steady state. Since ωi = 0, for all i ∈ N l, we have that

ω∗ = 0, and hence all agents assume zero angular velocities.

By virtue of (1), the control inputs of all followers tend

to zero, and

ui = −GT (σi)
∑

j∈Ni

(σi − σj) = 0

which implies that

G (σi) GT (σi)
∑

j∈Ni

(σi − σj) = 0

or
(

1 + σT

iσi

4

)2
∑

j∈Ni

(σi − σj) = 0

and finally,
∑

j∈Ni

(σi − σj) = 0, ∀i ∈ N f .

Hence, the agents’ orientations at steady state satisfy:

(

Lσ1
)

i
=

(

Lσ2
)

i
=

(

Lσ3
)

i
, i ∈ N f , (9a)

σi = σd
i , i ∈ N l, (9b)

where for a vector a, (a)i denotes its ith element. The

solutions of (9) have been studied in [3]. In particular,

Theorem 2 in [3] states that for a connected leader-follower

communication graph and a nonempty set of leaders, the

orientation of each follower, as given by the solution of (9),

lies in the convex hull of the leaders’ orientations.

The previous derivations are summarized as follows:

Theorem 1: Assume that the leader-follower communica-

tion graph G is connected and that the subset of leaders is

nonempty. Moreover assume that (5) holds. Then the control

law (6) drives the followers to the convex hull of the leaders’

orientations with zero angular velocities.

IV. LEADER RELATIVE ORIENTATION CONTROL DESIGN

In this section we present a control algorithm that drives

the team of leaders to the desired relative orientations. This

is a problem that resembles the formation control problem

in multi-vehicle systems. The relative orientation for each

pair of leaders may be different, and can be dictated by

the mission requirements. In this section, we thus impose

the specification that for each pair (i, j) ∈ El, there exists

a desired relative orientation σd
ij ∈ R

3, to which the pair

leaders should converge. Next, we provide a control law that

respects the limited communication requirements dictated by

the leader communication graph Gl in order to achieve this

objective.

We first assume that a leader L ∈ Nl plays the role of a

reference point around which the desired relative orientations

should be satisfied. This can represent a satellite that is

initially aware of the desired target area. We assume that this

satellite has already been stabilized to a desired equilibrium

point

σL = σd
L, ωL = 0. (10)
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The control design for the case of single rigid body stabi-

lization can be found in [19]. The result of this section is

summarized in the following theorem.

Theorem 2: Assume that the leader communication graph

Gl is connected and that (10) holds. Then the control strategy

ui = −GT (σi)
∑

j∈N l
i

(

σi − σj − σd
ij

)

−
∑

j∈N l
i

(ωi − ωj),

(11)

where i ∈ N l\ {L} drives the leaders to the desired relative

orientations.

Proof: For each leader i ∈ N l, we define the “cost

function”

γi =
1

2

∑

j∈N l
i

∥

∥σi − σj − σd
ij

∥

∥

2

and we introduce

V (σ, ω) =
∑

i∈N l

(

1

2
ωT

iJiωi

)

+
∑

i∈N l

(

1

2
γi

)

as a candidate Lyapunov function. We then have

V̇ (σ, ω) =
∑

i∈N l

(ωT

iJiω̇i) +
1

2







∑

i∈N l

(∇Tγi)







σ̇.

Without loss of generality, we denote the leaders’ indices by

1, . . . , |N l| and we also note that in this section, the notation

σ, ω refers to the stack vectors of the leaders’ orientations

and angular velocities respectively. With a slight abuse of

notation we can now write the last term in the previous

equation as

∇γi =

[

∂Tγi

∂σ1
. . .

∂Tγi

∂σ|N l|

]

,

where,

∂γi

∂σj

=















∑

j∈N l
i

(σi − σj) + σd
ii, i = j

−
(

σi − σj − σd
ij

)

, j ∈ N l
i , j 6= i,

0, j /∈ N l
i .

and where we have defined σd
ii = −

∑

j∈N l
i
σd

ij . Hence,

∑

i∈N l

∂γi

∂σj

=
∂γj

∂σj

+
∑

i∈N l
j

∂γi

∂σj

=
∑

i∈N l
j

(σj − σi) + σd
jj +

∑

i∈N l
j

(−σi + σj + σd
ij)

= 2
∑

i∈N l
j

σj − 2
∑

i∈N l
j

σi + 2σd
jj

= 2djσj − 2
∑

i∈N l
j

σi + 2σd
jj .

It follows that

∑

i∈N l

∇γi =
∑

i∈N l

[

∂γi

∂σ1
· · ·

∂γi

∂σ|N l|

]

= 2
[

d1σ1 · · · d|N l|σ|N l|

]

− 2

[ ∑

j∈N l
1

σj · · ·
∑

j∈N l

|N l|

σj

]

+ 2
[

σd
11 · · · σd

|N l||N l|

]

,

and finally,
∑

i∈N l

∇γi = 2
((

Ll ⊗ I3

)

σ + cℓ

)T

, (12)

where cℓ =
[

σd
11 · · ·σ

d
|N l||N l|

]T

and Ll is the Laplacian

matrix of the leader communication graph. Using (12), V̇
can be written as

V̇ (σ, ω) = uTω +
((

Ll ⊗ I3

)

σ + cℓ

)T

G (σ)ω.

where

G (σ) = blockdiag
(

G (σ1) , . . . , G
(

σ|N l|

))

,

Substituting (11), we have

V̇ =
∑

i∈N l

ωT

i







ui + GT (σi)
∑

j∈N l
i

(

σi − σj − σd
ij

)







from which it follows that

V̇ = −
∑

i∈N l\{L}

ωT

i







∑

j∈N l
i

(ωi − ωj)







which, using the fact that ωL = 0, yields

V̇ = −ωT
(

Ll ⊗ I3

)

ω ≤ 0.

Using similar arguments with the proof of Theorem 1,

we conclude that since the leader communication graph is

connected, all leaders attain the same angular velocities at

steady state. Since ωL = 0, this common angular velocity

is zero. We thus have shown that ωi = 0 for all i ∈ N l

at steady state. This, in turn, implies that ui = 0 for all

i ∈ N l and following again the arguments of the proof of

Theorem 1, we get
∑

j∈N l
i

(

σi − σj − σd
ij

)

= 0, ∀i ∈ N l\ {L}

at steady state. This implies that the leaders orientations

satisfy the following equations at steady state
((

Ll ⊗ I3

)

σ + cl

)

i
= 0, ∀i ∈ N l\ {L} (13a)

σL = σd
L. (13b)

For all i ∈ N l\{L}, let σd
i denote the desired orientation

of leader i with respect to the global coordinate frame. It is

then obvious that σd
ij = σd

i − σd
j for all (i, j) ∈ El. Define

σi−σj −σd
ij = σi−σj −(σd

i −σd
j ) = σ̃i− σ̃j . The condition

((

Ll ⊗ I3

)

σ + cl

)

i
= 0 for all i ∈ N l\ {L} along with the

804



fact that σL = σd
L implies that

(

Ll ⊗ I3

)

σ̃ = 0, equivalently,

Llσ̃1 = Llσ̃2 = Llσ̃3 = 0,, where σ̃1, σ̃2, σ̃3 are the stack

vectors of each of the three coefficients of σ̃ of the leaders’

orientations, respectively. The fact that Gl is connected im-

plies that Ll has a simple zero eigenvalue with corresponding

eigenvector the vector of ones. This guarantees that each one

of the vectors σ̃1, σ̃2, σ̃3 are eigenvectors of Ll belonging to

span{
−→
1 }. Therefore, all σ̃i are equal to a common vector

value, say c. Hence σ̃i = c for all i ∈ N l, which implies

that σi − σj = σd
ij where j ∈ N l

i and for all i ∈ N l. We

conclude that the leaders converge to the desired, specified

configuration of relative orientations. ♦

V. THE CASE OF LACK OF A GLOBAL OBJECTIVE

In this section we assume that no global objective is

imposed by a team of leaders. In particular, we assume that

Nl = ∅. The objective is to build distributed algorithms that

drive the team of multiple rigid bodies to a common constant

orientation with zero angular velocities.

In order to ensure that all agents converge to the same

constant orientation, in this section we show that it is suffi-

cient that one agent has a damping element on the angular

velocity. In contrast, the control design of [12] assumes that

all agents have a damping element in their angular velocity.

Without loss of generality, we assume that this is agent 1.

The following theorem is the main result of this section:

Theorem 3: Assume that the leader-follower communica-

tion graph is connected. Then the control strategy

ui = −GT (σi)
∑

j∈Ni

(σi − σj)−
∑

j∈Ni

(ωi − ωj)−aiωi, (14)

where i = 1, . . . , N and ai = 1 if i = 1, and ai =
0 otherwise, drives the rigid bodies to the same constant

orientation with zero angular velocities.

Proof: We choose again

V (σ, ω) =
N

∑

i=1

(

1

2
ωT

iJiωi

)

+
1

2
σT (L ⊗ I3) σ

as a candidate Lyapunov function. Differentiating with re-

spect to time, and after some algebraic manipulation, we

obtain

V̇ (σ, ω) = −ωT (L ⊗ I3)ω − ‖ω1‖
2 ≤ 0.

It follows that ω remains bounded. By LaSalle’s invariance

principle, the system converges to the largest invariant set

inside the set

M = {(σ, ω) : (ωT (L ⊗ I3) ω = 0) ∧ (ω1 = 0)} .

Similarly to the proof of Theorem 1, the condition

ωT (L ⊗ I3) ω = 0 guarantees that all ωi’s converge to a

common value. Since ω1 = 0, this common value is zero.

Following now the same steps as in the proof of Theorem 1,

we conclude that the system reaches a configuration in which
∑

j∈Ni

(σi − σj) = 0 for all i ∈ N and thus

(L ⊗ I3) σ = 0.

Connectivity of the leader follower communication graph

implies now that the agents attain a common constant orien-

tation at steady state. ♦

VI. NUMERICAL EXAMPLE

In this section we present a numerical example that

supports the theoretical developments.

The simulation involves four rigid bodies indexed from

1 to 4. We assume that there are two leaders N l = {1, 2}
and two followers N f = {3, 4}. We further assume that

leader 1 is the reference point, and according to (10) we have

σ1 = σd
1 = [1.02,−1.12, 0.4], and ω1 = 0. The reference

point σd
1 was randomly produced for this example. We also

have N l
2 = {1} and σd

12 = [1,−1, 1]. The control law of

leader 2 is given by (11). The communication sets of the

followers are given by N3 = {1, 4} and N4 = {2, 3} and

their control laws by (6). The inertia matrices of the four

rigid bodies have been chosen here as J1 = diag (18, 12, 10),
J2 = diag (22, 16, 12), J3 = diag (17, 14, 12) and J4 =
diag (15, 13, 8).

Figures 1, 2 show the plots of the orientations and angular

velocities of the four rigid bodies with respect to time in

all three coordinates. We observe that the system behaves

as expected. As witnessed in Figure 1, the orientations of

the leaders converge to the desired relative value while

the orientations of the followers converge to the convex

hull of the leaders’ final orientations. The angular velocities

converge to zero, as shown in Figure 2. For this example,

this implies that the final orientations of the followers 3,4

converge to values that are between the final values of the

two leaders 1,2 in all three orientation coordinates.

VII. CONCLUSIONS

We propose distributed control strategies that exploit graph

theoretic tools for cooperative rotational control of multiple

rigid bodies. We assume that the agents are divided into

leaders and followers. The leaders should maintain certain

relative orientations with each other, while the followers’

orientations are to remain within a certain region that is

dictated by the orientations of the leaders. Similarly to the

case with linear dynamics, the convergence of the multi-

agent system was shown to rely on the connectivity of the

communication graph. Further research efforts will involve

the cases of switching interconnection topology, as well as

the case of unidirectional communication.
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Fig. 1. Time histories of the orientations for the four rigid bodies using
the leader-follower structure.
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