
Distributed Topology Control of Dynamic Networks

Michael M. Zavlanos, Alireza Tahbaz-Salehi, Ali Jadbabaie and George J. Pappas

Abstract— In this paper, we present a distributed control
framework for controlling the topology of dynamic multi-agent
networks. Agents are equipped with local sensing and wireless
communication capabilities, however, due to power constraints,
they are required to switch between two modes of operation,
namely active and sleep. The control objective investigated in
this paper is to determine distributed coordination protocols
that regulate switching between the operation modes of every
agent such that the overall network guarantees multi-hop
communication links among a subset of so called boundary
agents. In the proposed framework, coordination is based
on a virtual market where every request to switch off is
associated with a bid. Combinations of requests are verified
with respect to connectivity and the one corresponding to the
highest aggregate bid is finally served. Other than nearest
neighbor information, our approach assumes no knowledge of
the network topology, while verification of connectivity relies on
notions of algebraic graph theory as well as gossip algorithms
run over the network. Integration of the individual controllers
results in an asynchronous networked control system for which
we show that it satisfies the connectivity specification almost
surely. We finally illustrate efficiency of our scalable approach
in nontrivial computer simulations.

I. INTRODUCTION

Distributed control of networked multi-agent systems

has recently received considerable attention. Such systems

typically consist of large numbers of inexpensive agents

equipped with integrated sensing and wireless communica-

tion capabilities. While the agents’ primary task is detection

of certain physical changes within their proximity, their

communication capabilities enable them to share the indi-

vidually collected data with their peers, in order to achieve a

global coordinated objective. Consequently, connectivity of

the underlying network is a critical requirement.

In the presence of mobile agents or agents that can switch

between active and sleep operating modes, maintaining con-

nectivity of the underlying network becomes a challenging

task due to the continuous changes in the network topology.

In the former class of problems belongs [1], where a measure

of local connectivity of a network is introduced that under

certain conditions is sufficient for global connectivity as well

as [2], where a controllability framework for state-dependent

dynamic graphs is developed. Distributed maintenance of

nearest neighbor links in formation stabilization is addressed

in [3], while in [4] topology control of a mobile network
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is achieved by means of gossip algorithms and market-

based coordination. In [5], the authors address the problem

of maximizing the second smallest eigenvalue of the graph

Laplacian, while a decentralized approach to this problem

based on supergradient methods and distributed eigenvector

computation is considered in [6]. Network connectivity for

double integrator agents is investigated in [7], where existen-

tial as well as optimal controller design results are discussed.

Equally challenging problems arise when the changes in the

network topology are due to power constraints that require

agents to occasionally switch off. In this context, duty cycling

of sensor networks is investigated in [8]. Similarly, cone

based topology control for ad-hoc sensor networks [9] as well

as distributed connectivity control algorithms in the absence

of exact location information [10] are among other variants

of the problem investigated in the literature.

Inspired by the problems of the latter class, in this paper,

we propose a distributed strategy for topology control of a

network of stationary agents, each one capable of switching

between on and off operation modes. In particular, given a

subset of so called boundary agents, we design local coordi-

nation protocols that allow agents to individually switch on

and off, while maintaining a connected network among the

boundary agents. Our approach assumes no knowledge of the

network topology, other than nearest neighbor information,

while the proposed coordination scheme depends on the

operation status of every agent. In particular, off agents can

only switch on if by doing so they do not create clusters

of active agents, disconnected from the main network. On

the other hand, every request to switch off is associated

with a bid and gossip algorithms run over the network allow

agents to verify combinations of requests with respect to the

connectivity specification and serve the one corresponding

the highest aggregate bid. Connectivity is captured by the

graph Laplacian matrix and can be checked in a distributed

way by comparing the asymptotic values of a randomly

initialized consensus run by all active agents in the network

that do not request to switch off. Integration of the individual

controllers results in a distributed networked multi-agent

system for which we show that connectivity of the network

involving the boundary agents is guaranteed almost surely.

The rest of this paper is organized as follows. In Section

II we define the problem of topology control of networked

multi-agent systems and develop the necessary graph the-

oretic background to capture connectivity. In Section III

we develop the proposed distributed coordination protocols

and discuss their properties. Finally, nontrivial computer

simulations illustrating the efficiency of our approach are

presented in Section IV.
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II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a group of N stationary agents with integrated

sensing and wireless communication capabilities, deployed in

a p-dimensional space R
p. Let xi ∈ R

p denote the position

of agent i and assume that each agent is subject to energy

constraints and as a result, has two modes of operation,

namely ON (active) and OFF (sleep). When ON, agent i is

capable of communicating with other agents located in a disk

of radius rc centered at xi. When OFF, all communication

links with other agents in the network are disabled. Finally,

we assume a set of so called boundary agents, which are

agents that remain permanently ON. Such agents would

be placed in key locations where continuous sensing and

communication is required.

The setup described so far can be captured using an

undirected dynamic graph G(t) = (Vb ∪ V(t), E(t)), where

Vb denotes the fixed set of boundary agents, V(t) denotes the

set of agents that are ON at time t and E(t) denotes the set

of communication links between all ON agents in Vb ∪V(t)
at time t. Any pair of ON agents i and j at time t such that

‖xi − xj‖ < rc are called neighbors or adjacent and the

associated communication link is denoted by (i, j) ∈ E(t).
In particular, we can define the set of neighbors of agent i at

time t by Ni(t) = {j ∈ Vb ∪V(t) | (i, j) ∈ E(t)}. Then, the

objective investigated in this paper can be stated as follows.

Problem 1 (Distributed Topology Control): Given a set of

N agents, consisting of boundary and non-boundary ones,

determine a distributed control framework that regulates the

operation status of all non-boundary agents such that a com-

munication path is maintained between any two boundary

agents at all times.

The existence of a communication path between any

two boundary agents is closely related to the notion of

connectivity of the graph G(t). In particular, we say that

G(t) is connected at time t, if there exists a path, i.e., a

sequence of distinct nodes such that consecutive nodes are

adjacent, between any two nodes in G(t). Hence, Problem 1

equivalently implies that we want G(t) to remain connected

for al time.1 The desired connectivity objective can be

captured using the algebraic representation of the dynamic

graph G(t). In particular, the structure of any dynamic graph

G(t) can be equivalently represented by a dynamic Laplacian

matrix,

L(G(t)) = D(G(t)) − A(G(t))

where A(G(t)) = (aij(t)) denotes the |Vb∪V(t)|×|Vb∪V(t)|
adjacency matrix of the graph G(t), such that aii(t) = 0
and aij(t) = 1 if and only if (i, j) ∈ E(t), and D(G(t)) =
diag

(
∑

j∈Vb∪V(t) aij(t)
)

denotes its corresponding degree

matrix.2 The following lemma relates graph connectivity to

the spectral properties of the Laplacian matrix L(G(t)) [11].

1Clearly, communication paths between any two boundary agents may
exist even if G(t) consists of multiple connected components that are
disconnected from each other, as long as all boundary agents belong to the
same connected component. We will not deal with this case here. Instead
we will require that G(t) consists of a single connected component.

2We denote the cardinality of the set V by |V|.

Lemma 2.1: Let L(G) be the Laplacian matrix corre-

sponding to the graph G and let λ1(L(G)) ≤ λ2(L(G)) ≤
. . . be its ordered eigenvalues. Then, λ1(L(G)) = 0 with

corresponding eigenvector 1, i.e., the vector of all entries

equal to 1. Moreover, λ2(L(G)) > 0 if and only if G is

connected.

Lemma 2.1 implies that the second smallest eigenvalue,

also called the Fiedler eigenvalue, of the positive semi-

definite Laplacian matrix L(G) is strictly positive, or equiv-

alently, that kerL(G) = span{1}. As a result, we have the

following well-known result.

Theorem 2.2: Consider a fixed graph G on N nodes

associated with state variables θi(t) ∈ R each, that are

updated according to the set of linear differential equations

θ̇(t) = −L(G)θ(t), where θ(t) =
[

θ1(t) · · · θN (t)
]T

. Then

the network G is connected if and only if,

lim
t→∞

θ(t) = α1 ∈ span{1}. (1)

for all initial conditions θ(0) ∈ R
N .

In other words, Theorem 2.2 says that all nodes in G will

eventually reach a consensus on their state values θi(t), for

all initial conditions, if and only if the graph G is connected.

This theorem is in fact a special case of the well-known

distributed consensus schemes over graphs discussed in [12]–

[16]. In the case that G is disconnected, let Gc = (Vc, Ec)
denote its c-th connected component. Then,

kerL(G) = span{1Gc
| ∀ Gc}

where 1Gc
is an N ×1 vector with its i-th entry equal to 1 if

i ∈ Vc and equal to 0, otherwise. Consequently, for random

initialization of the states θ(0), limt→∞ θ(t) =
∑

c αc1Gc

such that αc ∈ R are different for different connected

components Gc almost surely. Therefore, connectivity of a

network G can be verified almost surely by comparing the

asymptotic state values (1) of all agents, for any random

initialization.

III. DISTRIBUTED COORDINATION

The main objective in this section is to derive a distributed

coordination mechanism that allows agents to switch ON and

OFF without violating the desired connectivity specification.

Clearly, agents switching ON can, in general, only increase

connectivity of the network, if by doing so they do not create

new connected components. On the other hand, switching

OFF while preserving connectivity becomes possible by

means of a distributed virtual market, where agents that are

ON bid in order to switch OFF. Combinations of switching

OFF requests can be considered simultaneously. Each such

request is verified with respect to the connectivity specifica-

tion and among the ones that are safe, those corresponding

to the highest aggregate bids are eventually processed.

Other than knowledge of the nearest neighbors of every

agent, no further information regarding the topology of

the network is required. Nevertheless, correctness of our

approach relies on knowledge of all agents participating in

every auction, which can be obtained in a distributed multi-

hop fashion, as well as on some notion of synchronization

2661



Algorithm 1 Initialization Phase for Agent i.

Require: s
[i]
ai(i) = 1, phase(i) = 1;

Require: Self-Bid b
[i]
ai(i) ≥ 0;

1: if I
[i]
ON ∪ I

[i]
OFF 6= I then

2: Find ON neighbors N
[i]
ON := {j ∈ Ni | s

[i]
ai(j) = 1};

3: Exchange status and bids with ON neighbors, i.e.,

s
[i]
ai := max

j∈N
[i]
ON

{s
[i]
ai , s

[j]
ai },

b
[i]
ai := max

j∈N
[i]
ON

{b
[i]
ai , b

[j]
ai };

4: Find ON agents, I
[i]
ON := {j ∈ I | s

[i]
ai(j) = 1};

5: else if I
[i]
ON ∪ I

[i]
OFF = I then

6: if wait(i) = 0 then

7: Set wait(i) := wait(i) + 1 and repeat steps 2-3;

8: else if wait(i) = 1 then

9: Set Ri := 2{j∈I | j=argmax
(k)
l∈I

{b[i]ai
(l)}}

10: Set I
[i]
OFF := I\I

[i]
ON;

11: Switch to Verification Phase, i.e., phase(i) = 2;

12: end if

13: end if

of all agents to the same auction. Since, distributed systems,

including the one proposed in this paper, are in general

asynchronous, the desired synchronization is event-based and

is obtained by labeling every auction in the set {1, 2, 3}
and requiring that any information exchange takes place

only among neighbors that are in equally labeled auctions.

Effectively, all agents that are ON are always synchronized

in the sequence of auctions {1, 2, 3, 1, 2, 3, . . . }. Depending

on the status of an agent, the coordination mechanism can be

decomposed into an initialization phase, a verification phase

and a decision phase for ON agents as well as a switching

ON phase for OFF agents.

A. Initialization Phase for ON Agents

As discussed above, any new auction ai ∈ {1, 2, 3} that is

initialized requires knowledge of all the agents participating

in that auction. This information is encoded in a status vector

s
[i]
ai ∈ {0, 1}1×N such that s

[i]
ai(j) = 1 if agent j is ON and

s
[i]
ai(j) = 0 if agent j is OFF. We further define the sets

I
[i]
ON and I

[i]
OFF that consist estimates of the ON and OFF

agents in the network, respectively. Initially, every agent i

is aware of its own operation status only, i.e., I
[i]
ON = {i}

and I
[i]
OFF = ∅. On the other hand, the operation status of

the whole network is obtained when I
[i]
ON ∪ I

[i]
OFF = I. The

initialization phase for every agent i, denoted by phase(i) =

1, consists of updating I
[i]
ON, given an estimate of I

[i]
OFF.

During this process, agent i also collects bids b
[i]
ai(j) ∈ R

from all agents j that desire to switch OFF and forms the

set of requests to be verified with respect to connectivity.

The initialization phase is described in Algorithm 1.

For every agent i entering the initialization phase we

require that s
[i]
ai(i) = 1, s

[i]
ai(j) = 0 for all j 6= i, I

[i]
ON = {i}

as well as a self-bid b
[i]
ai(i) ∈ R, such that b

[i]
ai(i) > 0, if agent

i desires to switch OFF, and b
[i]
ai(i) = 0, otherwise. Note that

b
[i]
ai(i) = 0 for all boundary agents i. While the operation

status of the whole network has not yet been obtained (line

1, Algorithm 1), agent i identifies its ON neighbors N
[i]
ON

(line 2, Algorithm 1) and updates its status and bids vectors

s
[i]
ai and b

[i]
ai , respectively (line 3, Algorithm 1), as well

as the set I
[i]
ON (line 4, Algorithm 1). Once the condition

I
[i]
ON ∪ I

[i]
OFF = I indicating full knowledge of the network

status is satisfied (line 5, Algorithm 1), one more update

of the status and bids vectors is required for agent i to

also obtain accurate knowledge of the status and bids of

all agents. This is due to the requirement that OFF agents

can only switch ON if they have ON neighbors, in order

to avoid clusters of ON agents that are disconnected from

the main network. Clearly, collecting the status and bids of

the new additions to the network requires no more than one

communication cycle once the condition I
[i]
ON ∪ I

[i]
OFF = I,

indicating that information from their ON neighbors has been

received, is satisfied (line 7, Algorithm 1). To model this

extra communication cycle, we introduce a dummy variable

wait(i), initialized at 0 and set to 1 once the extra update has

been done. The final step of the initialization phase consists

of identifying the agents associated with the k largest bids in

b
[i]
ai and forming the set of requests Ri consisting of all 2k

combinations of these agents (line 9, Algorithm 1). Having

accurate knowledge of the ON agents I
[i]
ON, agent i can also

update I
[i]
OFF and then switch to the verification phase (lines

11 and 12, Algorithm 1). Note that, since updating of the

status and bids vectors of any agent i involves information

provided by neighbors that are in the same auction ai (line

3, Algorithm 1), all agents implementing Algorithm 1 will

eventually converge to the same values for s
[i]
ai and b

[i]
ai .

B. Verification Phase for ON Agents

The verification phase for every request r ∈ Ri consists

of every ON agent i 6∈ r running a consensus update,

x[i]
ai

(r) := x[i]
ai

(r) −
∑

j∈N
[i]
ON\{r}

(

x[i]
ai

(r) − x[j]
ai

(r)
)

(2)

where x
[i]
ai(r) ∈ R is a randomly initialized scalar, on the

reduced network obtained by assuming that all agents in r are

OFF. If the reduced network is not connected, the associated

consensus will converge to equal values x
[j]
ai (r) for all agents

j ∈ I
[i]
ON\{r} with probability zero. This can be checked in

a distributed fashion, by means of a maximum and minimum

consensus on the solutions of the corresponding consensus

(2). For this, every agent i updates variables M
[i]
ai ,m

[i]
ai ∈

R
|Ri| containing the current values for all requests for

the maximum and minimum consensus, respectively. The

verification phase is described in Algorithm 2.

Running consensus (2) for request r consists of two stages,

namely initialization and updating of consensus (2) and

determining whether it has converged. With each one of these

stages and every agent i we associate variables u
[i]
ai , c

[i]
ai ∈

{0, 1}N×|Ri|, respectively, such that u
[i]
ai(j, r) = 1 (similarly,

c
[i]
ai(j, r) = 1) indicates that agent i is aware that agent j has

begun updating (similarly, has determined convergence) of
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Algorithm 2 Verification Phase for Agent i.

Require: s
[i]
ai(i) = 1, phase(i) = 2;

Require: min
j∈I

[i]
ON,r∈Ri

c
[i]
ai(j, r) = 0;

1: Find ON neighbors N
[i]
ON := {j ∈ Ni | s

[i]
ai(j) = 1};

2: Exchange information with ON neighbors, i.e.,

u
[i]
ai := max

j∈N
[i]
ON

{u
[i]
ai , u

[j]
ai },

c
[i]
ai := max

j∈N
[i]
ON

{c
[i]
ai , c

[j]
ai },

M
[i]
ai := max

j∈N
[i]
ON

{M
[i]
ai , M

[j]
ai },

m
[i]
ai := min

j∈N
[i]
ON

{m
[i]
ai ,m

[j]
ai };

3: Find set of requests that are not being updated,

R¬u := {r ∈ Ri | u
[i]
ai(i, r) = 0};

4: for all requests r ∈ R¬u do

5: Set u
[i]
ai(i, r) = 1;

6: Randomly initialize a scalar x
[i]
ai(r);

7: end for

8: Find set of requests that are being updated but have not

converged,

Ru
¬c := {r ∈ Ri | u

[i]
ai(i, r) = 1, c

[i]
ai(i, r) = 0};

9: for all requests r ∈ Ru
¬c do

10: if i 6∈ r then

11: Update x
[i]
ai(r) according to (2);

12: if {x
[i]
ai(r)} ↑ and min

j∈I
[i]
ON

u
[i]
ai(j, r) = 1 then

13: Set c
[i]
ai(i, r) := 1,

M
[i]
ai (r) := max{x

[i]
ai(r),M

[i]
ai (r)},

m
[i]
ai(r) := min{x

[i]
ai(r),m

[i]
ai(r)};

14: end if

15: end if

16: end for

consensus (2) for request r. During the initialization stage of

the verification process, every agent i identifies requests R¬u

that are not being updated yet (line 3, Algorithm 2) as well

as requests Ru
¬c that are being updated but the corresponding

consensus (2) has not yet converged (line 8, Algorithm 2).

For all requests r ∈ R¬u, agent i initializes consensus (2)

by setting u
[i]
ai(i, r) = 1 and randomly initializing a scalar

x
[i]
ai(r) (lines 5 and 6, Algorithm 2). On the other hand,

for every request r ∈ Ru
¬c, if agent i 6∈ r, it updates

x
[i]
ai(r) according to consensus (2) (line 15, Algorithm 2).

Determining whether consensus (2) for request r ∈ Ru
¬c

has converged depends not only on convergence of the

sequence {x
[i]
ai(r)}, but also on the condition that all other

ON agents I
[i]
ON have initialized the corresponding consensus

(line 12, Algorithm 2). In this way, false convergence alarms

due to delays in information propagation in the network,

are avoided. When consensus (2) for a request r ∈ Ru
¬c

has converged, agent i sets c
[i]
ai(i, r) = 1 and performs a

maximum and minimum update on the variables M
[i]
ai (r) and

m
[i]
ai(r), respectively (line 13, Algorithm 2). The verification

phase lasts as long as there exist requests r ∈ Ri for which

agent i is awaiting a convergence message c
[i]
ai(j, r) by ON

agents j ∈ I
[i]
ON, which translates to the requirement that

Algorithm 3 Decision Phase for Agent i.

Require: s
[i]
ai(i) = 1, phase(i) = 2;

Require: min
j∈I

[i]
ON,r∈Ri

c
[i]
ai(j, r) = 1;

1: Reset s
[i]

aold
i

, b
[i]

aold
i

:= 01×N , u
[i]

aold
i

, c
[i]

aold
i

:= 0N×|Ri| and

M
[i]

aold
i

:= −10
3
1×|Ri|

, m
[i]

aold
i

:= 10
3
1×|Ri|

,

where aold
i = ai − 1 (mod 3);

2: Find safe requests,

Si :=
{

r ∈ Ri | ‖M
[i]
ai (r) − m

[i]
ai(r)‖ < ǫ

}

3: if Si 6= ∅ and i ∈ argmaxr∈Si

{
∑

j∈r b
[i]
ai(j)

}

then

4: Set ai := ai and s
[i]
ai(i) := 0;

5: else

6: Set ai := ai + 1 (mod 3);

7: Set s
[i]
ai(i) := 1, I

[i]
ON := {i} and phase(i) := 1;

8: Set I
[i]
OFF := I

[i]
OFF ∪

{

argmaxr∈Si

{
∑

j∈r b
[i]
ai(j)

}}

;

9: end if

min
j∈I

[i]
ON,r∈Ri

c
[i]
ai(j, r) = 0. Note that, with every cycle

of Algorithm 2, the variables u
[i]
ai , c

[i]
ai ,M

[i]
ai ,m

[i]
ai are locally

updated with information from agent’s i ON neighbors N
[i]
ON

that are in the same auction ai (line 2, Algorithm 2), which

guarantees that eventually all variables converge to the same

values for all ON agents.

C. Decision Phase for ON Agents

Once agent i has obtained convergence messages

for all requests from all ON agents, i.e., once

min
j∈I

[i]
ON,r∈Ri

c
[i]
ai(j, r) = 1, it enters the decision

phase (Algorithm 3). Upon entering the decision phase both

variables M
[i]
ai , m

[i]
ai have converged to their global minimum

and maximum values, respectively, over the whole network,

which is due to simultaneous updating of all c
[i]
ai ,M

[i]
ai ,m

[i]
ai

(line 2, Algorithm 2).

The decision phase consists of comparing the values of

M
[i]
ai (r) and m

[i]
ai(r) for every request r ∈ Ri and deciding

safety depending on whether these values are equal or not.

In particular, every agent i identifies the set of safe requests

Si (line 2, Algorithm 3) and with every request r ∈ Si, it

associates a cost corresponding to the aggregate bid values
∑

j∈r b
[i]
ai(j) of all agents participating in this request.3 If

requests that are safe with respect to connectivity exist, i.e.,

if Si 6= ∅, then the one associated with the highest cost

is finally served. In other words, if agent i belongs to the

request with the highest cost (line 3, Algorithm 3) it switches

OFF (line 4, Algorithm 3). Otherwise, it initializes a new

auction (line 6, Algorithm 3) and updates its set of OFF

agents I
[i]
OFF by adding the agents in the highest-cost request

that is to be served (line 8, Algorithm 3). This new set of OFF

agents I
[i]
OFF is to be used in the following initialization phase

(Algorithm 1). Whether agent i stays ON or switches OFF,

it resets all variables corresponding to the previous auction

3Other cost functions could also be considered.
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Algorithm 4 Agent i OFF switching ON

Require: s
[i]
ai(i) = 0;

1: if pend(i) = 0 and agent i “wakes up” then

2: Find ON neighbors N
[i]
ON := {j ∈ Ni | s

[j]
aj (j) = 1};

3: Set ai := max
j∈N

[i]
ON

{aj} + 1 (mod 3);

4: Set pend(i) = 1;

5: else if pend(i) = 1 then

6: Find ON neighbors N
[i]
ON := {j ∈ Ni | s

[j]
aj (j) = 1};

7: if N
[i]
ON 6= ∅ and max

j∈N
[i]
ON

{aj} = ai then

8: Set s
[i]
ai(i) := 1 and phase(i) := 1;

9: Set I
[i]
ON := {i} and I

[i]
OFF := I

[l]
OFF\{i},

where l := argmax
j∈N

[i]
ON

{aj};

10: else if N
[i]
ON = ∅ then

11: Set pend(i) = 0;

12: end if

13: end if

(line 1, Algorithm 3), so that this old information can not be

used in future equally labeled auctions.

D. OFF Agents Switching ON

Switching ON needs to satisfy two main objectives. First,

no clusters of agents that are disconnected from the main

network should be created. Second, all agents switching

ON should synchronize themselves with the initialization

phase of the current auction of their ON neighbors. The

first objective is achieved by requiring that no OFF agent

can switch ON if it has no ON neighbors. The second,

on the other hand, relies on observing the sequence of

auctions of the ON neighbors and joining when possible.

In particular, when an OFF agent i “wakes up”, it identifies

its ON neighbors N
[i]
ON (line 2, Algorithm 4) and, if such

neighbors exist, it prepares to join the auction followed by

its neighbors’ current auction by appropriately initializing ai

(line 3, Algorithm 4). Note that, due to synchronization of

all ON agents to the same auction, at the time when agent

i “wakes up”, all its ON neighbors are either in the same

auction or in two consecutive ones. The latter case occurs if

“waking up” of agent i coincides with a transition of its ON

neighbors to a new auction. Hence, the update in line 3 of

Algorithm 4 is well defined. Once agent i has identified the

auction it plans to join, it enters a pending phase denoted

by pend(i) = 1 (line 4, Algorithm 4). During this phase,

it keeps observing the auctions of its ON neighbors N
[i]
ON

and as soon as one of its neighbors enters the auction agent

i plans to join (line 7, Algorithm 4),4 it switches ON and

prepares to join the initialization phase by updating the

variables I
[i]
ON, I

[i]
OFF and s

[i]
ai(i) (lines 8 and 9, Algorithm 4).

Note that, if during the time that agent i is pending, all its

ON neighbors decide to switch OFF, then agent i remains

OFF and waits for its neighbors to switch back ON (lines

10 and 11, Algorithm 4). Note also that, in this latter case

4The maximum here is taken modulo 3.
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(d) Final Configuration

Fig. 1. Distributed Topology Control for N = 150 agents.

none of its neighbors will switch to the auction that agent i

wishes to join due to the update in line 4 of Algorithm 3,

which guarantees that the condition in line 7 of Algorithm 4

will not be enabled.

E. Correctness of Distributed Coordination

Correctness of the proposed distributed coordination

framework is obtained by construction and is discussed in

details in the previous subsections. Those ideas are summa-

rized in the following result.5

Proposition 3.1 (Correctness): Assume N agents, ini-

tially forming a connected network, each one of which is

able to switch ON or OFF according to Algorithms 1-4.

Then, a connected network including all boundary agents

is guaranteed almost always.

IV. SIMULATIONS

In this section we illustrate the proposed topology control

algorithm in a nontrivial connectivity task and show that it

has the desired liveness, safety and scalability properties. In

particular, we consider ten boundary agents symmetrically

positioned on the upper and lower faces of a rectangle region

and 140 other agents randomly distributed in the interior of

the region such that all N = 150 agents initially form a

connected network (Fig. 1(a)). Boundary agents are denoted

with green squares, while the remaining agents with blue

or red dots, depending on whether they are ON or OFF,

respectively. The communication range is taken rc = .2 and

neighboring relations are denoted with lines drawn between

them. The goal of this task is to let agents switch ON and

OFF, always maintaining a connected network among the

boundary agents.

To best illustrate our approach, we decompose the pro-

posed connectivity task in three stages. First we only allow

agents to switch OFF aiming at introducing some sparseness

in the network (Fig. 1(b)). Then, we enable agents to also

switch ON (with probability .01) and study how they are

able to synchronize with the main network (Fig. 1(c)).

5Due to space limitations, the proof of this result is omitted.
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Fig. 2. Performance of Distributed Topology Control for N = 150 agents.

The final stage consists of pushing our algorithm to its

limit and checking whether it is able to always maintain a

connected network even if we never allow agents to switch

ON again. In particular, we see that the final network is

almost a tree structure (Fig. 1(d)). The requests verified with

respect to connectivity during every auction consist of all 2k

combinations of the k = 6 highest bids.

Figs. 2(a) and 2(b) illustrate the number of agents that

are ON and the Fiedler eigenvalue of the overall network,

respectively. Note the three stages of our task as well as the

fact that our approach succeeds in maintaining a connected

network among the boundary agents. Fig. 3 shows a snapshot

of the sequence of auctions during the transition time from

the switching OFF stage of the task to the switching ON/OFF

stage. Vertical lines indicate transitions from one auction

to another. Horizontal lines, on the other hand, indicate

either the last auction of OFF agents before they switched

OFF (thin blue lines) or the time spent in every auction by

ON agents (thick red lines). Observe that the sequence of

auctions is of the form {1, 2, 3, 1, 2, 3, . . . } as predicted, as

well as that all ON agents are synchronized in equally labeled

auctions. On the other hand, OFF agents that switch ON are

always synchronized with the network in the desired auction

(arrows and numbers indicating the auction). Finally, note

that in the presence of more ON agents (ON/OFF stage) the

time spent in every auction is slightly shorter than before due

to the fact that nearest neighbor consensus updates converge

faster in denser networks.

V. CONCLUSIONS

In this paper, we presented a distributed control framework

to regulate switching between the ON and OFF operation

modes of a group of agents such that the overall network

guaranteed multi-hop communication links among a set of

boundary agents. Coordination was based on a virtual market

where requests to switch off were associated with bids.

Gossip algorithms were used to verify safety of combinations

of these requests with respect to connectivity. Among the safe

requests, the one corresponding to the highest aggregate bid

was finally served. Connectivity was captured by the graph

Laplacian matrix and was verified in a distributed way by

comparing the asymptotic values of a randomly initialized

consensus run by all active agents in the network. Other

than nearest neighbor information, our approach required no

knowledge of the network topology. We showed that the
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Fig. 3. Sequence of Auctions

integrated networked control system satisfies the connectivity

specification almost surely. We finally illustrated efficiency

of our scalable approach by nontrivial computer simulations.
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