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Abstract— Critical care patients, whether undergoing surgery
or recovering in intensive care units, require drug administra-
tion to regulate physiological variables such as blood pressure,
cardiac output, heart rate, and degree of consciousness. The
rate of infusion of each administered drug is critical, requiring
constant monitoring and frequent adjustments. Nonnegative
and compartmental models provide a broad framework for
biological and physiological systems, including clinical phar-
macology, and are well suited for developing models for
closed-loop control of drug administration. In this paper, we
develop a neuroadaptive output feedback control framework for
nonlinear uncertain nonnegative and compartmental systems
with nonnegative control inputs and noisy measurements. In
addition, the neuroadaptive controller guarantees that the
physical system states remain in the nonnegative orthant of the
state space. Finally, the proposed approach is used to control
the infusion of the anesthetic drug propofol for maintaining a
desired constant level of depth of anesthesia for noncardiac
surgery in the face of noisy electroencephalographic (EEG)
measurements.

I. INTRODUCTION

The dosing of most drugs is a process of empirical ad-
ministration of a low dose with observation of the biological
effect and subsequent adjustment of the dose in the hopes of
achieving the desired effect. This is true of anesthetic drugs,
just as it is of chronically administered medications (for
example, anti-hypertensive agents). In the acute environment
of the operating room and intensive care unit (ICU), this can
result in inefficient, and possibly even dangerous, titration
of drug to the desired effect. There has been a long interest
in use of the electroencephalograph (EEG) as an objective,
quantitative measure of consciousness that could be used as
a performance variable for closed-loop control of anesthesia.
Ever since the pioneering work of Bickford [1], it has been
known that the EEG changes with the induction of anesthe-
sia. Processed electroencephalogram (EEG) algorithms have
been extensively investigated as monitors of the level of
consciousness in patients requiring surgical anesthesia [1],
[2]. However, the EEG is a complex of multiple time series
and in earlier work it was difficult to identify one single
aspect of the EEG signal that correlated with the clinical
signs of anesthesia.

Subsequent to this early research there has been substantial
progress in the development of processed EEG monitors
that analyze the raw data to extract a single measure of
the depth of anesthesia. The best known of these monitors
is the bispectral or BIS monitor, which calculates a single
composite EEG measure that is well correlated with the
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depth of anesthesia [3]. The BIS signal ranges from 0 (no
cerebral electrical activity) to 100 (the normal awake state).
Available evidence indicates that a BIS signal less than 55 is
associated with lack of consciousness. While BIS monitoring
has proven useful in the operating room environment, there
have been inconsistencies reported and attempts to extend
BIS monitoring for the evaluation of sedation outside of the
operating room have been unsuccessful [4]. One of the key
reasons for this is due to the fact that the signal-averaging
algorithm within the BIS monitor ignores signal noise, and
when there is excessive noise, the BIS monitor does not
generate a signal.

It is widely appreciated that BIS monitoring, or for that
matter, any EEG monitoring, can be fraught with error
because of the potential for outside interference to produce
an unfavorable signal-to-noise ratio yielding spurious results.
Nonphysiologic artifactual signals may be generated from
sources external to the patient that include lights, electric
cautery devices, ventilators, pacemakers, patient warming
systems, and electrical noise related to the many different
kinds of monitors normally found in an operating room
or ICU. Physiologic movements such as eye movements,
myogenic activity, perspiration, and ventilation can produce
artifactual increases in the BIS score. In particular, it is
apparent that electromyographic (EMG) activity can spu-
riously increase the BIS score [5]. The co-administration
of neuromuscular blockade eliminates artifacts from muscle
movement, which can be superimposed on the BIS score;
and this undoubtedly contributes to the widespread use
and value of the BIS device during surgery. However, to
extend this technology outside of the operating room, or for
that matter, to nonparalyzed patients in the operating room,
further refinements are needed. In addition, if the BIS signal
is to be used to quantify levels of consciousness for feedback
control in general anesthesia, then observation noise needs
to be accounted for in the control system design process.

The challenge to the use of the BIS signal for closed-
loop control of anesthesia is that the relationships between
drug dose and tissue concentration (pharmacokinetics) and
between tissue concentration and physiological effect (phar-
macodynamics) is highly variable between individuals. In
addition, observation noise in the BIS signal results in feed-
back measurement signals with high signal-to-noise ratios
that need to be accounted for in the control algorithm. Adap-
tive feedback controllers seem particularly promising given
this inter-patient variability as well as BIS signal variation
due to noise. In previous work, we have used nonnegative
and compartmental dynamical systems theory to develop
adaptive and neuroadaptive controllers for controlling the
depth of anesthesia [6]–[8]. One of our initial efforts was
the development of a direct adaptive control framework for
uncertain nonlinear nonnegative and compartmental systems
with nonnegative control inputs [6], [7]. This framework is
Lyapunov-based and guarantees partial asymptotic set-point
regulation, that is, asymptotic setpoint stability with respect
to part of the closed-loop system states associated with the
physiological state variables. In addition, the adaptive con-
trollers, which are constructed without requiring knowledge
of the pharmacokinetic and pharmacodynamic parameters,
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provide a nonnegative control input for stabilization with
respect to a given setpoint in the nonnegative orthant. Subse-
quently, we also developed a neuroadaptive output feedback
control framework for uncertain nonlinear nonnegative and
compartmental systems with nonnegative control inputs [8].
This framework is also Lyapunov-based and guarantees
ultimate boundedness of the error signals corresponding
to the physical system states in the face of inter-patient
pharmacokinetic and pharmacodynamic variability.

In a recent paper [9] we presented numerical and clinical
results that compares and contrasts our adaptive control
algorithm with our neural network adaptive control algorithm
for controlling the depth of anesthesia in the operating
theater during surgery. Specifically eleven clinical trials
were performed with our adaptive control algorithm [7] and
seven clinical trials were performed with our neural network
algorithm [8] at the Northeast Georgia Medical Center in
Gainesville, Georgia. The proposed automated anesthesia
controllers demonstrated excellent regulation of unconscious-
ness and allowed for a safe and effective administration of
the anesthetic agent propofol. However, the adaptive and
neuroadaptive controllers presented in [9] did not account for
measurement noise in the EEG signal. Clinical testing has
clearly demonstrated the need for developing adaptive and
neuroadaptive controllers that can address system measure-
ment noise [9]. In this paper, we extend the neuroadaptive
controller framework developed in [8] to address measure-
ment noise in the BIS signal for feedback control.

II. MATHEMATICAL PRELIMINARIES

In this section, we introduce notation, several definitions,
and some key results concerning nonlinear nonnegative dy-
namical systems that are necessary for developing the main
results of this paper. Specifically, for x ∈ R

n we write
x ≥≥ 0 (resp., x >> 0) to indicate that every component
of x is nonnegative (resp., positive). In this case, we say
that x is nonnegative or positive, respectively. Likewise,
A ∈ R

n×m is nonnegative or positive if every entry of A
is nonnegative or positive, respectively, which is written as

A ≥≥ 0 or A >> 0, respectively. Let R
n

+ and R
n
+ denote the

nonnegative and positive orthants of R
n, that is, if x ∈ R

n,

then x ∈ R
n

+ and x ∈ R
n
+ are equivalent, respectively, to

x ≥≥ 0 and x >> 0. Furthermore, we write (·)T to denote
transpose, tr(·) for the trace operator, λmin(·) to denote the
minimum eigenvalue of a Hermitian matrix, and ‖ · ‖ for a
vector norm. Finally, M ⊗N denotes the Kronecker product
of matrices M and N . The following definition introduces
the notion of a nonnegative (resp., positive) function.

Definition 2.1: Let T > 0. A real function u : [0, T ] →
R

m is a nonnegative (resp., positive) function if u(t) ≥≥ 0
(resp., u(t) >> 0) on the interval [0, T ].

The following definition introduces the notion of essen-
tially nonnegative vector fields.

Definition 2.2: Let f = [f1, · · · , fn]T : D → R
n, where

D is an open subset of R
n that contains R

n

+. Then f is
essentially nonnegative if fi(x) ≥ 0, for all i = 1, . . . , n,

and x ∈ R
n

+ such that xi = 0, where xi denotes the ith
element of x.

In this paper, we consider controlled nonlinear dynamical
systems of the form

ẋ(t) = f(x(t)) + G(x(t))u(t), x(0) = x0, t ≥ 0, (1)

where x(t) ∈ R
n, t ≥ 0, u(t) ∈ R

m, t ≥ 0, f : R
n →

R
n is locally Lipschitz continuous and satisfies f(0) = 0,

G : R
n → R

n×m is continuous, and u : [0,∞) → R
m is

piecewise continuous.

The following definition is needed.

Definition 2.3: The nonlinear dynamical system given by

(1) is nonnegative if for every x(0) ∈ R
n

+ and u(t) ≥≥ 0,
t ≥ 0, the solution x(t), t ≥ 0, to (1) is nonnegative.

III. NEUROADAPTIVE OUTPUT FEEDBACK CONTROL FOR

NONLINEAR NONNEGATIVE UNCERTAIN SYSTEMS

In this section, we consider the problem of characterizing
neuroadaptive dynamic output feedback control laws for non-
linear nonnegative and compartmental uncertain dynamical
systems to achieve set-point regulation in the nonnegative
orthant. Specifically, consider the controlled square nonlinear
uncertain dynamical system G given by

ẋ(t) = f(x(t)) + G(x(t))u(t), x(0) = x0, t ≥ 0, (2)

y(t) = h(x(t)), (3)

yn(t) = y(t) + n(t), (4)

where x(t) ∈ R
n, t ≥ 0, is the state vector, u(t) ∈ R

m,
t ≥ 0, is the control input, y(t) ∈ R

m, t ≥ 0, is the system
output, yn(t) ∈ R

m, t ≥ 0, is the noisy system output, n(t) ∈
R

m, t ≥ 0, is a noise signal such that ‖n(t)‖ ≤ n∗ < ∞
for all t ≥ 0, f : R

n → R
n, is essentially nonnegative

but otherwise unknown, G : R
n → R

n×m is an unknown
nonnegative input matrix function, and h : R

n → R
m is a

nonnegative output function. We assume that f(·), G(·), and
h(·) are smooth (at least Cn mappings) and the control input
u(·) in (2) is restricted to the class of admissible controls
consisting of measurable functions such that u(t) ∈ R

m,
t ≥ 0.

As discussed in [6]–[8], control (source) inputs of drug
delivery systems for physiological and pharmacological pro-
cesses are usually constrained to be nonnegative as are the
system states. Hence, in this paper we develop neuroadap-
tive dynamic output feedback control laws for nonnegative
systems with nonnegative control inputs. Specifically, for a

given desired set point yd ∈ R
m

+ and for a given ε > 0, our
aim is to design a nonnegative control input u(t), t ≥ 0,
predicated on the system measurement yn(t), t ≥ 0, such
that ‖y(t) − yd‖ < ε for all t ≥ T , where T ∈ [0,∞), and

x(t) ≥≥ 0, t ≥ 0, for all x0 ∈ R
n

+.

In this paper, we assume that for the nonlinear dynamical
system (2) and (3), the conditions for the existence of a
globally defined diffeomorphism transforming (2) and (3)
into a normal form are satisfied. Specifically, we assume that
there exist a global diffeomorphism T : R

n → R
n and Cn

functions fξ : R
r × R

n−r → R
r and fz : R

r × R
n−r →

R
n−r such that, in the coordinates

[

ξT, zT
]T

, T (x),

where ξ , [y1, ẏ1, · · · , y
(r1−2)
1 , · · · , ym, ẏm, · · · , y

(rm−2)
m ;

y
(r1−1)
1 , · · · , y

(rm−1)
m ] ∈ R

r, y
(ri)
i denotes the rith derivative

of yi, ri denotes the relative degree of G with respect to the

output yi, z ∈ R
n−r, and r , r1 + · · · + rm is the (vector)

relative degree of G, the nonlinear dynamical system G given
by (2)–(4) is equivalent to

ξ̇(t) = fξ(ξ(t), z(t)) + Gξ(ξ(t), z(t))u(t),

ξ(0) = ξ0, t ≥ 0, (5)

ż(t) = fz(ξ(t), z(t)), z(0) = z0, (6)

y(t) = Cξ(t), (7)

yn(t) = Cξ(t) + n(t), (8)
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where ξ(t) ∈ R
r, t ≥ 0, z(t) ∈ R

n−r, t ≥ 0,

fξ(ξ, z) = Aξ + f̃u(ξ, z), Gξ(ξ, z) =

[

0(r−m)×m

Ĝ(x̃)

]

, (9)

A =

[

A0

Â

]

, f̃u(ξ, z) =

[

0(r−m)×1

fu(x̃)

]

, (10)

x̃ , [ξT, zT]T, A0 ∈ R
(r−m)×r is a known matrix of zeros

and ones capturing the multivariable controllable canonical

form representation, Â ∈ R
m×r is such that A is asymp-

totically stable, fu : R
n → R

m is an unknown function,
C ∈ R

m×r is a known matrix of zeros and ones capturing the

system output, and Ĝ : R
n → R

m×m is an unknown matrix

function such that det Ĝ(x̃) 6= 0, x̃ ∈ R
n. Furthermore, we

assume that for a given yd ∈ R
m

+ there exist ze ∈ R
n−r and

ue ∈ R
m

+ such that xe , T −1(x̃e) ≥≥ 0 and

0 = fξ(ξe, ze) + Gξ(ξe, ze)ue, (11)

0 = fz(ξe, ze), (12)

where x̃e , [ξT
e , zT

e ]T and ξe is given with yi = ydi, i =

1, . . . ,m, and ẏi = · · · = y
(ri−1)
i = 0, i = 1, . . . ,m.

To ensure that for a bounded state ξ(t), t ≥ 0, the
dynamics given by (6) are bounded, we assume that (6) is
input-to-state stable at z(t) ≡ ze with ξ(t) − ξe viewed as
the input; that is, there exist a class KL function η(·, ·) and
a class K function γ(·) such that, for t ≥ 0,

‖z(t) − ze‖ ≤ η(‖z0 − ze‖, t) + γ

(

sup
0≤τ≤t

‖ξ(τ) − ξe‖

)

,

where ‖ · ‖ denotes the Euclidean vector norm. Unless
otherwise stated, henceforth we use ‖ · ‖ to denote the
Euclidean vector norm. Note that (ξe, ze) ∈ R

r × R
n−r is

an equilibrium point of (5) and (6) if and only if there exists

ue ∈ R
m

+ such that (11) and (12) hold.

Finally, we assume that the functions fu(T (x)) −
fu(T (xe)) − Ĝ(T (xe))ue and Ĝ(T (x)) − B̂, where B̂ ∈
R

m×m, can be approximated over a compact set Dc ⊂ R
n

+
by a linear in the parameters neural network up to a desired
accuracy. In this case, there exist ε1 : R

n → R
m and ε2 :

R
n → R

m×m such that ‖ε1(x)‖ < ε∗1 and ‖ε2(x)‖F < ε∗2,
x ∈ Dc, where ε∗1 > 0 and ε∗2 > 0, and

fu(T (x)) − fu(T (xe)) − Ĝ(T (xe))ue

= WT
1 σ̂1(x) + ε1(x), (13)

Ĝ(T (x)) − B̂ = WT
2 [Im ⊗ σ̂2(x)] + ε2(x), (14)

where x ∈ Dc, W1 ∈ R
s1×m and W2 ∈ R

ms2×m are optimal
unknown (constant) weights that minimize the approximation
errors over Dc, σ̂1 : R

n → R
s1 and σ̂2 : R

n → R
s2 are

sets of basis functions such that each component of σ̂1(·)
and σ̂2(·) takes values between 0 and 1, and ε1(·) and ε2(·)
are the modeling errors. Note that s1 + s2 denotes the total
number of basis functions or, equivalently, the number of
nodes of the neural network.

Since fu(·) and Ĝ(·) are continuous, we can choose σ̂1(·)
and σ̂2(·) from a linear space X of continuous functions that
forms an algebra and separates points in Dc. In this case, it
follows from the Stone-Weierstrass theorem that X is a dense
subset of the set of continuous functions on Dc. Now, as is
the case in the standard neuroadaptive control literature, we

can construct the signal uad = F (Ŵ1, Ŵ2, σ̂1(x), σ̂2(x)),

where F : R
s1×m ×R

ms2×m ×R
s1 ×R

s2 → R
m, involving

the estimates of the optimal weights and basis functions as
our adaptive control signal.

Since the actual measurement yn(t), t ≥ 0, is noisy with
n(t), t ≥ 0, representing a high-frequency noise signal, we
use a filtered version of yn(t), t ≥ 0, in the control input
u(t), t ≥ 0. Specifically, we design an asymptotically stable
low-pass filter of the form

ẋf(t) = Afxf(t) + Bfyn(t), xf(0) = xf0 , t ≥ 0, (15)

yf(t) = Cfxf(t), (16)

where Af ∈ R
nf×nf is Hurwitz and essentially nonnegative

and Bf ∈ R
nf×m and Cf ∈ R

m×nf are nonnegative matrices
such that limω→∞ |G(i,j)(jω)| = 0, i, j = 1, . . . , m, where
G(i,j)(s) denotes the (i, j)th entry of the transfer function

G(s) , Cf(sInf
− Af)

−1Bf . Here, we choose the matrices

Af , Bf , and Cf such that CfA
−1
f Bf = −Im. In this case, for

every yd ∈ R
m

+ , there exists xfe ∈ R
nf such that

0 = Afxfe + Bfyd, (17)

yd = Cfxfe . (18)

Note that since Af is Hurwitz there exist positive-definite

matrices P̂ ∈ R
nf×nf and R̂ ∈ R

nf×nf such that

0 = AT
f P̂ + P̂Af + R̂. (19)

In order to develop an output feedback neural network, we
use the recent approach developed in [10] for reconstructing
the system states via the system delayed inputs and filtered
outputs. Specifically, we use a memory unit as a particular
form of a tapped delay line that takes a scalar time series
input and provides an (2mn− r)-dimensional vector output
consisting of the present values of the system filtered outputs
and system inputs, and their 2(n − 1)m − r delayed values
given by

ζ(t) , [yf1(t), yf1(t − d), . . . , yf1(t − (n − 1)d), . . . ,

yfm(t), yfm(t − d), . . . , yfm(t − (n − 1)d);

u1(t), u1(t − d), . . . , u1(t − (n − r1 − 1)d), . . . ,

um(t), um(t − d), . . . , um(t − (n − rm − 1)d)]T,

t ≥ 0, (20)

where d > 0.

For the statement of our main result, define the projection

operator Proj(W̃ , Y ) given by

Proj(W̃ , Y ) ,











Y, if µ(W̃ ) < 0,

Y, if µ(W̃ ) ≥ 0 and µ′(W̃ )Y ≤ 0,

Y − µ′T (W̃ )µ′(W̃ )Y

µ′(W̃ )µ′T (W̃ )
µ(W̃ ), otherwise,

where W̃ ∈ R
s×m, Y ∈ R

n×m, µ(W̃ ) ,
tr W̃TW̃−w̃2

max

ε
W̃

,

w̃max ∈ R is the norm bound imposed on W̃ , and εW̃ > 0.

Note that for a given matrix W̃ ∈ R
s×m and Y ∈ R

n×m, it
follows that

tr[(W̃ − W )T(Proj(W̃ , Y ) − Y )]

=

n
∑

i=1

[coli(W̃ − W )]T[Proj(coli(W̃ ), coli(Y )) − coli(Y )]

≤ 0, (21)

where coli(X) denotes the ith column of the matrix X .
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Assumption 4.1. For a given yd ∈ R
m

+ assume there exist

nonnegative vectors xe ∈ R
n

+ and ue ∈ R
m

+ such that

0 = f(xe) + G(xe)ue, (22)

yd = h(xe). (23)

Furthermore, assume that the equilibrium point xe of (2)
is globally asymptotically stable with u(t) ≡ ue. Finally,
assume that there exists a global diffeomorphism T : R

n →
R

n such that G can be transformed into the normal form
given by (5) and (6), and (6) is input-to-state stable at ze
with ξ(t) − ξe viewed as the input.

Consider the neuroadaptive output feedback control law
given by

u(t) =

{

û(t), if û(t) ≥≥ 0,
0, otherwise,

(24)

where

û(t) = −
(

B̂ + ŴT
2 (t)[Im ⊗ σ2(ζ(t))]

)−1

ŴT
1 (t)σ1(ζ(t)),

(25)
B̂ ∈ R

m×m is nonsingular, ζ(t), t ≥ 0, is given by (20), σ1 :
R

n → R
s1 and σ2 : R

n → R
s2 are sets of basis functions

such that each component of σ1(·) and σ2(·) takes values

between 0 and 1, Ŵ1(t) ∈ R
s1×m, t ≥ 0, and Ŵ2(t) ∈

R
ms2×m, t ≥ 0. Here, the update laws satisfy

˙̂
W1(t) = Q1Proj[Ŵ1(t),−σ1(ζ(t))ξT

c (t)P̃B0],

Ŵ1(0) = Ŵ10, t ≥ 0, (26)

˙̂
W2(t) = Q2Proj[Ŵ2(t),−[Im ⊗ σ2(ζ(t))]u(t)ξT

c (t)P̃B0],

Ŵ2(0) = Ŵ20, t ≥ 0, (27)

where Q1 ∈ R
s1×s1 and Q2 ∈ R

ms2×ms2 are positive

definite matrices, P̃ ∈ R
r×r is a positive-definite solution

of the Lyapunov equation

0 = (A − LC)TP̃ + P̃ (A − LC) + R̃, (28)

where R̃ > 0, and ξc(t), t ≥ 0, is the solution to the estimator
dynamics

ξ̇c(t) = Aξc(t) + L(yf(t) − yc(t) − yd),

ξc(0) = ξc0, t ≥ 0, (29)

yc(t) = Cξc(t), (30)

where ξc(t) ∈ R
r, t ≥ 0, A ∈ R

r×r is given by (10),
L ∈ R

r×m is such that A − LC is Hurwitz, yf(t), t ≥
0, is the output of the filter (15) and (16), and B0 ,
[0m×(r−m), Im]T.

Theorem 3.1: Consider the nonlinear uncertain dynamical
system G given by (2) and (3) with u(t), t ≥ 0, given
by (24). Assume Assumption 4.1 holds, λmin(RP−1) > 1,

and λmin(R̂) > ‖P̂BfCP−1/2‖, where P̂ ∈ R
nf×nf and

P ∈ R
r×r are the positive-definite solutions of the Lyapunov

equations (19) and

0 = ATP + PA + R, (31)

where R > 0. Then there exists a compact positively invari-
ant set Dα ⊂ R

n ×R
r ×R

s1×m ×R
ms2×m ×R

nf such that
(xe, 0,W1,W2, xfe) ∈ Dα, where W1 ∈ R

s1×m and W2 ∈
R

ms2×m, and the solution (x(t), ξc(t), Ŵ1(t), Ŵ2(t), xf(t)),
t ≥ 0, of the closed-loop system given by (2), (15), (16),
(24), (26), (27), (29), and (30) is ultimately bounded for

all (x(0), ξc(0), Ŵ1(0), Ŵ2(0), xf(0)) ∈ Dα. Furthermore,

u(t) ≥≥ 0, t ≥ 0, and x(t) ≥≥ 0, t ≥ 0, for all x0 ∈ R
n

+.

Since the norm of Ŵ2(t) is bounded it is always possible

to choose B̂ so that (B̂+ŴT
2 (t)[Im⊗σ2(ζ(t))])−1 exists and

is bounded for all t ≥ 0 so that there exists u∗ > 0 such that
u∗ ≥ ‖u(t)‖, t ≥ 0. Implementing the neuroadaptive con-
troller (25) requires a fixed-point iteration at each integration
step, that is, the controller contains an algebraic constraint
on u. For each choice of σ1(·) and σ2(·) this equation must
be examined for solvability in terms of u. It is more practical
to avoid this iteration by using one-step delayed values of
u in calculating û. Implementations using both approaches
result in imperceptible differences in our numerical studies.

IV. NEUROADAPTIVE OUTPUT FEEDBACK CONTROL FOR

GENERAL ANESTHESIA

To illustrate the application of the neuroadaptive control
framework presented in Section III for general anesthesia
we develop a model for the intravenous anesthetic propofol.
The pharmacokinetics of propofol are described by the three
compartment model shown in Figure 1, where x1 denotes
the mass of drug in the central compartment, which is the
site for drug administration and is generally thought to be
comprised of the intravascular blood volume (blood within
arteries and veins) as well as highly perfused organs (organs
with high ratios of blood flow to weight) such as the heart,
brain, kidney, and liver. These organs receive a large fraction
of the cardiac output. The remainder of the drug in the body
is assumed to reside in two peripheral compartments, one
identified with muscle and one with fat; the masses in these
compartments are denoted by x2 and x3, respectively. These
compartments receive less than 20% of the cardiac output.

A mass balance of the three-state compartmental model
yields

ẋ1(t) = −[a11(c(t)) + a21(c(t)) + a31(c(t))]x1(t)

+a12(c(t))x2(t) + a13(c(t))x3(t) + u(t),

x1(0) = x10, t ≥ 0, (32)

ẋ2(t) = a21(c(t))x1(t) − a12(c(t))x2(t),

x2(0) = x20, t ≥ 0, (33)

ẋ3(t) = a31(c(t))x1(t) − a13(c(t))x3(t),

x3(0) = x30, t ≥ 0, (34)

where c(t) = x1(t)/Vc, Vc is the volume of the central
compartment (about 15 l for a 70 kg patient), aij(c), i 6= j,
is the rate of transfer of drug from the jth compartment to
the ith compartment, a11(c) is the rate of drug metabolism
and elimination (metabolism typically occurs in the liver),
and u(t), t ≥ 0, is the infusion rate of the anesthetic drug
propofol into the central compartment. The transfer coeffi-
cients are assumed to be functions of the drug concentration c
since it is well known that the pharmacokinetics of propofol
are influenced by cardiac output [11] and, in turn, cardiac
output is influenced by propofol plasma concentrations, both
due to venodilation (pooling of blood in dilated vains) [12]
and myocardial depression [13].

Experimental data indicate that the transfer coefficients
aij(·) are nonincreasing functions of the propofol concen-
tration [12], [13]. The most widely used empirical models
for pharmacodynamic concentration-effect relationships are
modifications of the Hill equation. Applying this almost
ubiquitous empirical model to the relationship between trans-
fer coefficients implies that

aij(c) = AijQij(c), Qij(c) = Q0C
αij

50,ij/(C
αij

50,ij + cαij ),
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where, for i, j ∈ {1, 2, 3}, i 6= j, C50,ij is the drug
concentration associated with a 50% decrease in the transfer
coefficient, αij is a parameter that determines the steepness
of the concentration-effect relationship, and Aij are positive
constants. Note that both pharmacokinetic parameters are
functions of i and j, that is, there are distinct Hill equations
for each transfer coefficient. Furthermore, since for many
drugs the rate of metabolism a11(c) is proportional to the
rate of transport of drug to the liver we assume that a11(c)
is also proportional to the cardiac output so that a11(c) =
A11Q11(c).

To illustrate the neuroadaptive control of propofol, we
assume that C50,ij and αij are independent of i and j. Also,
since decreases in cardiac output are observed at clinically-
utilized propofol concentrations we arbitrarily assign C50 a
value of 4 µg/ml since this value is in the mid-range of
clinically utilized values. We also assign α a value of 3.
This value is within the typical range of those observed for
ligand-receptor binding. The nonnegative transfer and loss
coefficients A12, A21, A13, A31, and A11, and the parameters
α > 1, C50 > 0, and Q0 > 0, are uncertain due to patient
gender, weight, pre-existing disease, age, and concomitant
medication. Hence, the need for adaptive control to regulate
intravenous anesthetics during surgery is essential.

Even though propofol concentration levels in the blood
plasma will lead to the desired depth of anesthesia, they
cannot be measured in real-time during surgery. Furthermore,
we are more interested in drug effect (depth of hypnosis)
rather than drug concentration. Hence, we consider a model
involving pharmacokinetics (drug concentration as a function
of time) and pharmacodynamics (drug effect as a function
of concentration) for controlling consciousness. Specifically,
we use an electroencephalogram (EEG) signal as a measure
of hypnotic drug effect of anesthetic compounds on the
brain [3]. Since electroencephalography provides real-time
monitoring of the central nervous system activity, it can
be used to quantify levels of consciousness, and hence, is
amenable for feedback control in general anesthesia.

The Bispectral Index (BIS), an EEG indicator, has been
proposed as a measure of hypnotic effect. This index quan-
tifies the nonlinear relationships between the component fre-
quencies in the electroencephalogram, as well as analyzing
their phase and amplitude. The BIS signal is related to drug
concentration by the empirical relationship

BISn(ceff(t)) = BIS0

(

1 −
cγ
eff(t)

cγ
eff(t) + ECγ

50

)

+ n(t), (35)

where BIS0 denotes the baseline (awake state) value and,
by convention, is typically assigned a value of 100, ceff is
the propofol concentration in µg/ml in the effect-site com-
partment (brain), EC50 is the concentration at half maximal
effect and represents the patient’s sensitivity to the drug, γ
determines the degree of nonlinearity in (35), and n is a
high-frequency observation noise signal. Here, the effect-site
compartment is introduced to account for finite equilibration
time between the central compartment concentration and the
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u ≡ Continuous infusion

u

Fig. 2. Combined pharmacokinetic/pharmacodynamic model

central nervous system concentration.

The effect-site compartment concentration is related to the
concentration in the central compartment by the first-order
model

ċeff(t) = aeff(c(t) − ceff(t)), ceff(0) = c(0), t ≥ 0, (36)

where aeff in min−1 is an unknown positive time constant.
In reality, the effect-site compartment equilibrates with the
central compartment in a matter of a few minutes. The
parameters aeff , EC50, and γ are determined by data fitting
and vary from patient to patient. BIS index values of 0 and
100 correspond, respectively, to an isoelectric EEG signal
(no cerebral electrical activity) and an EEG signal of a fully
conscious patient; the range between 40 and 60 indicates
a moderate hypnotic state. Figure 2 shows the combined
pharmacokinetic/pharmacodynamic feedback control model
for the distribution of propofol.

In the following simulation involving the infusion of the
anesthetic drug propofol we set EC50 = 5.6 µg/ml, γ = 2.39,
and BIS0 = 100. The target (desired) BIS value, BIStarget,
is set at 50. Here, we use the neuroadaptive output feedback
controller u(t) = max{0, û(t)}, where

û(t) = −
ŴT

1 (t)σ1(ζ(t))

b̂ + ŴT
2 (t)σ2(ζ(t))

,

ζ(t) = [BISf(t − d),BISf(t − 2d), u(t − d), u(t − 2d)]T,

b̂ > 0, d > 0, with update laws

˙̂
W1(t) = QBIS1

Proj[Ŵ1(t),−σ1(ζ(t))ξT
c (t)P̃B0],

˙̂
W2(t) = QBIS2

Proj[Ŵ2(t),−σ2(ζ(t))u(t)ξT
c (t)P̃B0],

Ŵ1(0) = Ŵ10, Ŵ2(0) = Ŵ20, t ≥ 0,

where QBIS1
and QBIS2

are positive constants and ξc(t) ∈
R

2, t ≥ 0, is the solution to the estimator dynamics

ξ̇c(t) = Aξc(t) + L(−BISf(t) − yc(t) + BIStarget), (37)

yc(t) = ξc(t), ξc(0) = ξc0, t ≥ 0, (38)

where A ∈ R
2×2 and L ∈ R

2×1, and BISf(t) is output of
the second-order, low-pass stable filter

ẋf(t) = Afxf(t) + BfBISn(t), t ≥ 0 (39)

BISf(t) = Cfxf(t), xf(0) = [BISf(0), 0]
T

, (40)
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where Af =

[

0 1
−ω2 −2ζω

]

, Bf = [0, ω2]T, Cf =

[1, 0]T, ω = 5 rad/sec, ζ = 0.7, and BISf(0) = 100.
Here, we model n(t) as a noise signal generated by a
SIMULINK band-limited white noise block with noise power
parameter equal 0.0001 amplified 100 times. Now, it follows
from Theorem 3.1 that there exist positive constants ε and
T such that |BIS(t) − BIStarget| ≤ ε, t ≥ T , where
BIS(t) is given by (35) with n(t) ≡ 0, for all nonnegative
values of the pharmacokinetic transfer and loss coefficients
A12, A21, A13, A31, A11 as well as all nonnegative coeffi-
cients α, C50, and Q0.

For our simulation we assume Vc = (0.228 l/kg)(M
kg), where M = 70 kg is the mass of the patient,
A21Q0 = 0.112 min−1, A12Q0 = 0.055 min−1, A31Q0 =
0.0419 min−1, A13Q0 = 0.0033 min−1, AeQ0 =
0.119 min−1, aeff = 3.4657 min−1, α = 3, and C50 =
4 µg/ml. Note that the parameter values for α and C50
probably exaggerate the effect of propofol on cardiac output.
They have been selected to accentuate nonlinearity but they
are not biologically unrealistic. Furthermore, to illustrate
the proposed neuroadaptive controller we switch the phar-
macodynamic parameters EC50 and γ, respectively, from
5.6 µg/ml and 2.39 to 7.2 µg/ml and 3.39 at t = 15 min
and back to 5.6 µg/ml and 2.39 at t = 30 min. Here,
we consider noncardiac surgery since cardiac surgery often
utilizes hypothermia which itself changes the BIS signal.

With A =

[

0 1
−1 −1

]

, L = [0, 1]T, b̂ = 1, QBIS1
= 2.0×

10−4 g/min2, QBIS2
= 4.0 × 10−4 g/min2, d = 0.005, and

initial conditions x1(0) = x2(0) = x3(0) = 0 g, ceff(0) =
0 g/ml, ξc(0) = [0, 0]T, Ŵ1(0) = 1×10−3[−312×1, 112×1]

T,

Ŵ2(0) = 024×1, Figure 3 shows the concentrations in the
central and effect-site compartments versus time. Figure 4
shows actual, noisy, and filtered BIS signals versus time.
Finally, Figure 5 shows the effect of using filtered BIS signal
on the control signal (propofol infusion rate) versus time.
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