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Abstract— Reinforcement learning where decision-making
agents learn optimal policies through environmental interac-
tions is an attractive paradigm for direct, adaptive controller
design. However, results for systems with continuous variables
are rare. Here, we generalize a previous work on deterministic
linear systems, to stochastic ones, since uncertainty is almost
always present and needs to be accounted for to ensure good
closed-loop performance. In this work, we present conver-
gence results and also show an example suggesting automatic
controller order-reduction. We also highlight key differences
between the algorithms for deterministic and stochastic systems.

I. INTRODUCTION

Safety and economic considerations make closed-loop

system identification desirable. In such situations, it may be

advantageous to consider the system identification and con-

troller design in an integrated manner. The observation that

‘reinforcement learning (RL)’ is a form of direct adaptive

control has been made by several researchers in the field of

Artificial Intelligence [2]. In RL, an autonomous agent is

trained to learn an optimal control policy through interac-

tions with the environment. This is achieved by translating

feedbacks from the system of interest intelligently so that

desirable actions are reinforced and undesirable ones are

penalized. On the theoretical front, RL is also shown to have

a strong connection to the classical optimization technique

of dynamic programming.

The focus of this work is a RL method closely related

to ‘Q-learning’ [3] for the purpose of model-free, closed-

loop controller design. Typically, system identification is first

performed to yield a model, based on which a controller is

built. The proposed approach combines the two steps into a

single task of identifying the so-called Q-function. We study

this method in the context of optimal, quadratic control of

linear, stochastic systems. The latter constitute a simple but

descriptive and often-used model structure to describe both

deterministic and stochastic effects.

Technically, RL is a means of solving infinite-horizon

(and possibly discounted) stochastic optimal control prob-

lems. The main mathematical construct, given that some

policy πL is to be adhered to, is its corresponding value

function, JL(x). A policy maps a state (x) to a control

action (u). JL(x) represents the infinite horizon discounted

cost starting from a particular state assuming the policy πL

is followed throughout the horizon. In the context of this
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paper, the policy is linear and gain matrix L represents πL,

i.e., πL : u = −Lx. Denoting the mapping corresponding

to the optimal policy as L∗, JL∗(x) is the optimal value

function. An optimal action for any state xt can be found

by considering the tradeoff between the immediate benefit

and the optimal value-function of the next state (JL∗(xt+1)).
However, this value-function formalism does require the

system’s model to be known. For the rest of the paper,

we omit the time subscript and/ or the argument xt (or its

equivalent) wherever it is contextually appropriate.

The QL(x, u) function [3], mapping a state-action (x, u)

pair to a real value, is more suited for the purpose of direct-

adaptive control. Simply put, if u is that prescribed by πL,

then QL and JL are the same. The Q function is the value

of x, except that the initial action is arbitrary. Intuitively,

one can expect that for the optimal policy πL∗ , minimizing

QL∗ over u gives the same effect. This means QL∗ yields

the optimal policy directly. Hence, the identification and

controller design tasks reduce to the identification of QL∗ .

Unsurprisingly, most RL research has treated problems

with an artificial-intelligence bent (e.g. maze-negotiation,

obstacle avoidance, game-playing and the like [4]), where

the state and action spaces are finite sets. For such finite-

state systems, the value-functions are typically represented

as look-up tables. Convergence proofs for the corresponding

RL algorithms have been well established.

The application of RL for the purpose of optimal control

has been limited since dynamical systems of interest are

typically described in terms of continuous variables. Naive

applications of finite-state RL algorithms are subject to the

‘curse-of-dimensionality’, a term coined by Bellman [5].

Consequently, few analytical results have been published.

The work of Bradtke et. al. [1], dealing with Linear Quadratic

Regulation (LQR), is a notable exception, and represents one

of the pioneering efforts in taking RL methods to the realm

of control. However, the proposed algorithm is limited to

deterministic systems. Landelius [6] explored this algorithm

in the form of other RL variants such as Heuristic Dynamic

Programming, Dual Heuristic Dynamic Programming, and

Action Dependent Heuristic Dynamic Programming, but the

work was still limited to the noise-free case. More recently,

Al-Tamimi et. al. [7] applied a similar Q-learning approach

for the purpose of H∞ control.

In the context of comparing indirect and direct approaches

for controller synthesis, [8] and [9] explored the impact

of noise (vs. external input dithering) on the convergence

of the algorithm proposed by [1]. Those studies assumed

full state-feedback. The conclusion drawn from the study
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is that the Q-learning based direct approach was inferior

but this conclusion was based on the Q-learning algorithm

developed for noise-free systems. There remains the question

of whether one can modify the algorithm to deal with noisy

feedback in a systematic way.

With this in mind, an extension of Bradtke et. al.’s (1994)

work to situations where the system can be described by

a state-space model with stochastic noise inputs, or equiv-

alently, an Auto-Regressive-Moving-Average model with

eXogenous inputs (ARMAX), is proposed. In the control,

econometrics and other communities, ARMAX models and

their state-space analogs are regarded as a flexible model

class [10] describing both deterministic and stochastic effects

(such as disturbances).

To the best of our knowledge, in the context of RL,

this work is the first extension accounting explicitly for

noise inputs (modeled as Gaussian stochastic processes) and

can be regarded as the Linear Quadratic Gaussian (LQG)

analog of Bradtke et. al.’s LQR work. This work can also be

viewed as another means of iterative LQG controller design,

the benefits of which have been propounded by [11]. An

important observation is that judicious use of optimal state-

estimates (or equivalently, 1-step-ahead output predictors)

is required for optimal closed-loop performance. This is

important since users of RL algorithms [8], [9] for direct

adaptive control often employ the deterministic version of

the algorithm, whereas direct state feedback, even if it were

available, is not desired in the noisy case.

This paper proposes a scheme whereby these estimates/

predictors may be obtained in a closed-loop setting. Without

having to resort to full-fledged system-identification, the

mechanics of closed-loop subspace identification methods

[12] offer a means by which this can be achieved. Finally,

we show simulation results indicating convergence for the

case where a low-order controller is employed. This skips

the model-reduction step typical of indirect methods. Since

controller reduction is oftentimes viewed as more difficult

than model-reduction [13], this result is useful for low order

controller design.

II. PROBLEM STATEMENT

We consider controllable and observable systems of the

innovation form, as in (1).

xt+1 = Axt + But + AKet

yt = Cxt + et (1)

where, xt ∈ R
nx , yt ∈ R

ny and ut ∈ R
nu represent the

state, (measurable) input and output signals respectively. {et}
is a sequence of zero-mean white, Gaussian noise. Matrices

(A,B, C) have their usual meanings whilst K is the steady-

state Kalman gain. The objective is to find an optimal policy,

πL∗ attaining the following quantity (2)

JL∗(Il
t) = min E

(·|Il
t)

∞∑

i=t

γi−tri, γ ∈ (0, 1) (2)

subject to (1), where Il
t , {y0, . . . , yt−l, u0, . . . , ut−1}

denotes an information vector serving as a proxy for the

unmeasurable state, xt. l ∈ N, l ≥ 0 indicates the amount of

information available to the controller. Also, ri , x′
iRxxi +

u′
iRuui, Ru > 0 reflect unwanted deviations of the state vec-

tor from the origin as well as excessive actuator movement,

as defined by Euclidean norms with user-defined weighting

matrices Rx and Ru. For our purpose, we assume Rx =
C ′C ≥ 0 so that deviations of the measurable quantities

of interest y, from the origin are penalized instead. It is

well established [14] that the optimal policy is the Linear

Quadratic Regulator (i.e., the linear map (4)) applied to the

state estimate provided by the Kalman filter (5).

x̂t|t−l , E{xt|I
l
t} (3)

ut = −γ(Ru + γB
′

SL∗B)−1B′SL∗Ax̂t|t−l (4)

x̂t+l|t = Ax̂t+l−1|t−1 + But+l−1 + AlK
︸︷︷︸

K̆

(yt − Cx̂t|t−1)

(5)

SL∗ = Rx + γA
′

SL∗A −

γ2A′SL∗B(Ru + γB
′

SL∗B)−1B
′

SL∗A (6)

Clearly, this approach requires model knowledge. With

this, Il
t can be summarized by the pair: {x̂t|t−l, Pt|t−l ,

E
(·|Il

t)
(xt − x̂t|t−l)(xt − x̂t|t−l)

′}. It is noted that l = 0

corresponds to filtered estimates and l = 1 to one-step-ahead

predicted estimates. Although these values of l are typically

employed, allowing l ≥ 0 imparts generality.

III. ROLE OF THE Q-FUNCTION IN MODEL-FREE

CONTROL

Analogous to JL∗ is the value-function (7) corresponding

to an arbitrary policy πL, i.e. ut = −Lx̂t|t−l,∀t. By splitting

the infinite series (2), allowing ut to be arbitrary and the

subsequent control actions to be prescribed by πL, we have

the recursive form (8) and also (9) by definition, as JL(Il
t) =

QL(Il
t,−Lx̂) for all admissible πL.

JL(Il
t) = E

(·|Il
t)

∞∑

i=t

γt−iri (7)

QL(Il
t, ut) , E

(·|Il
t ,ut)

{rt + γJL(It+1)} (8)

QL(Il
t, ut) = E

(·|Il
t ,ut)

{rt + γQL(Il
t+1,−Lx̂t+1|t+1−l)}

(9)

Furthermore, since JL∗(Il
t) ≤ JL(Il

t) for any πL, it

must be the case that minu QL∗(Il
t, u) = JL∗(Il

t). In other

words, knowledge of the QL∗ gives us the optimal policy

without requiring the system model. In the next sub-section,

we show how, for a particular πL, QL can be obtained and

how πL can be subsequently improved such that QL∗ is

eventually obtained. For clarity, we temporarily assume that

the Kalman state-estimates and the effective Kalman gain

(K̆) are available.
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A. Solution Methodology via Policy Iteration: Optimal State-

Estimates Available

Similar to the work of Bradtke et. al. [1], the proposed

algorithm is divided into episodes, each of which consists of

i) policy evaluation and ii) policy improvement steps.

For a given episode k, the system operates in closed loop

for a certain duration T , under some stabilizing policy πLk .

At the end of each episode, the corresponding QLk function

is evaluated. Subsequently, a new policy whose performance

is no worse than before is obtained by means of policy

improvement. The combination of these steps is known as

‘policy iteration’ in the RL community [4] and is described

below.
1) Policy Evaluation.: For any πL, it is well-known

[14] that JL(Il
t) possesses the following analytic structure

: x̂
′

t|t−l
SLx̂t|t−l + cJ , cJ ∈ R, where SL = γ2(A −

BL)
′

SL(A − BL) + L′RuL + Rx is the solution to a Lya-

punov equation, and cJ some constant. Similarly, by expand-

ing (8), rearranging terms and denoting zt , [x̂t|t−l, ut]
′

∈

R
nz,nx+nu , we have

QL(Il
t, u) = z

′

HLz + cQ, cQ ∈ R (10)

, z̄′θL (11)

HL =

(
Rx + γA

′

SLA γA
′

SLB

γB
′

SLA Ru + γB
′

SLB

)

(12)

Here, via the (̄·) operator, the quadratic form is converted

into an equivalent inner product. θL constitutes a unique

R
0.5nz(nz+1) vector representation of HL ∈ R

nz×nz , and

vice versa. Looking at (9), and letting ‘tr’ denote the trace

operator, we have that

E
(·|Il

t ,ut)
{rt}

= tr[RxE
(·|Il

t ,ut)
(xtx

′
t)] + u′

tRuut

= tr[RxE
(·|Il

t ,ut)

(
{xt − x̂t|t−l + x̂t|t−l}{·}

′
)
] + u′

tRuut

= tr[RxE
(·|Il

t ,ut)

(
{x̂t|t−l}{·}

′
)
] + tr[RxPt|t−l] + u′

tRuut

= x̂′
t|t−lRxx̂t|t−l + u′

tRuut + c1, c1 ∈ R (13)

The second-to-last equality is due to the fact that (xt −
x̂t|t−l) is zero-mean. Here, c1 is some real whose value is

not of concern. Also, from (5), E
(·|Il

t ,ut)
{x̂t+1|t+1−l} =

Ax̂t|t−l + But = x̂t+1|t+1−l − K̆(yt+1−l −Cx̂t+1−l|t−l) ,

x̃t+1, and x̃t+1 is orthogonal to (x̂t+1|t+1−l − x̃t+1). As in

(13), we have

E
(·|Il

t ,ut)
{QL

(
Il

t+1,−Lx̂t+1|t+1−l

)
} = ¯̃z

′

t+1θ
L + c2

(14)

with z̃t+1 , [x̃t+1,−Lx̃t+1]
′ and c2 another real number.

Re-arranging (9) yields,

E
(·|Il

t ,ut)
{rt} = (z̄t − γ ¯̃zt+1)

′

θL + c

, φ
′

tθ
L + c (15)

c ∈ R is a constant that accounts for cQ, c1 and c2.

c is inconsequential and will be dropped for the rest of

this article. z̃ is crucial in differentiating the stochastic and

the deterministic algorithms. In the algorithm presented by

Bradtke et. al. [1], one replaces zt and z̃t+1 in the above with

[xt, ut]
′ and [xt+1,−L(xt+1)]

′ respectively. In the stochastic

case, however, direct use of state measurements to estimate

θL, even if they were available, would not be appropriate.

At this stage, given the form of (15), it is apparent that

learning the corresponding QL, that is policy evaluation, for

any πL is a linear regression problem and can be solved

via (possibly recursive) least squares (see Appendix), with

the sequence
{
E

(·|Il
t ,ut)

(rt)
}T

t=0
collected together with

regressors {φt}
T
t=0, for T larger than

nz(nz+1)+1
2 .

Specifically, if Q-learning were to be implemented on-

line, then for some πL and ∀t, we need to implement ut =
−Lx̂t|t−1+dt, where dt is an external dithering signal, which

is needed to ensure that a unique least-squares solution exists.

In general, dt can be chosen as a random perturbation

signal. For special cases where there is no requirement that

controller design be done online, it is noted that dt = 0 does

not destroy convergence to the optimal policy, provided that

ut is the output of some pre-existing, non-linear controller

such that φt is persistently exciting [16]. Policy improvement

is described next.

2) Policy Improvement.: For arbitrary policies

πLk and πLk+1 , if QLk(·, Lk+1(·)) ≤ JLk(·) =
QLk(·, Lk(·)), then JLk+1(·) ≤ JLk(·). Therefore one

way of achieving policy improvement is by minimizing

QL
k (·, u) with respect to the second argument. Given the

analytical form of QL, and by denoting k as an episode

index, we have (16)

−Lk+1x̂t|t−l = arg min
u

QLk(·, u)

= −(HLk

22 )−1HLk

21 x̂t|t−l (16)

Here HLk

ij is the i, j-th block sub-matrix of HL
k for the k-th

episode. Summarizing, we have

JL∗ ≤ . . . ≤ JLk+1(·) ≤ min
u

QLk(·, u) ≤ JLk(·) ≤ . . .

(17)

If persistent excitation conditions are satisfied, and if

the system (A,B) is controllable, the above steps would

converge to the optimal policy. The proof follows that of

the deterministic case presented by [1].

Upon convergence (k → ∞), we verify optimality

by noting that, for arbitrary x, minu x′
(
QL∗(·, u)

)
x =

x′
(

HL∗

11 − HL∗

12 (HL∗

22 )−1HL∗

21

)

x. The matrix in parentheses

coincides with the solution to the control Riccati equation,

(6).

B. Remarks

At this juncture, the need for state-estimates (z, z̃) is clear.

Section IV and beyond discusses the means of achieving

this. For the purpose of illustration, the proposed algorithm

is demonstrated on a simple problem. This highlights the
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Fig. 1. (a) Learnt controller gains vs. episodes for
E(d2

t )

E(e2
t )

= 0.01; (b)

Learnt controller gains vs. episodes for
E(d2

t )

E(e2
t )

= 1000

differences between the deterministic and stochastic versions

of the RL-based algorithms for direct adaptive control. A sec-

ond reason, as mentioned earlier, is to clarify the controller

synthesis studies [8], [9], that were done to compare indirect

and direct Q-learning approaches in the presence of system

noise. The latter was based on the method developed for

noise-free systems.

A 1st-order scenario where A = 0.8; B = 1.5; C =
1; K = 1.2; E[e2

t ] = 10; Rx = Ru = l = 1; g = 0.995 serves

as an illustration. In this case, L∗ = 0.389. Convergence

results using the deterministic algorithm (assuming full state-

feedback) against those computed via the algorithm devel-

oped in this paper (assuming known z, z̃) are compared by

considering various dither-to-noise ratios. Fig. 1 summarizes

findings for a typical realization.

If the levels of dithering (simulated as white, zero-mean

Gaussian noise) significantly exceed that of the system noise

(as in Fig. 1b), then the true system responds as if it were

driven only by exogenous inputs. Naturally, the determin-

istic algorithm performs well (in terms of convergence to

the optimal policy) in this case. However, when the noise

is significant compared to the dither, as in Fig. 1a, the

deterministic algorithm shows very erratic behavior while

the stochastic one exhibits smooth convergence. This means

that based on the deterministic version of the algorithm, one

might draw false conclusions regarding the levels of dither

required for convergence to the optimal policy, as was done

by [8], [9].

IV. OBTAINING STATE ESTIMATES FROM HOARX

STATE-SPACE REALIZATIONS

Obtaining the state estimates (or equivalent quantities) can

be achieved in a closed-loop setting by means of a High-

Order Auto-Regressive with eXogenous input (HOARX)

model. This is commonly employed in closed-loop subspace

identification [12] techniques as a pre-estimation step. The

main idea, provided that λ(A , A − AKC) < 1, is to ap-

proximate (1) as such:

yt ≈

q
∑

i=1

CA
i−1AK

︸ ︷︷ ︸

ai

yt−i +

q
∑

i=1

CA
i−1B

︸ ︷︷ ︸

bi

ut−i + et (18)

For simplicity of exposition, we consider Single-Input-

Single-Output (SISO) systems, while noting that an exten-

sion to its Multiple-Input-Multiple-Output counterparts is

straightforward. This approximation can be made arbitrarily

accurate for sufficiently large values of q ∈ N. Since

the regressors are uncorrelated with et, unbiased estimates

{âi, b̂i}
q
i=1 can be obtained via a least squares method. A

persistently exciting dt ensures that the regressor matrix used

in the obtaining the HOARX parameters is of full column

rank. Note that these parameters estimated are used to

calculate state estimates needed for the Q-learning algorithm

but are not used for the design of the controller.

Unlike subspace methods where further steps are re-

quired to find a particular (A,B, C,K)-tuple, we employ

a particular state-space realization with states that are fully

measurable, and simultaneously allows a convenient means

for controller order-reduction.

A. A Useful State-Space Realization

Consider a direct-realization of the HOARX approxima-

tion (18):
















yt

yt−1

...

yt−s+1

ut−1

ut−2

...

ut−s+1

















=

















a1 a2 . . . as b2 b3 . . . bs

1 . . . 0 0 . . . 0 . . . 0
...

. . .
...

...
...

...

0 . . . 1 0 . . . 0 . . . 0
0 . . . . . . . . . 0 . . . . . . 0
0 . . . . . . 0 1 . . . 0 0
...

...
...

. . .
...

...

0 . . . . . . 0 0 . . . 1 0

































yt−1

yt−2

...

yt−s

ut−2

ut−3

...

ut−s

















+















b1

0
...

1
0
...

0















ut−1 +















1
0
...

0
...

0















et

yt =
(
1 0 . . . 0

)

















yt

yt−1

...

yt−s+1

ut−1

ut−2

...

ut−s+1

















(19)

Here, s ≤ q is employed to impart generality; s effectively

serves as a parameter determining controller complexity. This
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corresponds to a stochastic state-space realization with full-

feedback. This situation can be treated as a special case of

that explained earlier (i.e. select l = 0).

Here, C = I and measurement noise is absent. Therefore,

the optimal time-invariant observer is open-loop and as such

x̂t|t = xt once the effect of initial conditions has dissipated.

When policy Lk is evaluated, the algorithm described earlier

then specializes to:

E(·|I0
t ,ut){rt} = y′

tyt + u′
tRuut (20)

x̂t|t = [yt, .., yt−s+1, ut−1, .., ut−s+1]
′ (21)

x̃t+1 = [ŷt+1, yt, .., yt−s+2, ut, .., ut−s+2]
′(22)

zt = [x̂t|t, ut]
′ (23)

z̃t+1 = [x̃t+1,−Lx̃t+1]
′ (24)

ŷt+1 =
s∑

i=1

(aiyt+1−i + biut+1−i) (25)

B. The Policy Iteration Algorithm

The following is a summary of the proposed algorithm.

The underlying assumption is that the learnt controller is to

be implemented on-line. Before the policy iteration begins,

assume that the system is under some sub-optimal (e.g.

PI1) control for a period of time longer than 2q, where a

sufficiently large q ∈ N is chosen. Ru, complexity-control

factor s, and discount factor g, are similarly pre-specified.

{âi, b̂i}
q
i=1 can be obtained (see Section IV) if the

input to the plant is subject to external dithering, i.e.

ut = f(yt) + dt, where f denotes the PI control

law. Each episode k is assumed to be of a duration

T >
nz(nz+1)

2 , nz := (s)(ny) + (s − 1)(nu) + nu

For k = 1, 2, . . .

• Policy Evaluation. The system is run in closed loop un-

der the current policy Lk : ut = −Lkx̂t|t−l+dt (21). dt

is simulated as white, zero-mean, Gaussian noise. Col-

lection of scalar reinforcements
{
E
·|Il

t ,ut

(rt)
}T

t=0
and

regressors (15) {φt}
T
t=0 proceeds and a least squares

estimate of θLk is generated at the end of the k-th

episode. Recall that θLk is equivalent to HLk . If so

desired, the estimates {âi, b̂i} are refined continuously

across all episodes by means of recursive least squares.

• Policy Improvement. With knowledge of HLk , policy

improvement is carried out as in (16)

• Termination. The preceding steps cease upon ǫ-

convergence (i.e. ||Lk+1 − Lk|| ≤ ǫ).

Note that the first policy evaluation step is carried out with

the original PI controller in place.

V. EXAMPLE

We demonstrate the efficacy of the algorithm on the

following system. The underlying system is taken to be of

the form

1Proportional-Integral control, see [17]
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Fig. 2. Plot of error vs. episodes for various levels of dithering

xt+1 =

(
0.6 −0.7
1 0

)

xt +

(
1.1
0.3

)

ut + wt

yt =
(

0 1
)
xt + vt (26)

where wt and vt are uncorrelated , zero-mean Gaussian

stochastic processes, with covariances diag([1, 1]) and 1
respectively. As such, the time-invariant Kalman gain is

(0.219, 0.718)′ and Ee2
t = 3.56; Ru = 15 and g = 0.999

are the other user-defined quantities.

The algorithm is initialized with a PI controller with

gain, 0.075 and an integral time 4. The total number of

episodes is set to 4, and the duration of each episode is

T = 4000 time-units. We show the results for the case where

q = s = 15. For reference, the optimal controller gain,

L∗ for the pre-supposed realization (19) can be computed

using the true values of {ai, bi}
q
i=1. Results of a typical

stochastic realization is shown in Fig. 2 for Ed2
t = 3, 10.

Since the system is time-invariant, learning of {âi, b̂i} was

done only during the initialization phase. The non-zero

error is the result of imperfect {âi, b̂i} and should decrease

in the event that learning of the latter parameters occurs

throughout the policy iteration phase. Numerical experiments

indicate convergence for large values of q where (19) does

not represent a controllable system. As stated earlier, the

controllability premise is required to prove convergence of

the algorithm. Whether this condition is also necessary is

the subject of future work. This was also observed in the

context of the deterministic algorithm, where a concatenated

input-output vector served the provided state feedback [15].

As expected, the higher the levels of dithering, the smaller

the error, ||Lk − L∗||2, ∀k.

A. Controller Reduction

Convergence behavior where s < q needs to be explored.

Consider the same scenario where now, s = 2, and q = 15.

In this case, using the true {ai, bi}
q
i=1, we compute L∗ as

that corresponding to (19) where s = 2. Convergence results

are shown in Fig. 3 and indicate that our proposed algorithm

serves the role of automatic controller order-reduction.

As before, developing convergence proofs for the reduced

order case is the aim of future work.
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VI. CONCLUSION, LIMITATIONS AND FUTURE

RESEARCH

This paper extends the RL paradigm for model-free,

adaptive control to linear, stochastic systems subject to a

quadratic cost-function. A model-free algorithm is derived by

borrowing certain concepts from closed-loop system identifi-

cation. However, the need for complete system identification

is circumvented. Results suggestive of automatic controller

reduction have also been presented.

However, there remains certain issues to be clarified and

opportunities to be explored.

• Convergence Proofs. Although empirical results are

promising, there needs to be convergence proofs for the

case of over-and-under modeling.

• Extension to Nonlinear Systems. For tighter levels of

control, the ARMAX idealization may not be appropri-

ate. An extension of this work to nonlinear, stochastic

systems may follow the contribution of [15], where

local RL controllers were employed in the context of

high-dimensional LQR problems. Since RL methods

are direct, the issue of the transmission of (bias and

variance) modeling errors to controller error, in the case

of the indirect approach, is avoided. We postulate that

RL provides an automatic mechanism yielding superior

closed-loop performance.
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APPENDIX

We briefly present a version of the recursive least squares

algorithm. Given that one is presented sequentially with time-

indexed samples {rt, φt}
T
t=0, the algorithm [16] is:

θ̂t = θ̂t−1 + Gt(rt − φ′
t−1θ̂t−1)

Gt = Pt−1φt(I + φ′
tPt−1φt)

−1

Pt = (I − Gtφ
′
t)Pt−1 (27)

Persistency of excitation relates to the following condition

ρ1I ≤
1

N

N∑

i=1

φt−iφ
′
t−i ≤ ρ2I, ∀t ≥ N0, N ≥ N0 (28)

where ρ1, ρ2, andN0 are positive numbers
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