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Abstract— Unmanned aerial vehicles (UAVs) are well-suited
to a wide range of mission scenarios, such as search and rescue,
border patrol, and military surveillance. The complex and dis-
tributed nature of these missions often requires teams of UAVs
to work together. Furthermore, overall mission performance
can be strongly influenced by vehicle failures or degradations, so
an autonomous mission system must account for the possibility
of these anomalies if it is to maximize performance. This
paper presents a general health management methodology for
designing mission systems that can anticipate the negative
effects of various types of anomalies on the future mission state
and choose actions that mitigate those effects. The formulation
is then specialized to the problem of providing persistent
surveillance coverage using a group of UAVs, where uncertain
fuel usage dynamics and strong interdependence effects between
vehicles must be considered. Finally, the paper presents results
showing that the health-aware persistent surveillance planner
based on this formulation exhibits excellent performance in
both simulated and real flight test experiments.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are becoming increas-
ingly sophisticated in terms of hardware capabilities. Ad-
vances in sensor systems, onboard computational platforms,
energy storage, and other enabling technologies have made
it possible to build a huge variety of UAVs for a range of
different mission scenarios [1], [2]. Many of the mission
scenarios of interest, such as persistent surveillance, are
inherently long-duration and require coordination of multiple
cooperating UAVs in order to achieve the mission objectives.
In these types of missions, a high level of autonomy is
desired due to the logistical complexity and expense of
direct human control of each individual vehicle. Currently,
autonomous mission planning and control for multi-agent
systems is an active area of research [3]–[7]. Some of
the issues in this area are similar to questions arising in
manufacturing systems [8], [9] and air transportation [10]–
[16]. While these efforts have made significant progress
in understanding how to handle some of the complexity
inherent in multi-agent problems, there remain a number of
open questions in this area.

This paper investigates one important question that is
referred to as the health management problem for multi-
agent systems [17], [18]. Designs of current and future
UAVs increasingly incorporate a large number of sensors for
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monitoring the health of the vehicle’s own subsystems. For
example, sensors may be installed to measure the temperature
and current of electric motors, the effectiveness of the
vehicle’s control actuators, or the fuel consumption rates
in the engine. On a typical UAV, sensors may provide a
wealth of data about a large number of vehicle subsystems.
By making appropriate use of this data, a health-aware
autonomous system may be able to achieve a higher level of
overall mission performance, as compared to a non-health-
aware system, by making decisions that account for the
current capabilities of each agent. For example, in a search
and track mission, utilization of sensor health data may
allow an autonomous system to assign the UAVs with the
best-performing sensors to the search areas with the highest
probability of finding the target.

Utilization of the current status of each vehicle is an
important aspect of the health management problem. Another
important aspect is the ability not only to react to the
current status, but to consider the implications of future
changes in health status or failures on the successful outcome
of the mission. This predictive capability is of paramount
importance, since it may allow an autonomous system to
avoid an undesirable future outcome. For example, if a
UAV tracking a high value target is known to have a high
probability of failure in the future, the autonomous system
may be able to assign a backup vehicle to track the target,
ensuring that the tracking can continue even if one of the
vehicles fails.

This paper addresses these health management issues and
develops a general framework for thinking about the health
management problem. It then specializes the discussion to
the persistent surveillance problem with a focus on group
fuel management when there is uncertainty in the fuel
consumption dynamics. This work builds on previous health
management techniques developed for the persistent surveil-
lance problem [17]. While the previous work focused on
embedding health-aware heuristics into an already-existing
mission management algorithm, this paper develops a new
formulation of the problem in which health-aware behaviors
emerge automatically. Finally, simulated and real flight re-
sults are provided which demonstrate the effectiveness of the
new formulation.

II. HEALTH MANAGEMENT IN MULTI-AGENT SYSTEMS

The term health management is often used in different
contexts, so it can be difficult to define exactly what it means
for a multi-agent system to incorporate health management
techniques. To make the problem more precise, we can
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define a number of general properties that we would like
a multi-agent system to exhibit. Once these properties are
defined, potential design methodologies for incorporating
health management into such systems can be evaluated.

In the context of multi-agent systems, health management
refers to accounting for changing resource or capability levels
of the agents. These changes may be caused by failures,
degradations, or off-nominal conditions (of actuators, sen-
sors, propulsion systems, etc), or by unpredictable events in
the environment. Broadly speaking, we would like a multi-
agent system to exhibit the following properties:

1) The system should be proactive. That is, the system
should be capable of “looking into the future” to
anticipate events that are likely to occur, and given
this information, actively select a course of action that
leads to a desirable state and/or avoids an undesirable
state. In contrast, a reactive system is incapable of
making such future predictions (or cannot effectively
use such predictions if they are available). Thus, a
reactive system can only respond to failures after they
occur, instead of trying to avoid them in the first place.

2) The system should manage health information at the
group, not just the individual, level. In most multi-
agent mission scenarios, there are strong coupling ef-
fects between vehicles that must be accounted for. For
example, in the multi-UAV task assignment problem,
failure of a single UAV may necessitate reassigning
all the other UAVs to different targets in order to
continue the mission. These coupling effects may be
very complex, depending on the mission. Nevertheless,
they must be considered if the system is to be robust
to changing conditions.

A. Design Considerations

Given the above properties, we now consider some of
their implications for design of multi-agent systems. First,
Property 1 implies that the system must have a model of
its environment in order to anticipate the system state in
the future. This model should account for how the current
control action will influence the future state. Furthermore,
since many of the events of interest in the health manage-
ment problem - such as failures - cannot be predicted with
certainty, the model should be stochastic, and the system
should account for the relative probability of possible future
events in selecting actions. In general, then, the system model
will be of the form:

xk+1 = f(xk,uk,wk) (1)

where x is the system state, u are the control inputs, w are
random variables that capture the uncertainty in the system
dynamics, and k is a discrete time index.

If the system is to proactively choose control actions that
lead to desirable future states, it therefore must have some
method of ascertaining whether a given state is desirable or
not. A natural way to accomplish this is to define a cost
function g(x) which maps states x to a scalar cost value.

Property 2 also has implications for the design of health-
enabled systems. Normally, the interdependence between
agents plays a large role in overall mission performance.
Therefore, the system model f(xk,uk,wk) and cost function
g(x) should capture this interdependence so that knowledge
of how health related events such as failures can be exploited.

The considerations presented here lead naturally to the
idea of applying dynamic programming (DP) techniques
to the multi-agent health management problem. DP pro-
vides an attractive method for achieving proactive behavior,
since the problem solution method involves calculating the
actions that minimize not only the current cost, but also
the expected future cost [8]. Furthermore, formulating the
health management problem as a dynamic program allows
the interdependence between agents to be encoded naturally
in the system model (Equation 1).

Consideration must be given to computational issues in the
formulation of the system model. The choice of too complex
a model may lead to an unnecessarily large state space,
rendering the problem difficult to solve and implement in
real-time. On the other hand, selecting a model which is too
simplified may not adequately capture important aspects of
the problem, leading to poor performance. Thus, a balance
between model complexity and computational tractability
must be struck in the formulation of the health management
problem. In the following sections, we use the multi-vehicle
persistent surveillance problem as an example to show how
an appropriate dynamic program capturing the important
aspects of the problem can be formulated and solved, and
show that the resulting control policy exhibits the desirable
properties discussed in this section.

III. PERSISTENT SURVEILLANCE WITH GROUP FUEL
MANAGEMENT

Health management techniques are an enabling technology
for multi-vehicle persistent surveillance missions. In the
model of this scenario considered here, there is a group of
n UAVs equipped with cameras or other types of sensors.
The UAVs are initially located at a base location, which
is separated by some (possibly large) distance from the
surveillance location. The objective of the problem is to
maintain a specified number r of requested UAVs over the
surveillance location at all times.

The UAV vehicle dynamics provide a number of interest-
ing health management aspects to the problem. In particular,
management of fuel is an important health management
concern. The vehicles have a certain maximum fuel capacity
Fmax, and we assume that the rate Ḟburn at which they
burn fuel may vary stochastically during the mission due
to aggressive maneuvering that may be required for short
time periods, engine wear and tear, adverse environmental
conditions, etc. Thus, the total flight time each vehicle may
achieve on a full tank of gas is a random variable, and we
would like to account for this uncertainty in the problem.
If a vehicle runs out of fuel while in flight, it crashes and
is lost. Finally, when the vehicle returns to base, it begins
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refueling at a rate Ḟre f uel (i.e. the vehicles take a finite time
to refuel).

Another health management concern we will model in the
problem is the possibility for randomly-occurring vehicle
failures. These may be due to sensors, engines, control
actuators, or other mission-critical systems failing in flight.

A. Dynamic Program Formulation

Given the description of the persistent surveillance prob-
lem, a suitable dynamic program can now be formulated.
The program is defined by its state vector x, control vector
u, state transition model f(xk,uk,wk), cost function g(x), and
discount factor α .

1) State Space: The state of each UAV is given by two
scalar variables describing the vehicle’s flight status and fuel
remaining. The flight status yi describes the UAV location,

yi ∈ {Yb,Y0,Y1, . . . ,Ys,Yc} (2)

where Yb is the base location, Ys is the surveillance location,
{Y0,Y1, . . . ,Ys−1} are transition states between the base and
surveillance locations (capturing the fact that it takes finite
time to fly between the two locations), and Yc is a special
state denoting that the vehicle has crashed.

Similarly, the fuel state fi is described by a discrete set of
possible fuel quantities,

fi ∈ {0,∆ f ,2∆ f , . . . ,Fmax−∆ f ,Fmax} (3)

where ∆ f is an appropriate discrete fuel quantity.
The total system state vector x is thus given by the states

yi and fi for each UAV, along with r, the number of requested
vehicles:

x = (y1,y2, . . . ,yn; f1, f2, . . . , fn;r)T (4)

The size of the state space Nss is found by counting all
possible values of x, which yields:

Nss = (n+1)
(

(Ys +3)
(

Fmax

∆ f
+1

))n

(5)

2) Control Space: The controls ui available for the ith

UAV depend on the UAV’s current flight status yi.

• If yi ∈ {Y0, . . . ,Ys−1}, then the vehicle is in the transi-
tion area and may either move away from base or toward
base: ui ∈ {“+ ”,“− ”}

• If yi = Yc, then the vehicle has crashed and no action
for that vehicle can be taken: ui = /0

• If yi = Yb, then the vehicle is at base and may either
take off or remain at base: ui ∈ {“take off”,“remain at
base”}

• If yi = Ys, then the vehicle is at the surveillance loca-
tion and may loiter there or move toward base: ui ∈
{“loiter”,“− ”}

The full control vector u is thus given by the controls for
each UAV:

u = (u1, . . . ,un)T (6)

3) State Transition Model: The state transition model
(Equation 1) captures the qualitative description of the dy-
namics given at the start of this section. The model can be
partitioned into dynamics for each individual UAV.

The dynamics for the flight status yi are described by the
following rules:

• If yi ∈ {Y0, . . . ,Ys − 1}, then the UAV moves one unit
away from or toward base as specified by the action ui ∈
{“ + ”,“− ”} with probability (1− pcrash), and crashes
with probability pcrash.

• If yi = Yc, then the vehicle has crashed and remains in
the crashed state forever afterward.

• If yi = Yb, then the UAV remains at the base location
with probability 1 if the action “remain at base” is
selected. If the action “take off” is selected, it moves to
state Y0 with probability (1− pcrash), and crashes with
probability pcrash.

• If yi =Ys, then if the action “loiter” is selected, the UAV
remains at the surveillance location with probability
(1− pcrash), and crashes with probability pcrash. Oth-
erwise, if the action “−” is selected, it moves one unit
toward base with probability (1− pcrash), and crashes
with probability pcrash.

• If at any time the UAV’s fuel level fi reaches zero,
the UAV transitions to the crashed state (yi = Yc) with
probability 1.

The dynamics for the fuel state fi are described by the
following rules:

• If yi =Yb, then fi increases at the rate Ḟre f uel (the vehicle
refuels)

• If yi = Yc, then the fuel state remains the same (the
vehicle is crashed)

• Otherwise, the vehicle is in a flying state and burns fuel
at a stochastically modeled rate: fi decreases at the rate
Ḟburn with probability p fnominal and decreases at the rate
2Ḟburn with probability (1− p fnominal ).

4) Cost Function: The cost function g(x) has three dis-
tinct components due to loss of surveillance area coverage,
vehicle crashes, and fuel usage, and can be written as

g(x) = Cloc max{0,(r−ns(x))}+Ccrashncrashed(x)+C f n f (x)

where:
• ns(x): number of UAVs in surveillance area in state x,
• ncrashed(x): number of crashed UAVs in state x,
• n f (x): total number of fuel units burned in state x,

and Cloc, Ccrash, and C f are the relative costs of loss of
coverage events, crashes, and fuel usage, respectively.

IV. DYNAMIC PROGRAM SOLUTION AND SIMULATION
RESULTS

In order to solve the DP, a software framework written in
Python was developed. The framework allows for generic
DPs to be programmed by specifying appropriate system
transition, action, and cost functions. Once programmed, the
framework applies the value iteration algorithm to iteratively
solve Bellman’s equation for the optimal cost-to-go J?(xk).
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The results of this computation are stored on disk as a lookup
table. Once J?(xk) is found for all states xk, the optimal
control action u?(xk) can be quickly computed by choosing
the action which minimizes the expected future cost [8]:

u?(xk) = argmin
u

Exk+1 [g(xk+1)+αJ?(xk+1)] (7)

While the controller runs very quickly once J?(xk) is known,
a potentially large amount of computation is required to find
J?(xk). In the experiments done to date, the largest DP solved
was a three-vehicle problem (n = 3) with s = 1, Fmax = 16,
and ∆ f = 1, resulting in a state space size (Equation 5) of
approximately 1.2 million states. For this problem, the value
iteration algorithm took roughly 36 hours to complete on a
2.4GHz Pentium 4 PC.

To test the performance of the health-enabled control
strategy, J?(xk) was calculated for several different sets of
problem parameters, and the resulting optimal control law
u?(xk) was found. The system dynamics were then simulated
under the action of u?(xk). Unless otherwise specified, many
of the problem parameters were held fixed at the following
values: Ys = 1, pcrash = 0.01, p fnominal = 0.90, ∆ f = 1, Ḟburn =
1, Cloc = 8.0, Ccrash = 50.0, and C f = 1.0

Figure 1 shows a simulation result for the three-vehicle
(n = 3) case with two vehicles requested (r = 2). In this
experiment, the fuel capacity Fmax was 12 and the refuel
rate Ḟre f uel was 4. The figure shows the flight status yi for
each of the UAVs in the lower graph (where -2 = crashed,
-1 = base location, 0 = transition area, and 1 = surveillance
location) and the fuel state fi for each UAV in the top
graph. These results exhibit a number of desirable behaviors.
First, note that the system commands two UAVs to take off
at time t = 0 and fly immediately to the surveillance area
to establish initial coverage. If the system were to leave
these two UAVs in the surveillance area until both were
close to the minimum fuel level needed to return to base,
they would both have to leave at the same time, resulting
in coverage gap. However, because the system anticipates
this problem, it instead recalls the green UAV to base well
before it has reached the minimum fuel level. In addition,
it launches the blue UAV at the right moment so that the
blue UAV arrives at the surveillance location precisely when
the green UAV is commanded to return to base, resulting
in continuous coverage throughout the vehicle swap. This
initial command sequence allows the system to set up a
regular pattern of vehicle swaps which results in the greatest
possible coverage. Another desirable feature of the solution
is that the system tries to arrange for the UAVs to return to
base with a small reserve quantity of fuel remaining. This
behavior is a proactive hedge against the uncertainty in the
fuel burn dynamics, reducing the probability that the vehicle
will run out of fuel before reaching base due to one or more
higher-than-average fuel burn events.

Note that in this example, the parameters were chosen
so that the ratio of fuel capacity to refueling rate of the
UAVs was slightly less than the minimum necessary to
maintain perfectly continuous coverage. In other words, it

was a “hard” problem where even an optimal solution must
exhibit small periodic coverage gaps, such as the one seen at
time t = 20. In spite of the intentionally challenging problem
setup, the system performed extremely well. It is especially
interesting to note that, as discussed, the system exhibits
a number of distinct and relatively sophisticated behaviors,
such as bringing back vehicles early and the hedge against
fuel burn uncertainty. These behaviors emerge naturally and
automatically due to the formulation and solution method
applied to the problem.

A further example is shown in Figure 2. This experiment
was an “easy” problem where three UAVs (n = 3) with
high fuel capacity and refuel rates (Fmax = 12, Ḟre f uel = 4)
were available to satisfy a single request (r = 1). In this
example, the system initially sets up a regular switching
pattern between only the red and blue UAVs. The green
UAV is left in reserve at the base location since it is not
needed to satisfy the requested number of vehicles, and
commanding it to fly would consume extra fuel (recall that
fuel burn is a small part of the cost function g(x)). However,
at time t = 47, the blue UAV suffers a random failure during
take off and crashes (this failure was a result of having a
nonzero value pcrash for the probability of random crashes,
which the system can do nothing to prevent). The system
immediately commands the green UAV to take off to replace
the blue UAV, while simultaneously leaving the red UAV
in the surveillance area for an extra time unit to provide
coverage until the green UAV arrives on station. After that
point, the switching pattern is maintained using the green
and red UAVs. Even though a catastrophic failure occurs in
this example, coverage is maintained at 100% at all times.

A final example, shown in Figure 3, illustrates the value
of the problem formulation presented here, which accounts
for the inherent uncertainty in the fuel burn dynamics. In
this example, an optimal policy for the purely deterministic
problem (p fnominal = 1), which does not account for this
uncertainty, was calculated. This policy was then simulated
using the true, uncertain, dynamics (p fnominal = 0.90). The fuel
state graph in Figure 3 reveals that the proactive hedging
behavior is lost with the policy based on deterministic
dynamics; the policy always brings vehicles back to base
with exactly zero fuel remaining. Unfortunately, this strategy
is highly risky, since any off-nominal fuel burn events which
occur when the vehicle is returning to base are guaranteed
to produce a crash. In the simulation shown, both vehicles
crash after a short period of time. Indeed, in every simulation
run to date, both UAVs end up crashing after a short period
of time. The reason for this is that for each vehicle cycle, the
probability of a crash is 1− p fnominal = 0.100, as opposed to
the control policy based on uncertain fuel dynamics, which
effectively reduces this probability to (1− p fnominal )

3 = 0.001.
When viewed in this light, the uncertainty-based controller
has a clear advantage.

V. FLIGHT RESULTS

A series of flight experiments using the MIT RAVEN
testbed [19] were carried out to evaluate the performance
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1: Simulation results for n = 3, r = 2. Note the off-nominal fuel burn events that can be observed in the fuel level plot
(these are places where the graph has a slope of -2).

2: Simulation results for n = 3, r = 1. Response to vehicle crash.

3: Simulation results for n = 2, r = 1. Control policy based on deterministic fuel burn.

4: Flight results for n = 3, r = 2.
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of the health enabled, DP-based control scheme developed
in this paper. In these experiments, the controller had access
to n = 3 quadrotor UAVs and was commanded to maintain
r = 2 UAVs over a surveillance area. The parameters of the
experiments were adjusted to make the problem intentionally
hard for the controller. That is, the distance from base to the
surveillance area was large relative to the amount of fuel
each UAV could carry, thus necessitating rapid swapping of
the UAVs in order to maintain the desired coverage.

Flight results for a typical experiment are shown in Fig-
ure 4. Despite the difficulty of the problem, the performance
of the controller is excellent, providing nearly continuous
(97%) coverage over the 45-minute duration of the mission.
Furthermore, the qualitative behavior of the flight controller
is identical to that seen in simulation. This demonstrates that
the desirable properties exhibited by the DP-based controller
can be successfully implemented on a real hardware system.

VI. CONCLUSIONS

Health management in multi-agent systems is a complex
and difficult problem, but any autonomous control system
that is health-aware should be proactive (capable of looking
into the future to foresee the consequences of stochastically-
occurring failures or off-nominal events) as well as capable
of exploiting the interdependencies between agents at the
group level. Dynamic programming is shown to provide a
natural framework for posing the health management prob-
lem. The persistent surveillance example demonstrates how
a suitable DP may be formulated to capture the important
health-related issues in a problem, and simulation results
of the resulting controller demonstrate a large number of
distinct, “smart” behaviors, all of which contribute to the
overall excellent performance of the controller. Flight exper-
iments show that the DP-based controller can be effectively
implemented on a real system while retaining the excellent
performance observed in simulation.

The natural emergence of the “smart” behaviors exhibited
by the DP controller is appealing, especially considering the
complexity and difficulty of manually building heuristics to
capture those same behaviors. For example, the Python code
for the persistent surveillance problem implemented in this
paper has fewer than 200 lines; code for all of the heuristics
necessary to implement the same behaviors would likely
be far longer and more complex. This difficulty with the
heuristic approach only increases as the health management
problem to be solved grows in complexity, where the correct
heuristics to use may be far from obvious.
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