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Abstract— Navigation measure is introduced as a new tool
to solve the motion planning problem in the presence of
static obstacles. Existence of the navigation measure guarantees
collision free convergence to the final destination set. Navigation
measure can be viewed as a dual to the navigation function, a
popular tool used in the motion planning literature today. While
navigation function has its minimum at the final destination set
and peaks at the obstacle sets, the navigation measure on the
other hand takes maximum value at the destination set and is
zero on the obstacle set. A linear programming formalism is
proposed for the construction of navigation measure. Set ori-
ented numerical methods are used to obtain finite dimensional
approximation of the navigation measure.

I. INTRODUCTION

Motion planning problem has attracted the interest of dif-

ferent communities, including researcher in the area of

nonlinear control, robotics, and artificial intelligence. The

motion planning problem can be described as generation or

execution of plan of moving from one location to another

in space to accomplish a desired task while at the same

time avoiding collision with obstacles or other undesirable

behaviors [1]. Among various approaches to the motion

planning problem three most popular approaches are cell

decomposition method, roadmap method, and artificial po-

tential field method.

The cell decomposition method rely on the partition of

the configuration space into finite number of cells, in each

of which the collision free path is found. Global path is

then obtained by connecting the local collision free path

between adjacent cells [2]. In roadmaps methods, a network

of collision free connecting path is constructed which spans

the free configuration space. The path planning problem

then reduces to finding paths connecting the initial and

final configuration to the roadmaps and then selecting the

sequence of paths on the roadmaps [3], [4]. Potential field

method was introduced to robotics research in the thesis

work of Khatib [5]. In potential field method a collision free

trajectory is generated by the robot moving locally according

to forces defined by the negative gradient of a potential

function. The function is designed to provide attractive forces

towards the goal and repulsive forces which push the robot

away from the obstacles. The control law using potential field

methods is feedback in nature because the control action is

computed at each instant of time depending upon the current

state [6], [7]. The approaches using cell-decomposition and

roadmaps are open loop in nature. The problem with the
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potential field methods is the possible existence of local

minima in which robot might get trapped. Potential functions

for motion planning were refined in the work of E. Rimon

[8]. In particular the potential functions which do not have

local minima are defined as navigation functions. Naviga-

tion functions have only one minimum at the desired goal

configuration. The problem with the navigation functions is

that although they exist, there is no systematic procedure for

constructing one.

In this paper we introduce navigation measure as a new tool

for motion planning problem. Navigation measure can be

viewed as a dual to navigation function while navigation

function has minimum at the final destination set and peaks

at the obstacle set, navigation measure on the other hand

takes maximum value on the final destination set and is zero

on the obstacle sets. Navigation measure is inspired from

Lyapunov measure, which is introduced in [9] for verifying

weaker notion of almost everywhere stability in nonlinear

systems. Lyapunov measure is shown to be dual to Lyapunov

function. Application of Lyapunov measure for stabilization,

called as control Lyapunov measure, is also studied in [10].

Motion planning can be viewed as the stabilization of final

destination set using control Lyapunov measure under the

additional constraints that the control Lyapunov measure is

zero on the obstacle set to avoid collision with the obstacle

sets. So navigation measure is defined as control Lyapunov

measure that takes zero value on the obstacle sets. In this

paper we propose a linear programming formalism for the

construction of navigation measure. Set oriented numerical

methods developed in [11] are used for the finite dimensional

approximation of the navigation measure.

This paper is organized as follows. In section II, we re-

view some of the key results from [9], [12], [10] on the

applications of Lyapunov measure for stability analysis and

stabilization problem. In section III, we present the main

result of this paper on the use of navigation measure for the

motion planning problem. Computation framework for the

finite dimensional approximation of the navigation measure

along with the simulation results for a model example prob-

lem are presented in section IV. Conclusion and discussion

follows in section V.

II. LYAPUNOV MEASURE, STABILITY, AND

STABILIZATION

In [9], [12], [10], Lyapunov measure is introduced for

stability verification and for stabilizing controller design of

an invariant set in nonlinear dynamical systems. Stability and

stabilization problems for a nonlinear system T : X → X ,

where X ⊂ R
n is compact, were studied using a weaker
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notion of almost everywhere stability. One such definition

of almost everywhere stability is as follows.

Definition 1 (Almost everywhere stable with geometric decay):

A closed T invariant set A ⊂ X i.e., T (A) = A is said to be

almost everywhere stable with geometric decay with respect

to finite measure m ∈ M (Ac) if given δ > 0, there exists

K(δ ) < ∞ and β < 1 such that

m{x ∈ Ac : T n(x) ∈ B} < Kβ n ∀n ≥ 0

for all set B ⊂ X \Uδ , where Uδ is the open neighborhood

of invariant set A.

This weaker notion of almost everywhere stability was

studied using a linear transfer operator called as Perron-

Frobenius (P-F) operator. P-F operator is used to study the

evolution of the sets or the measure supported on the sets.

For any given continuous mapping T : X → X , linear P-F

operator, denoted by PT : M (X) → M (X) is given by

PT [µ](B) =
∫

X
χB(T (x))dµ(x) (1)

where M (X) is the vector space of all measures supported

on X , χB(x) is the indicator function supported on the set

B ⊂ B(X), the Borel sigma-algebra of X . For more details

on the P-F operator refer to [13]. Since the stability property

of an invariant set in definition (1) is stated in terms of the

transient behavior of the system on the complement of an

invariant set Ac, we define sub-stochastic Markov operator

as a restriction of the P-F operator on the complement of

the invariant set as follows:

P
1
T [µ](B) :=

∫
Ac

χB(T (x))dµ(x) (2)

for any set B ∈ B(Ac) and µ ∈ M (Ac). Necessary and

sufficient condition for almost everywhere stability of an

invariant set A with respect to finite non-negative measure

m is obtained in the form of existence of the positive solu-

tion, Lyapunov measure, to the following Lyapunov measure

equation:

αP
1
T µ̄(B)− µ̄(B) = −m(B) (3)

where α ≥ 1 is a constant. The precise theorem for stability

as proved in [12] is as follows:

Theorem 2: An invariant set A for the dynamical system T :

X → X is almost everywhere stable with geometric stable

with respect to some finite measure m ∈ M (Ac) if and only

if there exists a non-negative measure µ̄ which is finite on

B(X \Uδ ) and satisfies

αP
1
T µ̄(B)− µ̄(B) = −m(B)

for some α > 1 and any set B ⊂ X \Uδ , where Uδ is the δ
neighborhood of the invariant set A. Measure m is absolutely

continuous with respect to measure µ̄ .

Typically measure m in the Lyapunov measure equation (3)

is taken to be Lebesgue measure. Stability of an invariant

set with respect to Lebesgue almost every initial condition

starting from a given set S can be studied by taking m = mS

in the Lyapunov measure equation, where mS is the Lebesgue

measure supported on the set S.

Remark 3: In the subsequent section we use the notation

m for the Lebesgue measure, mS for the Lebesgue measure

supported on set S and Uδ for the δ neighborhood of an

invariant set A for a given δ > 0.

Lyapunov measure as a solution of Lyapunov measure equa-

tion can also be used to characterize the unreachable sets in

the phase space. The precise theorem in this direction is as

follows.

Theorem 4: Let the invariant set A be almost everywhere

stable with geometric decay with respect to measure mS,

where S ⊂ X \Uδ . Any set D ⊂ X \Uδ , s.t. S ∩D = /0, is

not reachable starting from almost every Lebesgue measure

initial condition from set S i.e.,

m(Dn) = 0 ∀n ≥ 0 where Dn := {x ∈ S : T n(x) ∈ D} (4)

if and only if

µ̄S(D) = 0

where µ̄S is the solution of following Lyapunov measure

equation

αP1µ̄S(B)− µ̄S(B) = −mS(B)

for any set B ⊂ X \Uδ .

Proof: Refer to [12] for the proof.

Remark 5: In theorem (4), the condition of D∩ S = /0 can

be relaxed. This will correspond to the situation where the

initial condition are allowed to start from the set D but no

trajectory or almost every trajectories do not enter the set D.

This situation can also be characterize in terms of Lyapunov

measure [12].

In [9], set oriented numerical methods are used for the

finite dimensional approximation of the Lyapunov measure

µ̄ . This finite dimensional approximation leads to further

weaker notion of stability, which is referred to as coarse

stability in [9]. Unlike almost everywhere stability, coarse

stability of an invariant set allows for the existence of stable

dynamics in the complement of an invariant set however the

domain of attraction of the stable dynamics is strictly smaller

than the size of the partition used in the finite dimensional

approximation.

In [10], Lyaounov measure is used for the design of sta-

bilizing feedback controller. For stabilization problem we

consider the control dynamical system of the form

xn+1 = T (xn,un)

where xn ∈ X and un ∈U is the state space and control space

respectively. The objective is design feedback controller un =
K(xn) to stabilize the invariant set A, which is assumed to

be locally stable. The stabilization problem is solved using

Lyapunov measure by extending the P-F operator formalism

to the control dynamical system as follows. We define the

feedback control mapping C : X → Y := X ×U as C(x) =
(x,K(x)). Using the definition of feedback mapping C, we

write the feedback control system as

xn+1 = T (xn,K(xn)) = T ◦C(xn)

The system mapping T : Y → X and the control mapping

C : X →Y can be associated with Perron-Frobenius operators
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PT : M (Y ) → M (X) and PC : M (X) → M (Y ) respectively

and are defined as follows

PT [θ ](B) =
∫

Y
χB(T (y))dθ(y)

PC[µ](D) =
∫

D
f (a|x)dm(a)dµ(x)

where θ ∈ M (Y ),µ ∈ M (X) and B ⊂ X ,D ⊂ Y . f (x|a) is

the conditional probability density function and is introduced

to incorporate the particular form of feedback controller

mapping C(x) = (x,K(x)). The advantage of writing the

feedback control dynamical system as the composition of

two maps T : Y → X and C : X → Y is that the P-F operator

for the composition T ◦C : X →X can be written as a product

of PT and PC as follows:

PT◦C = PT ·PC : M (X) → M (X)

Refer to [10]. Just like Lyapunov measure is used for the

stability analysis of an invariant set for the autonomous

system. Control Lyapunov measure is introduced in [10]

for the stabilization problem. Control Lyapunov measure is

defined as any non-negative measure µ̄ ∈ M (Ac), which is

finite on B(X \Uδ ) and satisfies

P
1
T ·P1

C µ̄(B) < β µ̄(B) (5)

for every set B ⊂ X \Uδ and β < 1. P
1
T and P

1
C are the

restriction of the P-F operator PT and PC to the complement

of the invariant set Ac respectively and are defined similar

to the restriction of the P-F operator in the autonomous case

in equation (2). Stabilization of invariant set is posed as a

co-design problem of jointly obtaining the control Lyapunov

measure and the control P-F operator PC or in particular

the conditional probability density function f (a|x). The co-

design problem is formulated as an infinite dimensional

linear program after suitable change of coordinates. Com-

putational method based on set oriented numerical approach

is proposed for the finite dimensional approximation of linear

program in [10]. The finite dimensional approximation of the

co-design problem reduces to solving finite number of linear

inequalities.

III. NAVIGATION MEASURE FOR MOTION PLANNING

In this section, we introduce navigation measure to solve

the motion planning problem for a single vehicle in almost

everywhere sense in the presence of static obstacles. We

assume that the vehicle is modelled as a discrete time control

dynamical system of the form

xn+1 = T (xn,un) (6)

where xn ∈ X represent the compact configuration space of

the vehicle and un ∈U is the space of control input. The goal

is to design the feedback control input un = K(xn) such that

the final destination set A is asymptotically reached starting

from the initial set Si while avoiding the obstacle set So.

Similar to the case of stabilization problem we define the

control mapping C : X → Y := X ×U as C(x,K(x)). Using

this definition of C, we define the feedback control system

as

xn+1 = T ◦C(xn)

Without loss of generality we assume that the final desti-

nation set A is invariant for the uncontrolled system i.e.,

T (A,0) = A, moreover the control mapping C is designed

such that C(x) = (x,0) for x ∈ A. Now we state the definition

of almost everywhere motion planning.

Definition 6 (Almost everywhere motion planning): The

feedback control system xn+1 = T (xn,K(xn)) is said to solve

the motion planning problem in almost everywhere sense

i.e., steer almost every with respect to Lebesgue measure

initial condition from the given initial set Si ⊂ X \Uδ to

the final destination set A, while avoiding the collision with

the obstacle set So if there exists a feedback controller map

C : X → Y , where C(x) = (x,K(x)), such that following two

conditions are satisfied

1) there exists an K(δ ) < ∞ and β < 1 such that

m{x ∈ Si : (T ◦C)n(x) ∈ B} < Kβ n

for every set B ⊂ X \Uδ .

2) m(Sn
o) = 0 ∀n ≥ 0

where Sn
o := {x ∈ Si : (T ◦C)n(x) ∈ So}

Condition 1. of the theorem guarantee that the final destina-

tion set is almost everywhere stable with geometric decay

with respect to measure mSi
and the condition 2. of the

definition ensures that almost every trajectory starting from

the initial set Si can be steered to the final destination set

A while avoiding the collision with the obstacle set D. The

framework that we use to solve the motion planning problem

in almost everywhere sense (definition 6) is similar to the

stabilization problem using Lyapunov measure discussed in

previous section. We once again consider the restriction of

the P-F operator P
1
T : M (Ac ×U) → M (X) corresponding

to the dynamical system T and P
1
C : M (Ac) → M (Ac ×

U) corresponding to the controller mapping C defined as

follows:

[P1
T θ ](B) =

∫
Ac×U

χB(T (y))dθ(y) (7)

[P1
Cµ](D) =

∫
D

f (x|a)dm(a)dµ(x) (8)

where θ ∈ M (Ac ×U),µ ∈ M (Ac), B ⊂ Ac, D ⊂ Ac ×U

and f (x|a) is the conditional probability density function.

The multiplication of P
1
T and P

1
C is a well defined operator

corresponding to the feedback control dynamical system T ◦
C : Ac ×U → X and is given by

P
1
T◦C = P

1
T ·P1

C

For the proof of this refer to [10]. Note that for any set

B ⊂ Ac

P
1
T◦Cm(B) =

∫
Ac χB(T ◦C(x))dm(x) = m((T ◦C)−1(B)∩Ac)

= m{x ∈ Ac : T ◦C ∈ B}
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and similarly, we have

(P1
T◦C)nm(B) = m{x ∈ Ac : (T ◦C)n(x) ∈ B} (9)

Solution to the almost everywhere motion planning problem

depends upon the existence of navigation measure which is

defined as follows

Definition 7 (Navigation measure): Let A be the final desti-

nation set and Si,So ⊂ X \Uδ be the initial and obstacle set

respectively s.t. Si ∩So = /0. For a given controller mapping

C(x) = (x,K(x)), navigation measure is defined as any non-

negative measure µSi
, which is finite on X \Uδ and satisfies

following two equations.

1)

αP
1
T ·P1

C µ̄Si
(B)− µ̄Si

(B) = −mSi
(B) (10)

for any set B ⊂ X \Uδ and some α > 1.

2)

µ̄Si
(So) = 0 (11)

Now we state the main theorem of this paper providing suf-

ficient condition for the almost everywhere motion planning

problem as defined in (6) in terms of existence of navigation

measure.

Theorem 8: Almost everywhere motion planning problem

(Definition 6) is solvable if there exists control mapping

C : X → Y , C(x) = (x,K(x)), and a navigation measure µ̄Si
.

Proof: From the definition of navigation measure, we

know that there exists the control mapping C(x) = (x,K(x))
and the navigation measure µ̄Si

, such that

µ̄Si
(B) = αP

1
T ·P1

C µ̄Si
(B)+mSi

(B) (12)

Multiplying both the sides by αP
1
T ·P1

C, using (12)and after

rearranging we get

µ̄Si
(B) = α2(P1

T ·P1
C)2µ̄Si

(B)+P
1
T ·P1

CmSi
(B)+mSi

(B)

Now multiplying both the sides by αn(P1
T · P1

C)k for k =
1,2, ...,n and using induction we get

µ̄Si
(B) =

n

∑
k=0

αk(P1
T ·P1

C)kmSi
(B)+αn(P1

T ·P1
C)nµ̄Si

(B) (13)

Since the navigation measure µ̄Si
is finite on X \Uδ and

αn(P1
T ·P1

C)nµ̄Si
(B) ≥ 0 for all n and any set B ⊂ X \Uδ , we

have

n

∑
k=0

αk(P1
T ·P1

C)kmSi
(B) ≤

n

∑
k=0

αk(P1
T ·P1

C)kmSi
(B)

+ αn(P1
T ·P1

C)nµ̄Si
(B) = µ̄Si

(B)

and hence

n

∑
k=0

αk(P1
T ·P1

C)kmSi
(B) ≤ µ̄Si

(B) < K(δ ) ∀n ≥ 0

and

(P1
T ·P1

C)nmSi
(B) < β nK(δ )

where β = 1
α < 1.

Now using (9), we have

(P1
T ·P1

C)nmSi
(B) = (P1

T◦C)nmSi
(B)

= mSi
{x ∈ Ac : (T ◦C)n(x) ∈ B}

and since Si ⊂ X \Uδ ⊂ Ac, we have

mSi
{x ∈ Ac : (T ◦C)n(x) ∈ B} = m{x ∈ Si : (T ◦C)n(x) ∈ B}

so we get

m{x ∈ Si : (T ◦C)n(x) ∈ B} < β nK

for any set B ⊂ X \Uδ and for all n ≥ 0. This proves the

first condition of the motion planning definition. The second

condition of the definition (6) follows from (13) and the

property of navigation measure as follows:

µ̄Si
(So) =

n

∑
k=0

(P1
T ·P1

C)kmSi
(So)+(P1

T ·P1
C)nµ̄Si

(So) = 0

for all n. Since each of the individual terms and the terms

in the summation are non-negative, we have

(P1
T ·P1

C)nmSi
(So) = 0

for all n ≥ 0 and since

(P1
T ·P1

C)nmSi
(So) = m{x ∈ Si : (T ◦C)n(x) ∈ S0}

we have

m(Sn
o) = 0 ∀n ≥ 0

This proves the theorem.

So the solution to the motion planning problem lies in the

co-design of the navigation measure µ̄Si
and the controller

mapping C : X → Y . In the next section we shown that the

finite dimensional approximation of the co-design problem

can be posed as a linear program and solved using set

oriented numerical methods.

IV. COMPUTATION OF NAVIGATION MEASURE

The procedure for the computation of navigation measure for

the motion planning problem closely follows the computation

of control Lyapunov measure for the stabilization problem as

discussed in [10]. We consider a finite partition of X and

U of the state space X and control space U respectively as

follows

X = {D1, ...,DL} (14)

U = {U1, ...,UM} (15)

The partition of the product space Y := X ×U is X ×U .

These finite partition can be used to identify the measure

space M (X) and M (Y ) with the finite dimensional vector

space R
L and R

LM respectively. We denote by PT : R
LM →

R
L, and PC : R

L →R
LM the finite dimensional approximation

of the P-F operator PT and PC respectively. For more details

on the finite dimensional approximation of P-F operators

refer to [11]. Without loss of generality, we assume that

X0 := {DN+1, · · · ,DL} (16)

X11 := {D1, · · · ,DK} (17)

X12 := {DK+1, · · · ,DN} (18)
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such that X0 =∪L
i=N+1Di ⊃ A contains the invariant set A and

is assumed to be invariant. The assumption of X0 being in-

variant can be satisfied by constructing fine enough partition

around A if A is locally stable or by locally stabilizing the

invariant set A if it is unstable to begin with. Obstacle set So

is assumed to be contained in the partition X12 =∪N
i=K+1Di ⊃

So, the initial set Si ⊂ X11 = ∪K
i=1Di and X = X0 ∪X1, with

X1 = X11 ∪X12. Using the definition of finite partition and

finite dimensional approximation of the P-F operators, the

problem of constructing the finite dimensional approximation

of the navigation measure can be posed as the co-design

problem of jointly obtaining the Markov matrix PC and the

measure µ̄ such that

αµ̄PC ·PT [1 : N]− µ̄ = −m̄ (19)

µ̄i = 0 for i = K +1, ...,N (20)

for some α > 1, where m̄ is the row vector with support

contained inside X1 and is such that m̄i = 0 for i = K +
1, ...,N. Equations (19) and (20) are the finite dimensional

counterparts of equations (10) and (11) in the definition of

navigation measure. The structure of PC as it is too general

since we know that control mapping C is of the form C(x) =
(x,K(x)), this special structure of C can be incorporated as

follows. For each fixed value of control ua ∈ U , we denote

Pa : R
L → R

L to be the Markov matrix for the map T (·,u =
ua). In particular, Pa are sub-matrices of PT . Next, define

Qia = Prob(un = ua|xn ∈ Di) for a ∈ [1, . . . ,M]. (21)

to be the probability of choosing the ath control value

conditioned on state being in cell D j. Q is the discrete

counterpart of conditional distribution f (a|x) in Eq. (8). We

note that Qia describe all of the non-zeros entries of PC

for control maps of the form C(x) = (x,K(x)). Using this

definition of Q equation (19) can be written as

α
M

∑
a=1

N

∑
i=1

µiQiaPa
i j −µ j = m̄ j for j = 1, . . . ,N. (22)

Finite dimensional solution of the motion planning problem

then involves co-designing the Markov matrix Q : R
N → R

M

along with the navigation measure µ̄ such that equations (22)

and (20) are satisfied. This problem is solved by introducing

the change of coordinates as follows

Ria := µiQia for i ∈ [1, . . . ,N], a ∈ [1, . . . ,M]. (23)

By virtue of the fact that Q is a Markov matrix, we have

µ j = ∑
a

R ja. (24)

The equations in the new coordinates can be written

α ∑i,a RiaPa
i j −∑a R ja = −m̄ j, for j ∈ [1, . . . ,N]. (25)

Ria = 0 for i = K +1, ...,N for ∀a. (26)

Ria ≥ 0. (27)

The equations (25)-(26) thus represent a system of linear

equations with linear inequality constraint (27) in unknowns

Ria. A feasible solution for this can be obtained using

linear programming. From any admissible solution to the

linear program, the navigation measure and control is easily

obtained as

µi = ∑
a

Ria, (28)

Qia =
Ria

µi

i = 1, ...,K. (29)

Note that since µi = 0 corresponding to the obstacle set

i.e., µi = 0 for i = K + 1, ...,N, Qia can take any values for

i = K + 1, ...,N as long as Qia ≥ 0 and is row stochastic

∑a Qia = 1. This arbitrariness in the entries of Q is because

of our assumption that Si ∩So = /0 or in other words m̄i = 0

for i = K + 1, ...,N i.e., the system never starts with initial

condition in the obstacle set. We note that the control Markov

matrix Q is stochastic in general. In particular, solution to

Eq. (29) in general leads to Qia ∈ [0,1]. To obtain determinis-

tic controller i.e., the case when Qia ∈ {0,1} impose integer

constraints on the entries of Q, which requires solving a

mixed integer linear programming problem; details of which

are discussed in [10]. Existence of the stochastic matrix Q

and the finite dimensional navigation measure µ to solve

the motion planning problem depends upon the feasibility

of linear program (25)-(26)-(27). Establishing conditions for

the feasibility of the linear program will be addressed in our

future publication. In the next section we present simulation

result for the motion planning problem.

A. Simulation results

In this section we apply the computation framework de-

veloped in the previous section for the motion planning

problems to a simplified Dubin’s car like model where the

motion of a vehicle in (x,y) plane is described by the

following kinematics,

ẋ = V0 cos(θ)

ẏ = V0 sin(θ). (30)

In the simulation results that follow, we have assumed V0 = 1

and θ(t) is the control variable, which defines the direction

of the velocity vector. The control space has been discretized

as θi = 2πi
20

, i = 0, · · · ,19.. The continuous time dynamics in

eqn.(30) was discretized with time step dt = 0.1, for every θi.

Figures 1(a), 1(b) and 1(c) illustrates the navigation measure

for α = 1.02,1.11,1.42 respectively. Role of α is to control

the rate of convergence, larger the value of α faster the

convergence to the final destination set. The color map

represents the magnitude of the navigation measure on each

cell. Notice that the navigation measure is maximum at or

near the final destination set and is zero on the obstacle sets.

The trajectories of the corresponding closed-loop systems,

from initial condition x0 = 0.3 and y0 = 0.6, are shown in

figures 2(a), 2(b) and 2(c); with the time history of the

discrete (x,y) points are highlighted with ‘∗’. Since the

control is stochastic in this framework, the control that was

applied to the system at every time step is the θi with
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(a) α = 1.02 (b) α = 1.11 (c) α = 1.42

Fig. 1. Plot of navigation measure for different values of α

(a) α = 1.02 (b) α = 1.11 (c) α = 1.42

Fig. 2. Trajectories of the closed loop system.

maximum probability. The objective of the control is to drive

the system to (0,0). The state feedback control law θ(x,y) is

the direction of the velocity vector at each cell as shown in

fig.1. In this framework, the control law is identical for all

points in a given cell. Obstacles in fig.2 are shown in red.

Observe that the navigation measure is zero on the obstacle

sets fig.1, implying that the obstacle sets are avoided.

V. CONCLUSION

In this paper we have introduced navigation measure as a new

tool to solve the motion planning problem in the presence

of static obstacles. Motion planning problem is cast as a

co-design problem of jointly obtaining navigation measure

and the feedback controller. This co-design problem is posed

as a linear program. Computational framework based on

set oriented numerical methods is proposed for the finite

dimensional approximation of the linear program. Future

research efforts will focus on application of this framework

to motion planning in higher dimension configuration space

and extension of navigation measure to the motion planning

problems with moving obstacles.
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