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Abstract—The paper discusses the dynamic behavior of an
adaptive algorithm for the rejection of a sinusoidal disturbance
acting on an unknown system. Averaging theory is used to
approximate the nonlinear time-varying closed-loop system
by a nonlinear time-invariant system. Then, it is shown that
the four-dimensional averaged system has a two-dimensional
equilibrium surface, which can be divided into stable and
unstable subsets. Trajectories generally converge to a stable
point of the equilibrium surface, implying that the disturbance
is asymptotically cancelled even if the true parameters of the
system may not be exactly determined. Simulations demonstrate
the results of the analysis.

I. INTRODUCTION
The paper considers an algorithm for the rejection of si-

nusoidal disturbances of known frequency acting on systems
with unknown dynamics. The main contribution of the paper
is an analysis of the dynamic properties of the algorithm
using averaging theory. Few solutions have been proposed
for the disturbance rejection problem under consideration,
but even fewer have been either proved to work in practice or
analyzed carefully. In the signal processing literature, algo-
rithms have been presented that combine a gradient algorithm
(i.e., adaptive least-mean-squares or LMS algorithm) with an
on-line identifier of the plant’s impulse response [8][5][6].
For the identification, such methods require considerable
excitation to be injected in the form of white noise added
at the input of the system. An analysis of the stability of the
closed-loop system has also not been provided, let alone any
insight into the dynamics of the systems. Harmonic steady-
state (HSS) methods have simplified the problem by approx-
imating the plant by its steady-state sinusoidal response. In
[2], Pratt and co-workers describe an HSS algorithm, known
as higher harmonic control (HHC), for use in the reduction
of vibrations in helicopters, and in [4], the algorithm is
used for the cancellation of periodic noise in an acoustic
drum. A proof of stability is provided in [4], although it
assumes the injection of an excitation signal to ensure correct
identification of the plant. In contrast, [11] proposes a clever
algorithm that combines two gradient-type adaptation steps
to obtain an algorithm with guaranteed stability properties
without additional excitation. While successful experiments
were reported, no data was shown on the transient properties
of the algorithm or its ability to track variations in the
parameters. On the other hand, such results were demon-
strated in [9], which provided a remarkably simple algorithm
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inspired from [4]. Its advantage is that it eliminated the need
to collect batches of data and updated control parameters
continuously. The performance of the algorithm was verified
through single-channel active noise control experiments and
the ability to track abruptly or continuously time-varying
system parameters was demonstrated. However, no formal
proof of stability was obtained.
The objective of this paper is to provide a stability

analysis for the adaptive system of [9]. Note that rigorous
stability proofs have been the subject of research in adaptive
control, but have turned out to be very complicated and have
provided little insight in the dynamics of the systems. As an
alternative, averaging methods have provided approximate
results that were powerful in dealing with nonlinear time-
varying systems [1][10][3]. Averaging theory shows how a
set of nonlinear time-varying differential equations can be
written as a perturbation about an averaged system, and
how the much simpler averaged system can serve as an
approximation of the original system. In [10] and other
work, averaging theory was found to provide invaluable
information on the dynamic properties of specific adaptive
control systems. For periodic disturbance rejection problems,
averaging is even more powerful, because the conditions for
the existence of the averaged system are generally satisfied,
due to the periodic nature of the signals. While averaging
assumes low adaptation gains, experience shows that the
approximation is useful for the typical adaptation gains used
in practice, and that the loss of rigor due to the approximation
is more than compensated for by the powerful insights that
the approximation provides.
The paper is organized as follows. After formulating the

system’s equations, averaging theory [10] is reviewed. The
averaged system associated with the problem is found and
simulations are used to demonstrate the closeness of the
responses. Next, the equilibrium points of the averaged
system are determined and an eigenanalysis is used to
understand the system’s behavior around the equilibrium.
This analysis enables one to understand how the algorithm
handles uncertainty in the plant parameters in a way that a
standard adaptive LMS cannot. Further simulations illustrate
the results of the analysis of the averaged system.

II. SYSTEM FORMULATION

We consider the feedback system shown in Fig. 1. The
output of the plant

y(t) = P (s)[u(t)]− p(t) (1)
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is fed back in order to determine the control signal u(t)
needed to reject the sinusoidal disturbance p(t). The notation
P (s)[(·)] represents the time-domain output of the system
with transfer function P (s). P (s) is assumed to be bounded-
input bounded-output stable, but is otherwise unknown. C is
a nonlinear and time-varying control law consisting of a pa-
rameter identification scheme and a disturbance cancellation
algorithm.

Fig. 1. Feedback control system.

The disturbance is assumed to be a sinusoidal signal given
by

p(t) = pc cos(ω1t) + ps sin(ω1t) = wT
m(t)π

∗ (2)

where

π∗ =

µ
pc
ps

¶
, wm =

µ
cos(ω1t)
sin(ω1t)

¶
(3)

and ω1 is the known frequency of the disturbance signal.
Under these conditions, a control signal of the form

u(t) = θc cos(ω1t) + θs sin(ω1t) = wT
m(t)θ (4)

is sufficient to cancel the disturbance in steady-state, pro-
vided that the controller parameter vector

θ =

µ
θc
θs

¶
(5)

is chosen appropriately.
For the derivation of the algorithm, the response of the

plant is approximated by the sinusoidal steady-state response

y(t) ' yss(t) = wT
m(t)G

∗θ − p(t) (6)

where
G∗ =

µ
PR PI
−PI PR

¶
(7)

and PR, PI are the real and imaginary parts of the plant’s
frequency response

P (jω1) , PR + jPI (8)

In the problem considered here, there are four unknowns:
two are associated with the plant (PR and PI ) and two are
associated with the disturbance (pc and ps). The parameters
may be collected in a vector of parameters

x∗ =
¡
PR PI pc ps

¢T
. (9)

Then, the steady-state output of the plant (6) can be written
as

yss(t) =WT (t, θ)x∗ (10)

where W (t, θ) is a so-called regressor matrix

W (t, θ) =

⎛⎜⎜⎝
θc cos(ω1t) + θs sin(ω1t)
θs cos(ω1t)− θc sin(ω1t)

− cos(ω1t)
− sin(ω1t)

⎞⎟⎟⎠ (11)

On the basis of the linear expression in (10), an estimate x
of the unknown parameter vector x∗ can be obtained using a
gradient or a least-squares algorithm. For example, a gradient
algorithm for the minimization of the error e = WTx − y
that uses the approximation that y(t) ' yss(t) is given by

ẋ(t) = −�W (t, θ)
¡
WT (t, θ)x(t)− y(t)

¢
(12)

The parameter � > 0 is the adaptation gain, which will
be assumed to be small in the application of the averaging
theory later in the paper.
Having derived an algorithm for the estimation of the

unknown parameters, it remains to define the control law.
Note that the disturbance is cancelled exactly in steady-state
for a nominal control parameter

θ∗ = G∗−1π∗ (13)

Given an estimate of the unknown parameter vector x, a
certainty equivalence control law will then select θ as a
function of the estimate using

G(x) =

µ
x1 x2
−x2 x1

¶
, π(x) =

µ
x3
x4

¶
(14)

and

θ(x) = G−1(x)π(x)

=
1

x21 + x22

µ
x1x3 − x2x4
x1x4 + x2x3

¶
(15)

The nominal values satisfy

G∗ = G(x∗), π∗ = π(x∗), and θ∗ = θ(x∗) (16)

A state-space representation of the overall system can
be obtained as follows. With xP denoting the states of
P (s) = C(sI − A)−1B, the plant has the following state-
space representation

ẋP (t) = AxP (t) +Bu(t)

= AxP (t) +BwT
m(t)θ(x) (17)

y(t) = CxP (t)− p(t) = CxP (t)− wT
m(t)π

∗ (18)

As is the case in most active noise and vibration control
applications, the matrix A is assumed to be exponentially
stable. Defining

E(x) =

µ
D(x)
−I2×2

¶
, D(x) =

µ
θc(x) θs(x)
θs(x) −θc(x)

¶
(19)

the matrix W (t, θ) is given by

W (t, θ) = E(x)wm(t) (20)
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and the overall system is described by a set of differential
equations with two vectors x and xP composing the total
state vector with

ẋP = AxP +BwT
m(t)θ(x) (21)

ẋ = −�E(x)wm(t)
¡
wT
m(t)E

T (x)x

−CxP + wT
m(t
¢
π∗) (22)

Note that this set of differential equations is both time-
varying and nonlinear, making direct analysis difficult. Fortu-
nately, under the assumption of small gain �, the application
of averaging theory produces an approximate nonlinear time-
invariant system whose dynamics can be analyzed, providing
interesting insights in the behavior of the system.

III. AVERAGING ANALYSIS
A. Background - mixed time scale systems
Of particular interest to our problem is the continuous-time

averaging method for mixed time scale systems as discussed
in [10]. The theory applies to systems of the form

ẋ = �f(t, x, xP ) (23)
ẋP = AxP + h(t, x) (24)

which includes the problem under consideration if one de-
fines

f(t, x, xP ) = −E(x)wm(t)
¡
wT
m(t)E

T (x)x

−CxP + wT
m(t)π

∗¢ (25)
h(t, x) = BwT

m(t)θ(x) (26)

For � small, x is a slow variable. xP varies faster, except
through its dependency on x. Averaging theory shows how
the trajectories of (23)-(24) can be related to the trajectories
of the so-called averaged system

ẋ = �fav(x) (27)

where

fav(x) = lim
T→∞

1

T

t0+TZ
t0

f(τ , x, v(τ , x))dτ (28)

and

v(t, x) :=

tZ
0

eA(t−τ)h(τ , x)dτ. (29)

Central to the method of averaging is the assumption that
the limit in (28) exist uniformly in t0 and x. Then, there
exists a strictly decreasing continuous function γ(T ), such
that γ(T )→ 0 as T →∞ and¯̄̄̄

¯̄ 1T
t0+TZ
t0

f(τ , x, v(τ , x))dτ − fav(x)

¯̄̄̄
¯̄ ≤ γ(T ). (30)

The function γ(T ) is called the convergence function. If
the limit exists, � is sufficiently small, and certain technical
conditions are satisfied, the response of (23)-(24) is close to

the response of (27). Specifically, the theory is based on as-
sumptions B1-B6 found in [10]. These assumptions establish
certain continuity and boundedness conditions necessary for
the successful application of averaging. After verification of
assumptions B1-B6 the following result can be obtained.
Lemma 1: If the mixed time scale system (23)-(24) and

the averaged system (27) satisfy assumptions B1-B6 of [10],
then there is an �T > 0 and a class K function Ψ(�) such
that

kx(t)− xav(t)k ≤ Ψ(�)bT (31)

for some bT > 0 and for all t ∈ [0, T/�] and 0 < � ≤ �T .
Further, if the function

d(t, x) = f(t, x, v(t, x))− fav(x) (32)

has a bounded integral with respect to time, then γ(T ) ∼ 1
T

and Ψ(�) is on the order of �.
A proof of Lemma 1 can be found in [10]. This proof
establishes a link between the convergence function γ(T )
and the order of the bound in (31). Lemma 1 states that, for
� sufficiently small, the trajectories of (23) and (27) can be
made arbitrarily close for all t ∈ [0, T/�]. This allows insight
into the behavior of (23)-(24) by studying the behavior of
(27).

B. Averaged system
We found earlier that the system under consideration

fitted the averaging framework. It remains to determine
what the averaged system is, whether the assumptions are
satisfied, and what interesting properties the averaged system
may have. In the computation of the averaged system, the
parameter vector x is frozen. Further, all of the time variation
in the functions is due to sinusoidal signals, and the systems
to which they are applied are linear time invariant. The
outcome is that the average of the function f(t, x, xP ) is
well-defined and can be computed exactly. Specifically, the
function

v(t, x) =

tZ
0

eA(t−τ)Bwm(τ)dτ · θ(x) (33)

= xP,ss(t) + xP,tr(t) (34)

where xP,ss(t) is the steady-state response of the state of
the plant to the sinusoidal excitation wm(t) and, xP,tr is a
transient response that decays to 0 exponentially, given that
A is exponentially stable.
The averaged system is obtained by computing the average

of

fav(x) = − lim
T→∞

1

T

t0+TZ
t0

E(x)wm(τ)
¡
wT
m(τ)E

T (x)x

−Cv(τ , x) + wT
m(τ)π

∗¢ dτ (35)

where

Cv(t, x)− wT
m(t)π

∗ = CxP,ss(t) + CxP,tr(t)

−wT
m(t)π

∗ (36)
= yss(t) + ytr(t) (37)
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and ytr(t) = CxP,tr(t). The derivation of the algorithm
implied that

yss(t) = wT
m(t)E

T (x)x∗ (38)

and since the transient response of the plant does not affect
the average value of the function,.

fav(x) = − lim
T→∞

1

T

t0+TZ
t0

E(x)wm(τ)
¡
wT
m(τ)E

T (x)x

−wT
m(τ)E

T (x
¢
x∗)dτ (39)

= −E(x)

⎛⎝ lim
T→∞

1

T

t0+TZ
t0

wm(τ)w
T
m(τ)dτ

⎞⎠
·ET (x)(x− x∗) (40)

= −1
2
E(x)ET (x)(x− x∗) (41)

In other words, the averaged system is simply given by

ẋ = − �

2

µ
D(x)
−I2×2

¶¡
D(x) −I2×2

¢
(x− x∗) (42)

with

D(x) =
1

x21 + x22

µ
x1x3 − x2x4 x1x4 + x2x3
x1x4 + x2x3 −x1x3 + x2x4

¶
(43)

Although (42) is nonlinear, the method of averaging has
eliminated the time variation of the original system, provid-
ing an opportunity to understand much better the dynamics
of the system.

C. Application of Averaging Theory
Application of the theory is relatively straightforward,

and verification of the assumptions is left to the reader. A
technical difficulty is related to the fact that both the adaptive
and averaged systems have a singularity at x21 + x22 = 0
(see equations (15) and (43)). Such singularities are quite
common in adaptive control, and occur when the estimate
of the gain of the plant is zero. Here, the singularity occurs
when the estimate of the plant’s frequency response is zero.
The problem is somewhat unlikely to occur as two parame-
ters need to be small for the singularity to be encountered.
Nevertheless, a cautious implementation of the algorithm
would apply one of the standard adaptive control approaches
to address singularities. For example, a simple practical fix
of the algorithm consists in using in the control law the last
value of the estimated parameter x such that x21+x22 > δ > 0,
where δ is a small parameter, when x21 + x22 < δ. As far as
the theory is concerned, we avoid the difficulty by adding
the following assumption.
Assumption 1Assume that trajectories of the original and

averaged system are such that x21+x22 > δ for some
δ > 0.

Verification of assumptions B1-B6 found in [10] for the
mixed time scale system given by (21)-(22) and the averaged
system (42) is left to the reader. It can be shown that the
system given by (21)-(22) satisfies the conditions of the

Fig. 2. The response of the first adapted parameter for the averaged system
and three responses of the actual system.

theory. Thus, Lemma 1 can be applied. Due to the periodic
signals involved, it is easily shown that d(t, x) has a bounded
integral with respect to time, suggesting that Ψ(�) in Lemma
1 is on the order of �. Lemma 1 establishes that (42) can
be used as an order of � approximation of (21)-(22) for all
t ∈ [0, T/�]. Note that Lemma 1 only shows closeness of the
original and averaged systems over finite time. Any stability
properties of the averaged system would require a different
theorem. The theorems of [10] do not apply because they
assume a unique equilibrium point of the averaged system.
As we will see, this is not the case here.

D. Simulation example
To show the closeness of the responses (21)-(22) and (42),

we let ω1 = 330π and the plant is taken as a 250 coefficient
FIR transfer function. The transfer function was identified
from an active noise control system located at the University
of Utah using a white noise input. The initial parameter
estimate was x(0) = xav(0) =

¡
1.0 1.0 0 0

¢T . In
Fig. 2, the response of the first adaptive parameter is shown.
Four responses are shown: the averaged system with � = 1
(solid line), the actual system for � = 100 (dashed dot), the
actual system for � = 50 (dashed), and the actual system for
� = 1 (circles). As � decreases, one finds that the trajectory
of (21)-(22) approaches that of (42). Note that the parameter
estimates do not converge to the nominal values. However,
the control parameters θc and θs do converge to the nominal
values, resulting in cancellation of the disturbance for all
values of �. The control parameters are shown in Fig. 3,
along with θ∗, the nominal value that exactly cancels the
disturbance (the constant line).

IV. PROPERTIES OF THE AVERAGED SYSTEM
Several properties of the averaged system can be derived

from the rather simple form that was obtained, enabling one
to gain insight on the behavior of the closed-loop system.

A. Equilibrium surface
From the expression of the averaged system (42), we

deduce that an equilibrium point of the averaged system must
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Fig. 3. Trajectories of control parameters for the actual and the averaged
systems.

satisfy

ET (x)(x− x∗) =
¡
D(x) −I2×2

¢
(x− x∗) = 0 (44)

Therefore, x = x∗ is an equilibrium point of the system.
It is not the only one, however. Using the definition of the
control law results in ET (x)x = 0. Equilibrium points then
satisfy

ET (x)x∗ = 0 (45)

which can be rewritten asµ
θc(x)
θs(x)

¶
=

µ
x∗1 x∗2
−x∗2 x∗1

¶−1µ
x∗3
x∗4

¶
=

µ
θ∗c
θ∗s

¶
(46)

This last equation shows that any equilibrium state results in
the cancellation of the disturbance. The equation also implies
that µ

x3
x4

¶
=

µ
θ∗c θ∗s
θ∗s −θ∗c

¶µ
x1
x2

¶
(47)

In other words, the set of equilibrium points is a two-
dimensional linear subspace of the four-dimensional state-
space. Interestingly, for x constant,

f(t, x, xP,ss) = −E(x)wm(t)w
T
m(t)E

T (x)(x− x∗) (48)

so that any equilibrium state of the averaged system is also
an equilibrium state of the original system. Further, (10) and
(20) yield

yss(t) = wT
m(t)E

T (x)x∗ (49)

so that any equilibrium state corresponds to a perfect rejec-
tion of the disturbance.

B. Local stability
The local stability of the averaged system can be deter-

mined by linearizing (42) around an equilibrium state with
x1 and x2. The following eigenvalues were computed

λ =
³
0 0

³
x∗2+jx

∗
1

x2+jx1

´
β

³
x∗2−jx∗1
x2−jx1

´
β
´T

(50)

where β = −g
2

³
x∗21 +x∗22 +x∗23 +x∗24

x∗21 +x∗22

´
. The two eigenvalues at

zero confirm the two-dimensional nature of the equilibrium
surface. The nonzero eigenvalues are complex conjugates.

An equilibrium point on the surface described by (45) is
attracting if the following inequality is satisfied

x1x
∗
1 + x2x

∗
2 > 0 (51)

or equivalently
x3x
∗
3 + x4x

∗
4 > 0. (52)

The stability constraint can be interpreted in the (x1, x2)
plane, as shown in Fig.4. Specifically, the line going through
the origin that is perpendicular to the line joining (0, 0) and
(x∗1, x∗2) defines the boundary between the stable and unstable
states. Interestingly, this is the same boundary that delineates
the stable and unstable regions of a standard LMS algorithm
that does not identify the plant parameters. In this case,
however, the nonlinear dynamics ensure that all trajectories
eventually converge to the stable subset of the equilibrium
surface.

Fig. 4. Relationship between nominal parameters and stability of the
equillibrium surface.

C. Lyapunov analysis
Lyapunov arguments can be used to establish further sta-

bility results. Specifically, the Lyapunov candidate function

V = kx(t)− x∗k2 (53)

evaluated along the trajectories of (42) gives

V̇ = −g
°°ET (x) (x− x∗)

°°2 ≤ 0. (54)

which implies that

kx(t)− x∗k ≤ kx(0)− x∗k (55)

for all t > 0. Since x and ẋ are bounded (using (42) and
Assumption 1), one may also deduce that ET (x) (x− x∗)→
0 as t → ∞. In turn, ET (x)x = 0 and (49) imply that the
disturbance is asymptotically cancelled.
Further conditions may be obtained by noting that¡

I2×2 D(x)
¢
E(x) = 0 (56)

so that ¡
I2×2 D(x)

¢
ẋ = 0 (57)

Given that (43) can be rewritten

D(x) =

µ
x1 x2
−x2 x1

¶−1µ
x3 x4
x4 −x3

¶
(58)
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implies that µ
x1 x2 x3 x4
−x2 x1 x4 −x3

¶
ẋ = 0 (59)

From the first equation, one has that

kx(t)k = kx(0)k . (60)

for all t > 0. In other words, while the norm of the
parameter error is monotonically decreasing, the norm of
the parameter vector is constant. In particular, the state is
bounded, regardless of the local instability near one side
of the equilibrium surface. (60) along with (15) indicate
that any change in the magnitude of the first two estimated
parameters

q
x21,av + x22,av must be inversely proportional to

change in the magnitude of the last two estimated parametersq
x23,av + x24,av. Note that, if the two magnitudes changed

proportionally in the same direction, there would be no
change in control parameter and no impact on the output
error. The second equation in (59) yields a further constraint
on the state vector but is not as easily integrated.

D. Simulation results
In this section, we discuss an example that illustrates the

properties of the averaged system. Consider the nominal
parameter

x∗ =
¡
1.0 1.0 1.0 1.0

¢T
, (61)

with the initial vector x(0) =
¡
1.1 −2.0 −2.0 1.0

¢T
and the gain � = 2.0. The eigenvalues of (42) are given
in (50). The eigenvalues may be complex, suggesting that
a phase plot of the system might exhibit some spiralling
behavior. This property is indeed found in the simulation
result of Figure 5. x(0) was chosen in a neighborhood of
an unstable equilibrium point whose eigenvalues have rela-
tively large imaginary part. The trajectories of the parameter
estimates were projected into the x1,av − x2,av plane for
visualization.

Fig. 5. Phase plot of identified parameters

While the initial conditions were chosen very close to the
unstable region of the equilibrium surface, we see that the
trajectory spirals as predicted and crosses over into the stable

region. Also, note that the phase of the nominal plant is given
by

]P (jωo) = 45o (62)

while the phase of the initial plant estimate is

]P̂ (jωo) = −61.2o. (63)

This is a phase difference of ]P (jωo)−]P̂ (jωo) = 106o,
beyond the 90o angle condition that applies to a gradient
algorithm without plant identification. Although not shown, it
was observed that the norm of trajectories remained constant
at kx(0)k = 3.20.

V. CONCLUSIONS
The algorithm of [9] for the rejection of periodic distur-

bances of known frequency affecting unknown plants was
considered. Since the overall closed-loop system is nonlinear
and time-varying, exact analysis would be difficult and
averaging theory was applied to simplify the analysis. By
averaging over time, a much simpler time invariant system
was obtained, whose dynamics closely approximate the dy-
namics of the actual system. It was shown that the averaged
system for the algorithm under consideration was a nonlinear
system with a two-dimensional equilibrium surface. Half of
the surface was locally stable and the other half was unstable.
Generally, trajectories converge to the stable subset of the
equilibrium surface. Further properties of the trajectories
of the systems were obtained from an analysis for their
dynamics. Simulations illustrated the results of the analysis.
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