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Abstract— In this paper, we investigate the consensus prob-
lem over communication networks where the communication
channels are represented by stable LTI systems. We give
sufficient conditions to reach consensus for our protocol and
derive the consensus value which is function of the agents’ initial
state, the network topology and the channel dynamics. We show
that if the H∞ norm of each channel filter is equal to its DC
gain, the proposed protocol will solve the consensus problem.
This result is interpreted in terms of consensus robustness to
channel uncertainty and compared with another robustness
condition for a different uncertainty class.

Keywords: Consensus, control over networks with dy-

namic channels, robust stability.

I. INTRODUCTION

Consensus problems have attracted much attention among

researchers studying distributed and decentralized systems.

This is due to the wide applications of multi-agent systems

including autonomous formation flight [5], [9], cooperative

search of unmanned air vehicles(UVAs)[7], swarms of au-

tonomous vehicles or robots[11], [12], congestion control

in the communication networks [15] and synchronization of

oscillators [14]. Generally speaking, consensus means that all

the agents of the network agree to a common value without

recourse to a central coordinator or global communication.

The consensus protocols are distributed feedback control

laws based on local information that allow the coordination

of multi-agent networks.

One interesting research area is to study consensus in the

presence of propagation delays [1], [8], [13]. In particular,

[1] provided a linear consensus protocol which can solve

the consensus problem with the property that the consensus

value is independent of the delays. However, this property

is at the price of assuming reciprocal channels and equal

delays, which may not be achievable in real network system.

In [13] and [8], the authors extended the protocol in [1] to the

case of nonhomogeneous delays and nonreciprocal channels.

Although their protocol can guarantee the consensus, the

agreement value is not known as a priori.

In this paper, we study the consensus problem in the net-

works where the channels are modeled by LTI systems. Thus,

channels with delays is one special case in our development.

We derive conditions for the protocols to reach consensus,

and characterize the consensus value as a function of the

agents’ initial state, the network topology and the channel
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dynamics. In order to derive a more easily checkable condi-

tion, we show that the protocol solves consensus problem if

the network topology is strongly connected and the H∞ norm

of each channel is equal to its DC gain. This result can be

naturally interpreted in terms of consensus robustness to LTI

uncertain channels. Along this line, we consider an alterna-

tive channel uncertainty class, and derive the corresponding

robust consensus condition. We demonstrate that the network

is robustly stable provided that the H∞ norm of the channel

filter vectors is bounded by a certain number which is fully

characterized by the network topology and the protocol we

use. We further compare the two robust consensus results,

and extend the analysis to the discrete time case. In this

case, We argue that to achieve consensus, the discretization

step size should be less than the maximum in-degree of all

the nodes. Finally, we use the example to demonstrate our

results

II. BACKGROUND AND PROBLEM FORMULATION

A. Directed Graph

In this section, we review some notations and some

relevant properties of directed graphs that will be used

later. We consider a network of n agents, labeled by an

index i = 1, 2, · · · , n. The interaction among the agents is

properly described by a weighted directed graph (or digraph)

G = (V , E ,A) with the set of nodes V = {v1, v2, · · · , vn},

set of edges E ⊆ V × V and a weighted adjacency matrix

A = [aij ] with nonnegtive adjacency elements aij . An edge

of G is denoted by eij = (vi, vj) which means that there

exists a channel from vj to vi. The adjacency elements

associated with the edges of the graph are positive, i.e.

eij ∈ E ⇐⇒ aij > 0. Moreover, we assume aii = 0 for

all i.
For any node vi ∈ V , we define the information neighbor

of vi as

Ni = {vj ∈ V : eij = (vi, vj) ∈ E}. (1)

The set Ni represents the set of nodes sending data to node

i, and we use |Ni| to denote the number of neighbors of

node i. The in-degree and out-degree of the node vi ∈ V are

defined respectively as:

deginvi ,

n
∑

j=1

aij degoutvi ,

n
∑

j=1

aji (2)

We use di to represent the in-degree of the node vi since

this notation will be frequently used in this paper. For the

digraph with 0 − 1 adjacency elements, di = |Ni|.
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Definition 2.1: The degree matrix ∆ of a digraph G is a

diagonal matrix with diagonal entries [∆]ii = di.

Definition 2.2: The (weighted) Laplacian L = [lij ] of a

digraph G is defined as

lij ,

{ ∑n

k=16=i aik if j = i

−aij if j 6= i
(3)

we can also equivalently define the Laplacian as L , ∆−A.

According to the above definition of graph Laplacian, all

the row-sums of L are zero, therefore L always has an

eigenvalue of zero corresponding to the eigenvector 1 =
(1, · · · , 1)T , i.e. L1 = 0. Invoking the Gersgorin Disk

Theorem [16], all the other eigenvalues of L have positive

real parts.

Definition 2.3: The node vi of a digraph G is called

balanced if and only if its in-degree and out-degree are equal,

A digraph G is said to be balanced if and only if all its nodes

are balanced.

The Laplacian L of a balanced digraph G has the left

eigenvector of 1 associated with its eigenvalue of zero, i.e.

1T L = 0 (4)

Definition 2.4: A digraph is strongly connected (SC) if

any two distinct nodes of the digraph can be connected

through a path that follows the direction of the edges of

the digraph.

The strongly connected digraph has the following property.

Lemma 2.5: Let G = (V , E ,A) be a weighted digraph

with Laplacian L. If G is strongly connected, then rank(L) =
n− 1 and L has a positive left eigenvector associated to the

eigenvalue of zero.

B. Problem Formulation

We consider the network with each agent has the following

dynamics:

ẋi(t) = ui(t) (5)

i = 1, 2, . . . , n, where ui is the input to each node and

xi is the state of each network agent. we can also call ui

the protocol of network. Let χ : Rn → R be a continuous

and differentiable function of n variables x1, x2 · · · , xn and

x(0) denotes the initial value of x, we say the network

asymptotically reach consensus on a group decision value

χ(x(0)) if ‖xi − χ(x(0))‖ → 0 as t → ∞, ∀i. The χ-

consensus problem in a dynamic network is just a distributed

way to calculate χ(x(0)) by applying the input ui which only

depend on xi and its neighbors, i.e.

ẋi(t) = ui(xi(t), x
(i)(t)) (6)

where x(i) is the state vector of the agents in Ni.

In this paper, we investigate the consensus problem in the

network whose channels are represented by LTI systems.

Suppose there exists a channel from agent j to agent i,
then the signal received by i from j is x̂j , where x̂j(s) =
hij(s)xj(s). Here, hij(s) represents the transfer function of

the LTI channel eij . We can also interpret hij as the filter

of the channel eij , which leads to the following definition.

Definition 2.6: A network is called LTI network if all of

its channels are equipped with LTI filters.

In this paper, we always assume the channel filter transfer

functions to be stable.

For a LTI network, we define its LTI topology as Gl =
(V , E ,A(s)), where A(s) = [aij(s)] with aij(s) = aijhij(s)
if eij ∈ E or aij(s) = 0 otherwise. The Laplacian L(s) of

G in s domain can be defined as

L(s) = [lij(s)] ,

{

di if j = i
−aij(s) if j 6= i

(7)

or equivalently we can write L(s) , ∆ − A(s), where

A(s) = [aij(s)] and ∆ is defined as before.

In this paper, we consider the following consensus proto-

col

ui(t) =
∑

j∈Ni

aij(x̂j(t) − xi(t)) (8)

The primary objective in this paper is analysis of protocol

(8). We give the sufficient conditions to achieve consensus

and derive closed form formula for the consensus value. We

point out that if the DC gain of the channel filter is equal

to its H∞ norm, we can solve the consensus problem by a

modified protocol. we further focus on the robust analysis

of protocol (8) and show the two robust conditions that we

derived are not comparable. At the end we give the sufficient

condition for the discretized version of protocol (8) to reach

consensus and characterize consensus value.

III. MAIN RESULTS

A. Consensus over LTI Networks

Given protocol (8), the dynamics of agent i can be written

as

ẋi(t) =
∑

j∈Ni

aij(x̂j(t) − xi(t)) (9)

∀i = 1, 2, . . . , n. Taking Laplace transform on both sides of

(9), we get

sxi(s) − xi(0) =
∑

j∈Ni

aij(hij(s)xj(s) − xi(s)) (10)

where xi(s) denotes the Laplace transform of xi(t), ∀i =
1, 2, . . . , n. The above n transformed equations can be rewrit-

ten in a more compact form as

X(s) = (sIn + L(s))−1X(0) (11)

where In is the identity matrix with dimension n, L(s)
is defined in (7) and X(s) = [x1(s), x2(s), · · · , xn(s)] is

the transformed state vector. Now the convergence problem

reduces to the analysis of the stability of a MIMO transfer

function G(s) = (sIn + L(s))−1.

Theorem 3.1: Suppose G(s) has only one pole at zero

and all the other poles on the strict LHP, then protocol (8)

can solve the consensus problem if L(0) is a Laplacian of a

strongly connected graph. Furthermore, the consensus value

is given by

α =

∑n

i=1 γixi(0)
∑n

i=1 γi + γT L11
(12)

2638



where γ is the left eigenvector associated with the zero

eigenvalue of L(0) , i.e. γT L(0) = 0 , L1 = dL(s)
ds

|s=0

and xi(0) is the initial condition of the i-th agent for i =
1, 2, . . . , n.

Proof. Since G(s) has only one pole at zero and all the

other poles on the strict LHP, we can apply the Final Value

Theorem to (11) to get

X(∞) = lim
s→0

s(sI + L(s))−1X(0) (13)

Define X̃(s) = s(sI + L(s))−1X(0), we have

X(0) = (I +
L(s)

s
)X̃(s) (14)

Let X̃(s) = α1(s)β1 + α2(s)β2 + · · ·+ αn(s)βn be a basis

decomposition of X̃(s), where αi(s) is some function of s
for i = 1, 2, · · · , n and {βi} is one orthogonal basis of R

n

with β1 = 1.

We next show that lims→0 αi(s) = 0 for all i > 1. We take

Taylor series expansion of L(s) around s = 0 and expand

(14) as

X(0) = [I +
L(0)

s
+ L1 +

L2s

2
+ · · ·] ·

[α1(s)β1 + · · · + αn(s)βn] (15)

where L1 = dL(s)
ds

|s = 0, L2 = d2L(s)
ds2 |s = 0, . . . , etc.

Taking limit as s → 0 on both sides of (15), we get

X(0) = lim
s→0

[I +
L(0)

s
+ L1 +

L2s

2
+ · · ·] ·

[α1(s)β1 + · · · + αn(s)βn] (16)

Now we claim that

lim
s→0

L(0)
n

∑

k=2

αk(s)βk = 0 (17)

Suppose not, then

lim
s→0

L(0)
∑n

k=2 αk(s)βk

s
→ ∞

From the Final Value Theorem, X(∞) is bounded, there-

fore lims→0 X̃(s) is bounded. Noticing that β1 is or-

thorgonal to the set {β2, β3, . . . , βn}, lims→0 α1(s)β1 and

lims→0

∑n

k=2 αk(s)βk must be bounded. Therefore from

(16), X(0) → ∞ and we get the contradiction. Let B =
[β2, β3, . . . , βn], then since L(0) is the Laplacian of a

strongly connected graph, rank(L(0)) = n − 1. Therefore

rank(L(0)B) = n − 1 and the null space of L(0)B is {0}.

Thus, from (17), we must have lims→0 αi(s) = 0 for all

i > 1.

Left multiplying γ on both sides of (15), since γT L(0) =
0, we get

γT X(0) = γT (I + L1 +
L2s

2
+ · · ·)

[α1(s)β1 + · · · + αn(s)βn] (18)

If we take the limit of (18) as s → 0, since we have shown

that lims→0 αi(s) = 0 for all i > 1

γT X(0) = γT (I + L1)α1(0)1 (19)

The result follows by dividing γT (I + L1)1 on both sides

of (19) and α = α1(0).

Note that the main difference with the results in [1] for

networks without dynamics is the term γT L11
1. There

are several issues that are worth investigating in the future.

First, it would be interesting to identify robust structures for

which γT L11 = 0, so that the consensus value becomes

independent from the channel dynamics. Note that when

γT L11 6= 0, the agents lose ability to compute the (weghted)

average of their initial conditions. To recover it, a learning

initial phase is needed, where the agents all starts with the

same inital condition (say equal to 1) so that they know the

resulting consensus value,

αfixed =
γT

1

γT1 + γT L11

Then, given any other X(0), α is given by Equation (12).

Therefore, each agent can compute the desired weighted

average consensus value which is given by

γT X(0)

γT1
=

α

αfixed

Theorem 3.1 directly applies to the following consensus

protocol which has been studied in [8], [13] .

ui(t) =
∑

j∈Ni

aij(xj(t − τij) − xi(t)) (20)

where τij denotes the communication delay in the channel

eij . This protocol, hij(s) = e−τijs represents the channel

filter and x̂j(t) = xj(t− τij) is the filtered state of agent j.

We provide the consensus value which is not given in [8],

[13].

Corollary 3.2: Consider the network with its topology

strongly connected, suppose each channel has different com-

munication delays, i.e. if eij ∈ E , it has communication

delay τij , then protocol (20) will solve the consensus

problem and the consensus value is given by

α =

∑n

i=1 γixi(0)
∑n

i=1 γi +
∑

j∈Ni
γiaijτij

To reach consensus, we need the stability of G(s). the next

result provides a sufficient condition to check the stability

of G(s) which also leads to consensus provided that extra

condition is satisfied.

Theorem 3.3: If the channel filters satisfy
∑

j∈Ni
|aijhij(jω)| ≤ di, ∀ω ∈ R, ∀i = 1, 2, · · · , n,

then G(s) will has all its poles on the LHP. If G(s)
has poles on the jω axis, it can only has poles at the

origin. Furthermore, if L(0) is the Laplacian of a strongly

connected graph, protocol (8) solves the consensus problem.

Proof. Let Z(s) = G−1(s) = (sIn + L(s)), then checking

the poles of G(s) is equivalent to checking the zeros of Z(s).

1We are neglecting the difference in the γ. Here, γ depends not only on
network topology but also on its dynamics.
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we first show that for all s with Re[s] > 0, det[Z(s)] 6= 0,

which means Z(s) has no zeros on the open RHP. From

the Gersgorin Disk Theorem, all the eigenvalues of Z(s) =
[zij(s)] are located on the union of the following n disks:

Di = {z ∈ C : |z − zii(s)| ≤
∑

j∈Ni

|zij(s)|} (21)

where i = 1, 2, · · · , n. We know that for the transfer matrix

Z(s), zii(s) = s + di, and zij(s) = −aijhij(s) for

j ∈ Ni. Since we assume
∑

j∈Ni
|aijhij(jω)| ≤ di, when

Re[s] > 0, from the Maximum Modulus Principle, we have
∑

j∈Ni
|zij(s)| ≤ di. Now |zii(s)| = |s + di| > di, which

means

|zii(s)| >
∑

j∈Ni

|zij(s)| ∀i = 1, 2, . . . , n.

Therefore det[Z(s)] 6= 0 and Z(s) will have no zero on the

open RHP.

When Re[s] = 0, |zii(jω)| = |di + jω| and
∑

j∈Ni
|zij(jω)| ≤ di. If ω 6= 0, since |di + jω| > di, all

the eigenvalues of Z(s) can not be zero, so det[Z(s)] 6= 0
for any s = jω, ω 6= 0. Thus Z(s) has no zeros on the

jω axis except for the origin. When ω = 0, we first show

if Z(0)v = 0, i.e. Z(s) has zero at zero, v = 1. Suppose

not, we can assume the largest number of v is vi. Since

zii(0) ≥ ∑

j∈Ni
|zij(0)|, zii(0)vi will be dominant in the

product of the i − th row of Z(0) and v, i.e. the i−th

element of Z(0)v is not equal to zero. We now suppose for

some node i,
∑

j∈Ni
aijhij(0) < di. Apparently, Z(0)1 6=

0 since zii(0) is dominant on the i−th row of Z(0). If
∑

j∈Ni
aijhij(0) = di , ∀i, then Z(0) = L(0) is a Laplacian.

Therefore Z(0)1 = 0, which means G(s) has poles at the

origin. From the above analysis, G(s) has poles at the origin

iff ∀i,
∑

j∈Ni
aijhij(0) = di.

If L(0) is the Laplacian of a strongly connected graph,

rank(L(0)) = n− 1. since Z(0) = L(0), Z(s) has only one

zero on the origin. Thus G(s) only has one pole at the origin.

We can get the result from Theorem 3.1.

B. Consensus Robustness

Theorem 3.1 provides a general sufficient condition to

reach consensus. However, testing the stability of G(s) is

not easy in some large network systems, especially when

the network channels are not perfectly known. This leads us

to search a more easily checkable condition.

Theorem 3.4: For the LTI network, suppose its topology

is strongly connected, , then protocol (8) can solve the

consensus problem if ‖hij(s)‖∞ = hij(0) = 1, ∀i, j ∈ Ni.

Remark 3.5: Theorem 3.4 characterize the robustness of

protocol (8) in the presence of uncertain channels. Besides,

the above condition is very useful for building the consensus

network. Instead of concerning the incoming links of each

node, we can concentrate on the network topology and the

individual links to guarantee the conditions for reaching

consensus. Moreover, if the DC gain of each channel is equal

to its H∞ norm, the network will reach consensus under the

+

L

x

y

x

y

. . .

Fig. 1. The network system loop transformation

following modified consensus protocol.

u̇i(t) =
∑

j∈Ni

aij(
1

gij

x̂j(t) − xi(t))

provided we know the DC gain gij for each channel. This

also gives the intuition that under the cases when the DC gain

of the channel is not equal to its H∞ norm, the agent should

lowpass those channels to have the sufficient conditions

satisfied.

Theorem 3.4 provides the robust condition for each chan-

nel. We next investigate another robust condition which gives

more freedom to select the dynamics of the channel filters.

The network system loop transformation is shown in figure

1, where ∆i(s) is the i-th row of A(s) and y is the signal

vector which can be represented as y = [y1, y2, · · · , yn]T .

Let φi(s) = 1
s+di

and define ∆i(s) as the channel filter

vector associated with the i-th agent. Here, we are ready to

state our result concerning robust stability of the CNF.

Theorem 3.6: Consider the LTI network with its topol-

ogy strongly connected, if the channel filter vectors satisfy

‖∆i(s)‖∞ <
√

d2

i

|Ni|
, ∀i=1,2,· · · , n, then limt→∞xi(t) = 0,

∀i = 1, 2, . . . , n.

Proof. We prove this theorem by contradiction. Suppose

‖x(t)‖2 6= 0, from figure 1, ‖yi‖2
2 = ‖∆i(s)x‖2

2 for i =

1, 2, · · · , n. Since ‖∆i(s)‖∞ <
√

d2

i

|Ni|
, we have

‖yi(t)‖2
2 <

d2
i

|Ni|
∑

j∈Ni

‖xj(t)‖2
2 (22)

Since ‖xi‖2
2 = ‖yiφi(s)‖2

2 and ‖φi(s)‖∞ ≤ 1
di

, we have

‖xi(t)‖2
2 ≤ 1

d2
i

‖yi(t)‖2
2 (23)

From the above two equations, we get

‖yi(t)‖2
2 <

d2
i

|Ni|
∑

j∈Ni

1

d2
j

‖yj‖2
2 (24)

Defining ŷ = [‖y1‖2
2 , ‖y2‖2

2 , · · · , ‖yn‖2
2], D =

diag{ 1
d2

1

, 1
d2

2

, · · · , 1
d2

n
} and N = diag{ 1

|N1|
, 1
|N2|

, · · · , 1
|Nn|},

we put (24) in a more compact form as

ŷ = D−1NADŷ (25)
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where A = [aij ] with aij = 1 if eij ∈ E and aij = 0
otherwise. Furthermore, we left multiplying D on both sides

of (25) and define z = Dŷ, then (25) can be transformed as

z < NAz (26)

We now prove that (26) has no solution. Since (In −NA) is

an Laplacian with diagonal elements of 1, from the Gersgorin

Disk Theorem, all the eigenvalues of the matrix (In −NA)
are located on the disk of {z ∈ C : |z − 1| ≤ 1}, therefore

the spectral radius of NA satisfies ρ{NA} ≤ 1 and the

inequality (26) has no solution, which is a contradiction.

Thus we got ‖X(t)‖2 = 0 is the only solution of the loop,

which means all the states will converge to 0.

We now turn to the equal part of the above condition.

Suppose for each agent i, ‖∆i‖2
∞ =

d2

i

|Ni|
, which means

that supω∈R
{∑j∈Ni

a2
ij |hij(jω)|2} =

d2

i

|Ni|
. We know for

any vector x ∈ Rn, ‖x‖1 ≤ √
n ‖x‖2, so

[
∑

j∈Ni

aij |hij(jω)|]2 ≤ |Ni|
∑

j∈Ni

a2
ij |hij(jω)|2 ≤ d2

i (27)

which means
∑

j∈Ni

aij |hij(jω)| ≤ di (28)

From the same analysis as in the proof of Theorem 3.3, we

deduce that G(s) has all its poles on the strict LHP or has a

single pole at zero and G(s) has a simple pole at zero if and

only if for each node i, aijhij(0) are equal for all j ∈ Ni,

i.e. aijhij(0) = di

|Ni|
. This is because the equal part of (27)

holds iff |aijhij(jω)| are equal for all j ∈ Ni and we require

this condition when ω = 0.

This analysis together with Theorem 3.6 leads to the

following corollary.

Corollary 3.7: Consider the LTI network with its topol-

ogy strongly connected, if the channel filter vectors satisfy

‖∆i(s)‖∞ ≤
√

d2

i

|Ni|
, ∀i=1,2,· · · , n, then the network will be

stable under protocol (8). Furthermore, under the above con-

dition, the network will reach consensus if ∀i = 1, 2, · · · , n,

aijhij(0) = di

|Ni|
for all j ∈ Ni.

Remark 3.8: We should point out that although both The-

orem 3.4 and Corollary 3.7 can lead to the same conditions

required for Theorem 3.3, they are not comparable with

each other. This is due to the fact that Corollary 3.7 allows

individual channels have their H∞ norm greater than 1 and

on the other hand, some special cases satisfy Theorem 3.3

but violate Corollary 3.7, i.e. L(s) = L = circul[3,−1,−2],
where circul denotes the circulant matrix.

C. Discrete Time Case

To implement the consensus protocol in real time system,

we need its discrete-time counterpart. We consider the fol-

lowing discrete-time consensus protocol which comes from

the discretization of protocol (8)

xi(k + 1) = xi(k) + β ·
∑

j∈Ni

aij(x̂j(k) − xi(k)) (29)

1 2

4 3

h21(s)

h12(s)

h32(s)

h34(s)

h43(s)

h14(s)

Fig. 2. Network topology: four agents with six channels.

where x̂j(z) = hij(z)xj(z) with hij(z) being the transfer

function of channel filter hij . Taking the z transformation of

(29), we get

zxi(z) − zxi(0) = xi(z) + β
∑

j∈Ni

aij [hij(z)xj(z) − xi(z)]

We put the above equations into a compact form

x(z) = z[zI − I + βL̄(z)]−1x(0) (30)

where x(z) = [xi(z), x2(z), . . . , xn(z)] and L̄(z) =
[lij(z)]n×n with lii(z) = di and lij(z) = −aijhij(z) ∀j ∈
Ni. We define G(z) = z[zI − I + βL̄(z)]−1. Almost all the

results got from the continuous time system can be carried

over to discrete time case except for the important role played

by the discretizaiton step size. We state the following result

without proof.

Theorem 3.9: Suppose G(z) has one pole at 1 and all

the other poles on the strictly unit disk, if L̄(1) is a graph

Lapacian of a strongly connected graph and β < 1/d,

where d is the maximum in-degree of all the nodes, then

protocol (29) solves the consensus problem in LTI networks.

Furthermore, the consensus value is given by

α =

∑n

i=1 γixi(0)
∑n

i=1 γi + β · γT L11

where L1 = dL̄(z)
dz

|z=1.

IV. SIMULATION RESULTS

In this section we use some example to demonstrate our

results derived before. Consider a network of four agents, its

topology is shown in figure 2 with all the channel weights

equal to 1. Let all the channel filters to be the same and has

the transfer function 1
s+1 . Therefore, we have the following

parameters: γ = [12 , 1, 1
2 , 1]T

L =









2 −1 0 −1
−1 1 0 0
0 −1 2 −1
0 0 −1 1









L1 =









0 1 0 1
1 0 0 0
0 1 0 1
0 0 1 0









Let the initial states of the four agents are 2, 4, 4 and 7.

From figure 3, all the agents converge to the same value

2 which coincides with Theorem 3.1. Next, we change the

transfer function of h14 to s
s+1 . After this change, all the

states converge to zero as shown in figure 3. Since h14(0) =
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Fig. 3. (a) all the agents converge to 2. (b) all the agents converge to 0.

0, L(0) is not a Laplacian graph and G(s) does not have the

pole at the origin. Actually, after the change, Theorem 3.3

is still satisfied, which means G(s) must have all the poles

on the strict LHP.

V. CONCLUSIONS

In this paper we have studied the consensus problem in

the network with dynamic channels. We give the sufficient

conditions to reach consensus and derive the formula for the

consensus value. The robust condition to achieve consensus

in our paper provides some insight in building dynamic con-

sensus networks. We argue that in order to reach consensus,

we can lowpass the channels at the agents to make Theorem

3.4 satisfied.
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