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Abstract— An exploratory study of the application of kriging
as an approximated model of complex dynamic systems is
presented in this paper. This technique, which has its roots in
the geology community, is gaining popularity for its simplicity
and ability to track the error of the reduced model, making it
attractive for engineering applications. Our proposed method-
ology, called dynamic mapping kriging, requires the generation
of representative function evaluations, and then uses them in a
recursive state-space formulation to represent the evolution of
the process. By demonstrating on a highly simplified model, our
intention is to present the relevant elements of this methodology,

focusing on the design of the function evaluations as a crucial
factor in the accurate representation of the system. We illustrate
the advantages that the error prediction has as a tool to
improve our technique and as a measurement to bound the
error dynamics, and give some final recommendations about the
applications of this methodology to build approximated models.

I. INTRODUCTION

Dynamic models range in their complexity, from simple

processes with linear expressions to nonlinear systems with

a large number of parameters and assumptions. As compu-

tational capacity improves, the use of complex models and

simulations has become an important part of engineering.

Fields in which complex dynamic simulations are needed

include combustion, turbulent flow, and nanoscale phenom-

ena. Simulating these systems for practical purposes requires

the reduction in the computational effort without losing

accuracy in the prediction. Our group has shown interest in

the creation of approximated models to represent dynamic

systems in a fast and accurate mode [1], particularly in

systems represented by discrete time state-space models:

w(k + 1 ) = f [w(k),u(k)] w ∈ R
m (1)

Other examples of approximated models for complex

systems are in-situ adaptive tabulation (ISAT) [2] and cell

mapping [3]. Unfortunately, these approaches do not have a

consistent framework to predict or bound the error dynamics,

but intuitively, the dynamics will depend on the initial state-

space w, the control input u and the final discrete time index.

An approximation method that is gaining popularity in

engineering is kriging (also known as Gaussian process

regression), which has been used to represent deterministic
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computer models in several research areas such as conceptual

design, structural optimization, aerospace, and mechanical

engineering [4]. Our interest in kriging is for its ability to

predict a function based on local and global interpolation,

its flexibility to handle multidimensional applications, and

the possibility to estimate the error in the prediction. These

are characteristics that most models do not have and which

could be convenient for engineering applications.

Kriging had been used primarily as a technique to describe

the behavior of a static system over a domain, based on

the spatial distribution of sample points, but in many cases,

these systems also have a temporal element [5]. The kriging

method has been extended from its initial formulation to in-

corporate dynamic features by including time as an additional

spatial variable in the model [6], or by building a space-

time covariance function that can handle a time dimension

separately from the state-space [7]. More relevant are the

applications of kriging in the systems area, for time-series

theory [8] and for discrete-time nonlinear systems [9]. These

examples show the potential that this technique has to be

applied in dynamic modeling and control.

The next sections present a methodology that we have

developed called dynamic mapping kriging (DMK), which

approximates complex dynamic systems based on a recursive

space-state formulation. A brief mathematical introduction of

the principal elements of kriging and the proposed approach

is presented. We develop a simple case study to show the

importance of the kriging elements and how these elements

affect the approximation. We conclude with some recom-

mendations for implementation and future work.

II. MODELING APPROACH

A. Mathematical Form of Kriging

Kriging was initially developed by French mathematician

Georges Matheron, based on the master’s thesis written by

Daniel Gerhardus Krige in 1960. Krige’s idea was that the

predicted error of an approximated model at some point can

be correlated with the distance between the point of interest

and a set of sampled points in the domain.

A characteristic of kriging is the exact prediction that the

approximated model makes when it is evaluated at a sample

point (see Fig. 1). Moving through the domain from any

sample point, the error between the kriging model and the

true function increases, until the error is calculated close

to another sample point, where it decreases. This behavior

implies that the magnitude of the error at an unknown point

is related to the distance from a measured point. This concept

is not usually employed in system identification and model
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Exact Function

Kriging Model

Fig. 1. Graphic representation of a Kriging model.

reduction, in which the location of the experimental points is

not explicitly considered once the model had been identified.

The mathematical form of a kriging model is [10]

ŷ(x) =

p
∑

i=1

βihi(x) + Z(x) (2)

where ŷ(x) ∈ R and x ∈ R
d .

The first term represents a linear combination of a basis

set of p regression functions hi(x) with their corresponding

βi coefficients. A model that is nonlinear in the coefficients

β could potentially be used, although this is not the common

approach in kriging. The second term is modeled as a

Gaussian random function that represents a correction of the

regression functions. This term is characterized by

E[Z(x)] = 0 (3)

Cov[Z(xi), Z(xj)] = Vij = σ2
· R(xi,xj) (4)

where V ∈ R
n×n is the covariance matrix, σ2 is the process

variance, and R ∈ R
n×n is the spatial correlation matrix for

Z(x) for the n sample points.

Suppose that there are n sample points, represented by the

matrix X ∈ R
n×d , with an associated vector Y ∈ R

n which

corresponds to the measurements for X . Given these sample

points, a linear predictor of the measurement for any point

x in the domain is

ŷ(x) = λT (x) · Y (5)

In order to define the vector coefficient λ(x) ∈ R
n , a

minimization problem is established, where the objective

function is the mean square error (MSE) of the prediction

MSE[ŷ(x)] = E[λT (x) · Y − y(x)]2 (6)

subject to the constraint

E[λT (x) ·Y − y(x)] = 0 (7)

The solution of this problem can be expressed using the

best linear unbiased predictor with the expression [11]

ŷ(x) = h
T (x)β̂ + v

T (x)V −1(Y − Hβ̂) (8)

where

• β̂ ∈ R
p is the generalized least-squares estimator which

corresponds to the expression

β̂ = (HT V −1H)−1HV −1
Y (9)

• H ∈ R
n×p is the matrix of regression functions

evaluated at the n sample points (Hi,j = hj (xi ))
• h(x) ∈ R

p , the set of regression functions evaluated at

an unknown point
(

h
T (x) = [h1(x), ..., hp(x)]

)

• v(x) ∈ R
n , a vector that expresses the covariance

of the unknown point with each sample point in X .
(

v
T (x) = [Cov[Z(x), Z(x1)], ..., Cov[Z(x), Z(xn)]]

)

The expected mean square error of the prediction made

by kriging (known as kriging variance) is defined as

MSE [ŷ(x)] = σ2 −
[

h
T (x) v

T (x)
]

[

0 HT

H V

]

−1
[

h(x)
v(x)

]

(10)

Given that kriging returns the exact value of the true

function at each sample point, the mean square error at those

points is therefore equal to zero.

Based on this mathematical formulation, four elements are

needed to build a kriging model:

• The location of the n sample points.

• A basis set of regression functions, which help to

capture the tendencies of the function over the space.

• The spatial correlation function (SCF), which models

the covariance function between points in the domain.

• The selection of the method to estimate β̂, σ̂2, and all

parameters in the SCF to compute the kriging model

and its predicted error.

B. Dynamic Mapping Kriging

An approximated model to substitute the right-hand side

of (1) can be written based on the kriging structure presented

in the previous section. We called this approximated model

dynamic mapping kriging, (DMK) and it is represented by

w(k + 1) = f̂ [x(k),Y, X ] k = 0, 1, ... (11)

x(k) =
[

w(k) u(k)
]T

(12)

t = k∆t (13)

Y = X(k = 1) = f [X(k = 0)] (14)

where (11) is represented by the kriging model in (8). The

idea is to store representative precomputed function eval-

uations from the full dynamic system in the time invariant

vectors X ∈ R
n×d and Y ∈ R

n . These reference vectors are

used to approximate the dynamics at a new value of w and u

using the Markov property. Notice that x and X belong to a

higher dimension than the state-space w, (x ∈ R
d ,w ∈ R

m

and d ≥ m) because the variables in the kriging model

should contain the information of the control inputs u(k).
By taking the approximated value from the previous step,

DMK moves among the reference vectors to approximate the

dynamic behavior. Due to the recursive nature of (11), error
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will propagate from one step to the next. However, kriging

also provides estimates of this error via (10), which could

be used to indicate where additional sampling is needed.

III. DEMONSTRATION

To demonstrate and evaluate this approach, a second order

elementary reaction was selected as a test problem. This

simple test problem does not require an approximated model;

however, it allows us to explore the various options and rel-

evant concepts for DMK implementation, before considering

more complex models. The model is

dC

dt
= −rC2 (15)

For this test problem, the state space w is one dimensional,

with initial concentration C (k = 0 ) = C0 and one control

input u(k) = r(k), the reaction rate. For this test problem,

DMK is described by:

C(k + 1) = f̂ [x(k),Y, X ] k = 0, 1, ... (16)

x(k) =
[

c(k) r(k)
]T

(17)

Y = f [X ] (18)

where (18) is the solution of (15). In the next section, we

consider various options for implementation of DMK. The

nominal settings for the simulations are

• Spatial distribution of the sample points: Equally spaced

square grid design (11 points from 0 to 100 for the

concentration dimension and 9 points from 0 to 0.4 for

the reaction rate dimension).

• Spatial correlation function (also known as covari-

ograms): Gaussian function. This function corresponds

to the expression [4]

Vij = σ2 · Rij

= σ2 · exp

{

−

[

(

|Cj − Ci|

θC

)2

+

(

|rj − ri|

θr

)2
]}

,
(19)

where θC and θr are parameters of the SCF, known

as range parameters. Notice that it is not necessary

to define a numerical value for σ2 to use (8), but

to compute the predicted error using (10) requires an

estimate of σ2 (see Section IV - E).

• Regression functions: Ordinary kriging (one unknown

constant regressor p = 1) and full quadratic model (p =

6).

• Kriging parameters: Two range parameters fixed at the

size of the grid in each dimension (θC = 10 and θr =

0.05).

IV. ANALYSIS OF RESULTS

A. Characteristics of the Test Problem

Fig. 2 shows the surface to be approximated by kriging for

our test problem. A large gradient of the function is found in

the region of low reaction rates. This behavior of the surface
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Fig. 2. Surface to be approximated by the dynamic mapping kriging for
the proposed test problem.

will affect the quality of the prediction because kriging is

based on local interpolation to model the Z term in (2).

To illustrate this point, Fig. 3 shows the root mean square

error (RMSE) for complete trajectories between the exact

solution and the kriging approximation up to t = 20 s

with ∆t = 1 s at several constant reaction rates and initial

concentrations. At the boundaries of the domain, the error in

the prediction increases because the number of sample points

is lower, compared to the center of the domain (a point in

the interior is influenced by more points, which improves the

approximation for trajectories in this region). This behavior

shows how the distribution of the sample points can be

relevant in the model. The application of several techniques

from design and analysis of computer experiments (DACE)

could be used to improve the selection of the sample points

[12].

Because the square grid DACE design is spatially symmet-

ric, we originally expected a symmetric curve of the RMSE,

but the magnitude and the gradient of the function have a

strong influence at low values of r . This result suggests that

classical space-filling DACE designs are not good enough

for use in kriging approximations unless other elements in

the model are adapted to match the behavior of the function.

These classical techniques only consider the location of the

points and not the information that these points can provide

about the function to be modeled. Other aspects, such as the

location of the boundaries and the gradient of the function,

should also be considered to improve the design of the

reference vectors by resampling the domain in certain regions

[13].

To get an approximation for a specific trajectory in the

domain, more points around this point can be added to

improve the prediction locally. Fig. 4 shows different ways

to enhance the approximation of a trajectory in the low

reaction rate region, which has a high gradient. Compared

to the original grid design over the reaction rate dimension,

the approximation is improved by adding a complete row

at r = 0.025 m3/(mol·s), as shown in Fig. 4. Surprisingly,

adding two new rows at r = 0.025 m3/(mol·s) and r =

3995
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Fig. 3. Root mean square error of the kriging prediction for several
trajectories. Settings: Square grid design, Gaussian SCF, ordinary kriging
and fixed parameters.

0.075 m3/(mol·s) does not generate a better approximation,

showing that improvements are not necessarily achieved

by adding more points in the region of interest. A more

interesting result is shown when the added row is at the

exact location of the reaction rate (at r = 0.04 m3/(mol·s)).

This location seems reasonable to get a better prediction,

but ultimately results in a poor approximation. These results

demonstrate that the design of sample points is one of the

challenges in the application of DMK. As we will describe

in Section IV - E, the kriging variance can help guide the

selection of new sample points.

B. Effect of the regression functions in dynamic mapping

kriging

There is little guidance about the selection of a good re-

gression function to be used in kriging. The most frequently

used function is called ordinary kriging (h1(x) = 1, p = 1),

which is a simple function compared to the pool of possible

options. A good selection of a regression function will

affect not only the quality of the approximation but also

the optimization procedure used to fit the parameters of the
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Fig. 4. Improvement of the kriging prediction by resampling. C0 =
20 mol/m3, r = 0.04 m3/(mol·s). Settings: Square grid design, Gaussian
SCF, full quadratic model and fixed parameters.

SCF, especially in methods like maximum likelihood [14]. In

particular, a better set of regression functions could reduce

the possibility of obtaining an ill conditioning problem in

the spatial correlation matrix R during the evaluation of the

kriging model because it should generate a set of smalll

range parameters that makes the R matrix closer to the

identity matrix. Fig. 5 shows the effect of different regression

functions used in dynamic mapping kriging. There is an

improvement using the full quadratic model as the regression

function.

C. Choosing a Spatial Correlation Function

Despite the diversity of spatial correlation functions pro-

posed for a kriging model [10], [14], the Gaussian function

is mostly used for its smoothness and its simplicity to be

parameterized. Even though these properties are convenient,

not all functions to be approximated will follow a Gaussian

behavior for the covariance between the errors of the sample

points. To illustrate how a Gaussian SCF would work for

the test problem, a variogram curve fitting procedure 1 [15]

was applied using a square grid design in Fig. 6. Clearly

a Gaussian SCF does not represent the spatial relationship

between the sample points.

Recently, Davis and Ierapetritou [15] used the variogram

analysis to define the most appropriate function to describe

the spatial relation of the points by making linear combina-

tions of the major types of semivariogram functions. Based

on these types of functions, a power SCF was fitted to

our case (shown in Fig. 6). Using this fitted curve, DMK

was performed but revealed ill conditioning problems when

computing the inverse of the spatial correlation matrix. This

problem is most likely due in part to the symmetry of

the sampled points in the grid design. We have observed

improved conditioning properties using the Latin Hypercube

design [16], which is a stochastic space-filling methodology

1Variogram curve fitting is a procedure to generate an SCF which is based
on the definition of a variogram and the Euclidian distance between sample
points instead of absolute distances for each dimension. For more references
about this procedure, see [14].
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Fig. 5. Comparison between different regression functions in dynamic
mapping kriging. C0 = 25 mol/m3, r = 0.24 m3/(mol·s). Settings: Square
grid design, Gaussian SCF and fixed parameters.
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for the selection of sample points. The appropriate selection

of an SCF for a specific problem does not yet have a clear

procedure [9].

D. Dynamic Changes in the Reaction Rate

One key aspect in control systems is the behavior of

the model when the control inputs change, especially when

these inputs represent a manipulated control variable. For the

proposed test problem, a reaction rate profile was established

to analyze how DMK behaves under changes in this control

input. Fig. 7 shows the approximation made by DMK at

two different initial concentrations C0 = 10 mol/m3 and

C0 = 60 mol/m3. At C0 = 10 mol/m3, our model reacts

properly to the changes in the reaction rate capturing the

tendency on the exact solution. However, because the test

problem tends to guide all the trajectories to values close

to the domain boundaries, the error in the approximation is

expected to increase at each step, affecting the prediction.

This tendency could explain the increase in the predicted

concentration, when the exact solution shows a decrease

on it. A comparison at different initial concentrations, like

C0 = 60 mol/m3, analyzes the effect of the location of

the trajectory in the response of the model. At this initial

concentration, the DMK model exhibits a better performance

because the model makes a better prediction at the center of

the domain.

E. Error Prediction Analysis

An analysis of the associated error that an approximated

model has with respect to the true solution of the function is

important to measure the uncertainty in the model, and it is a

valuable information when a control system is designed. One

of the attractive features of kriging is the ability to compute

the prediction variance, by using (10). In order to analyze this

aspect of our test problem, we selected maximum likelihood

as a technique to estimate the process variance σ̂2 as a

function of the actual θC and θr parameters of the SCF.

The expression for this estimate is [10]

σ̂2(θC , θr) =
(Y − Hβ̂)′R−1(Y − Hβ̂)

n
. (20)
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Fig. 7. Reaction rate profile for the simulation. C0 = 10 mol/m3 and C0

= 60 mol/m3. Settings: Square grid design, Gaussian SCF, full quadratic
model and fixed parameters.

Fig. 8 shows the true error between the DMK prediction

and the exact solution of (15) at the discrete time index k =
1, compared with the predicted error for DMK computed by

(10) for a constant initial concentration C0 = 20 mol/m3 and

several reaction rates. As was expected, the magnitude of the

predicted error increases at the boundaries because the high

uncertainty at these regions.

Even though the magnitude of the predicted error for our

DMK model using the full quadratic model as a regression

function is lower than for ordinary kriging, the predicted

error overpredicts the true error in both cases. By changing

the set of range parameters θC and θr it is possible to get

a better agreement between these curves. To get this new

set of range parameters, we assumed that the estimate set

of range parameters will not differ substantially no matter

which DACE design is used to get those estimates. Under

this assumption, a Latin Hypercube DACE design with n

= 99 points was used and a new set of range parameters

θC = 17 and θr = 0.08 were estimated using a maximum

likelihood procedure. This new set of sample points avoids

the ill conditioning problem that our previous DACE design

has during the optimization procedure. As seen in Fig. 8,

this new set of parameters generates a better prediction error

for the model, but it still needs more research in order to

improve this predictions. On analyzing these error prediction

results, the kriging variance can be used as a guiding element

to generate new sets of sample points, by resampling where

the error prediction is higher. For example, in Section IV - A,

it was shown that adding a row at the highest error prediction

(at r = 0.025 m3/(mol·s)) generates a better prediction.

Fig. 8 also shows the impact of the regression functions in

the error prediction. Depending on which regression function

is used, the magnitude of the true error is different, especially
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Fig. 8. Error prediction graph for dynamic mapping kriging for different
regression functions. C0 = 20 mol/m3. Settings: Gaussian SCF and fixed
parameters. The original set reffers to the square grid DACE design and the
new set reffers to the Latin Hypercube DACE design.

at the boundaries of the domain. These functions help to

capture the trend of the system at some specific regions in

the domain. Subdividing the spatial domain in DMK could

create a better approximated model. Some ideas to subdivide

the domain as follows:

• Divide the domain into smaller regions with special

distribution of the sample points at each region.

• Divide the application of the spatial correlation function

at some regions where the function presents a different

behavior.

• Define regions where some regression functions work

better that others by using polynomial regression func-

tions with compact support.

V. CONCLUSIONS

In the paper, we presented an exploratory study of the

application of kriging to approximated complex systems

under the framework of discrete time state-space models. The

presented application of kriging requires the generation of

reference vectors as previous information about the process

and then uses a discrete time approach to model the evolution

of the process during time. One key element that affects

the performance of kriging is the design of the reference

vectors. Using a simple test model, it was shown that the

application of classical DACE designs in kriging are not

enough to capture the necessary information for a good

approximation, especially when a prediction is made close

to the boundaries of the domain. These results also showed

the potential of the kriging error prediction as a tool to

improve the design of the reference vectors and to estimate

the true error. The optimization procedure to obtain the range

parameters is an important final issue to build the reduced

model. Some solutions for this problem are a good selection

of the regression function or a random selection of the sample

points. It was also observed that the form of the SCF should

be tailored for specific engineering problems.

In summary, dynamic mapping kriging exhibits a good

agreement in the approximation under the influences of

changes in the parameters of the system. It is a promising

approach for generation of reduced models for complex

simulations, which can then enable online computation and

control.
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