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Abstract— We present an algorithm to approximate the
solution Z of a stable Lyapunov equation AZ+ZA

∗

+BB
∗

= 0

using proper orthogonal decomposition (POD). This algorithm
is applicable to large-scale problems and certain infinite dimen-
sional problems as long as the rank of B is relatively small.
In the infinite dimensional case, the algorithm does not require
matrix approximations of the operators A and B. POD is used
in a systematic way to provide convergence theory and simple
a priori error bounds.

I. INTRODUCTION

Lyapunov equations are one of the fundamental equations

in systems and control theory, see e.g., [1]. For example,

Lyapunov equations arise in Newton iterations for Riccati

equations, which are used to compute optimal feedback

control laws for linear systems [2]. We propose an algo-

rithm based on proper orthogonal decomposition (POD) to

compute approximate low rank solutions of stable Lyapunov

equations of the form

AZ + ZA∗ + BB∗ = 0. (1)

Recent research has focused on approximating the solution

of large-scale Lyapunov equations, such as those arising from

the discretization of an infinite dimensional system (e.g., see

the recent paper [3] and the references therein). The solution

of a matrix Lyapunov equation is often a full (dense) matrix,

thus many recent large-scale algorithms compute factored

low rank approximations to the Lyapunov solution.

The POD-based algorithm presented here also computes

an approximate low rank solution to the Lyapunov equation.

Unlike many other large-scale algorithms, the POD-based

approach is not iterative; instead, the solution is constructed

by simulating m linear differential equations, where m is the

rank of B, and then computing POD eigenvalues and modes.

The main computational cost of the algorithm is approximat-

ing the solutions of the linear differential equations. Thus,

the proposed algorithm is applicable to large-scale systems

when the rank of B is relatively small.

Some attractive features of the POD-based Lyapunov

algorithm are:
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1) The algorithm is directly applicable to certain infinite

dimensional problems even if matrix approximations

of the A and B operators are not available.

2) The algorithm produces an approximation to a best

low rank approximate solution, even in the infinite

dimensional case.

3) Simple, computable a priori error bounds indicate the

quality of the approximation and can guide the order

of the approximation. The error bounds are again valid

even in the infinite dimensional case.

This algorithm has great potential for infinite dimensional

problems. In this case, one must solve infinite dimensional

linear differential equations. These computations can be

performed using existing simulation code; furthermore, tools

such as adaptive solvers, parallel algorithms, multigrid meth-

ods, etc. can be used to increase computational efficiency and

accuracy. Again, matrix approximations of A and B are not

required. For some problems, such as linearized fluid flow, it

may not be a simple task to obtain approximating matrices.

The convergence theory for the infinite dimensional case

considered here simply requires convergence of the solutions

of the infinite dimensional linear differential equations. In

contrast, if one solves the Lyapunov equation using matrix

approximations of A and B, then the convergence theory

for this procedure is more complex (see, e.g., [4, Corollary

4.11]). It is possible that a “natural” discretization scheme

may fail to satisfy the requirements of the theory and produce

an incorrect approximation. For an example with a delay

equation that is not dual convergent (a standard theoretical

requirement), see [5].

II. THE ALGORITHM

We now present the algorithm which is applicable to

the matrix case and a certain infinite dimensional case.

Throughout this work, we let X be a Hilbert space with

inner product (·, ·) and corresponding norm ‖·‖X = (·, ·)1/2.

For the matrix Lyapunov equation, X is taken to be Rn and

the inner product can be taken as the standard dot product,

(a, b) = aT b, or a weighted dot product, (a, b) = aT Mb,

where M ∈ Rn×n is symmetric positive definite.

We suppose A and B have the following properties. In

the matrix case, A ∈ R
n×n is exponentially stable and

B ∈ Rn×m. In the infinite dimensional case, A : D(A) ⊂
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X → X generates an exponentially stable C0-semigroup eAt

over X and B : Rm → X is finite rank and bounded. This

assumption implies that B must take the form

Bu =

m
∑

j=1

bjuj ,

where each bj ∈ X and u = [u1, . . . , um ]T ∈ Rm (see [6,

Theorem 6.1]). Note that this representation for B also holds

for the matrix problem; in this case, bj is the jth column of

B.

The algorithm to approximate the solution Z : X → X
of the Lyapunov equation (1) can be briefly summarized as

follows.

Main Algorithm:

1) Let wN
j be an approximation to the solution wj of the

linear differential equation

ẇj(t) = Awj(t), wj(0) = bj , (2)

for j = 1, . . . ,m, where Bu =
∑m

j=1 bjuj .

2) Compute {λN
k } and {ϕN

k }, the POD eigenvalues and

modes of the dataset {wN
j }m

j=1, e.g., by method of

snapshots (see Section III-B).

3) Choose r and form the rth order approximate Lya-

punov solution ZN
r : X → X given by

ZN
r x =

r
∑

k=1

λN
k (x, ϕN

k )ϕN
k , (3)

where (·, ·) is the inner product over the Hilbert space.

In Section V below we discuss the choice of the order r and

the approximation level N .

If desired, the approximate solution can be factored as

ZN
r = R∗R, where R : X → R

r and its adjoint R∗ : Rr →
X are defined by

Rx = [ (λN
1 )1/2(x, ϕN

1 ), . . . , (λN
r )1/2(x, ϕN

r ) ]T ,

R∗a =

r
∑

k=1

ak(λN
k )1/2ϕN

k , a = [ a1, . . . , ar ]T .

We note that for the dual Lyapunov equation

A∗Z + ZA + C∗C = 0, (4)

one must instead approximate the solutions of the dual linear

evolution equations

żj(t) = A∗zj(t), zj(0) = cj . (5)

In the matrix case, cj is the jth row of the matrix C. In

the infinite dimensional case, we assume C : X → R
p

is bounded and finite rank so that C must have the form

Cx = [(x, c1), . . . , (x, cp)], where each cj ∈ X (again, see

[6, Theorem 6.1]). The remainder of the algorithm remains

unchanged.

We now review proper orthogonal decomposition and the

method of snapshots. We discuss the approximation error and

the choice of r and N in Section V below.

III. THE CONTINUOUS PROPER ORTHOGONAL

DECOMPOSITION

The key to the proposed algorithm is that the Lyapunov

operator is exactly the continuous POD operator of the set

of functions {wj}
m
j=1. This is shown in Proposition 1 below.

This property is used to construct the approximate low rank

Lyapunov solution.

We summarize the continuous proper orthogonal decom-

position from the recent works of Kunisch and Volkwein [7],

[8] and Henri and Yvon [9], [10], [11]. These works focus

on the continuous POD for a finite time interval, however

the theory extends naturally to the case of an infinite time

interval.

Section III-A reviews properties of the continuous proper

orthogonal decomposition and Section III-B focuses on

approximating the POD eigenvalues and modes using the

method of snapshots [12].

A. Properties of the Continuous POD

Let L2(0,∞;X) be the set of all functions w such that

w(t) ∈ X for all t ≥ 0 and whose X norm is square

integrable, i.e.,

‖w‖L2(0,∞;X) =

(
∫ ∞

0

‖w(t)‖2
X dt

)1/2

< ∞.

A sequence of functions {wk} ⊂ L2(0,∞;X) converges to

w ∈ L2(0,∞;X) if ‖wk − w‖L2(0,∞;X) → 0 as k → ∞.

We now define the continuous proper orthogonal decom-

position and discuss its properties.

Definition 1: The continuous POD operator Z : X → X
for a dataset {wj}

m
j=1 ⊂ L2(0,∞;X) is defined by

Zx =

∫ ∞

0

m
∑

j=1

(x,wj(t))wj(t) dt. (6)

The continuous POD operator is self adjoint, compact,

and nonnegative; thus, the eigenvalues of Z may be ordered

λ1 ≥ λ2 ≥ · · · ≥ 0 and the corresponding orthonormal

eigenvectors {ϕk} ⊂ X form a complete set.

Definition 2: The eigenvalues {λk} of the continuous

POD operator Z are called the POD eigenvalues of {wj}
and the orthonormal eigenvectors {ϕk} ⊂ X of Z are called

the POD modes of {wj}.

The POD eigenvalues are an indication of “energy con-

tent” and the POD modes are optimal for data reconstruction.

First, the “total energy” in the dataset {wj} is contained in

the POD eigenvalues:

m
∑

j=1

∫ ∞

0

‖wj(t)‖
2
X dt =

∑

k≥1

λk < ∞.

The POD modes {ϕk} can be used to give an optimal

reconstruction of the set {wj} in the following manner. Let

wr
j be the rth order projection of wj onto the POD basis,

i.e.,

wr
j (t) =

r
∑

k=1

(wj(t), ϕk)ϕk. (7)
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Then the reconstruction error is given in terms of the sum

of the neglected POD eigenvalues

m
∑

j=1

∫ ∞

0

∥

∥wj(t) − wr
j (t)

∥

∥

2

X
dt =

∑

k>r

λk.

In the case of a finite time interval, no other orthonormal

basis yields a smaller reconstruction error. This optimal

reconstruction property likely extends to the case of an

infinite time interval, however the author has not examined

this case as it is not required for the current work.

B. Computing the Continuous POD via the Method of Snap-

shots

An important feature of proper orthogonal decomposition

is that the POD eigenvalues and modes of a time varying

dataset {wj}
m
j=1 ⊂ L2(0,∞;X) can be computed using the

method of snapshots. The main idea is to approximate each

wj with functions whose POD eigenvalues and modes are

easily computable. The following result guarantees that these

approximate POD eigenvalues and modes converge to the

POD eigenvalues and modes of {wj}.

Theorem 1: Let wN
j ∈ L2(0,∞;X) be a sequence of

functions converging to wj ∈ L2(0,∞;X) for each j =
1, . . . ,m. Let {λN

k , ϕN
k } and {λk, ϕk} denote the POD

eigenvalues and modes of {wN
j }m

j=1 and {wj}
m
j=1, respec-

tively. Then for each k,

lim
N→∞

|λN
k − λk| = 0, lim

N→∞
‖ϕN

k − ϕk‖X = 0.

Furthermore, as N → ∞,
∑

k≥1

λN
k →

∑

k≥1

λk. (8)

A popular approach to the method of snapshots is to use

piecewise constant functions (in time) to approximate the

functions wj . For simplicity, we focus on the case m = 1,

i.e., there is only one function in the dataset. The algorithm

is similar for m > 1.

Method of Snapshots (for m = 1):

1) Let aj ≈ w(tj) be approximate snapshots of w(t) at

times 0 = t0 < t1 < · · · < tN = T for j = 0, . . . , N .

2) Let vj = (aj + aj−1)/2 be the approximate average

value of w(t) over the jth time interval for j =
1, . . . , N .

3) Let δj = tj − tj−1 be the jth time step for j =
1, . . . , N .

4) Let Γ be the symmetric N × N matrix whose entries

are the inner products Γij = (δ
1/2
j vj , δ

1/2
i vi).

5) Let λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0 be the ordered eigenval-

ues of Γ with corresponding orthonormal eigenvectors

{γk}
N
k=1.

6) The (approximate) POD eigenvalues are given by {λk}
and, if λk 6= 0, the (approximate) kth POD mode is

ϕk = λ
−1/2
k

N
∑

j=1

δ
1/2
j [γk]jvj ,

where [γk]j is the jth component of γk.

We note that this algorithm is often implemented using an

equally spaced time grid.

Remark: Another method of computing POD eigenvalues

and modes is to approximate the time integral in the contin-

uous POD operator (6) by quadrature. This approach leads

to a similar algorithm.

IV. DERIVATION OF THE ALGORITHM

We now give a derivation of the algorithm.

Given the assumptions of Section II, the exact solution

Z : X → X of the Lyapunov equation is given by [13,

Theorem 4.1.23]

Zx =

∫ ∞

0

eAtBB∗eA∗tx dt.

We now show that the Lyapunov solution equals the contin-

uous POD operator for the dataset {wj} given in the main

algorithm.

Proposition 1: The unique solution Z : X → X of the

Lyapunov equation (1) takes the form

Zx =

∫ ∞

0

m
∑

j=1

(x,wj(t))wj(t) dt, (9)

where each wj is the exact solution of the linear evolution

equation (2).

Proof: The solution may be factored as Z = BB
∗,

where B : L2(0,∞;Rm) → X is defined by

Bu =

∫ ∞

0

eAtBu(t) dt

and B
∗ : X → L2(0,∞;Rm), the adjoint of B, is given by

B
∗x = B∗eA∗tx. Again, given the assumptions above on B,

the operator must have the form Bu =
∑m

j=1 bjuj , where

u = [u1, . . . , um ]T ∈ Rm, and each bj is in X . Then we

have

Bu =

∫ ∞

0

eAtBu(t) dt =

∫ ∞

0

m
∑

j=1

uj(t)wj(t) dt,

where wj(t) = eAtbj for j = 1, . . . ,m. This implies that

each wj ∈ L2(0,∞;X) is the solution of the linear evolution

equation (2). The adjoint operator B
∗ : X → L2(0,∞;Rm)

is easily computed to be

[B∗x](t) = [ (x,w1(t)), . . . , (x,wm(t)) ]T .

Again using Z = BB
∗ gives the expression (9).

Remark: The representation (9) could be very useful if

one only needed to compute the product of the Lyapunov

operator with a few vectors in X . This could be accom-

plished by computing the solutions of the linear differential

equations (2) and approximating the time integral in (9) by

quadrature or some other method. However, if one obtained

an approximate Lyapunov solution in this fashion, the result

would likely not have low rank.

Since the Lyapunov solution Z equals the continuous POD

operator for {wj}, the POD eigenvalues and modes equal,

by definition, the eigenvalues and orthonormal eigenvectors

of Z.
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Corollary 1: Let wj ∈ L2(0,∞;X) be the exact solution

of the linear evolution equations (2), for j = 1, . . . ,m. The

POD eigenvalues {λk} and modes {ϕk} ⊂ X of the dataset

{wj} are the eigenvalues and orthonormal eigenvectors of

the unique solution Z : X → X of the Lyapunov equation

(1).

The truncated eigenvalue expansion of Z is given by

Zrx =

r
∑

k=1

λk(x, ϕk)ϕk. (10)

To complete the algorithm, we simply approximate the POD

eigenvalues and modes to use in the truncated eigenvalue

expansion of the Lyapunov solution Z.

V. APPROXIMATION THEORY AND ERROR BOUNDS

A. Notation and Background

In order to discuss the properties of the approximate

Lyapunov solution, we first introduce some notation and

background material.

Let K be a compact linear operator from a Hilbert space

X1 to a Hilbert space X2. The operator norm of K is defined

by

‖K‖ = sup
x∈X1,x 6=0

‖Kx‖

‖x‖
= σ1,

where σ1 ≥ σ2 ≥ · · · ≥ 0 denote the singular values of K in

decreasing order. The much stronger trace (or nuclear) norm

of K equals the sum of all of the singular values of K, i.e.,

‖K‖tr =
∑

k≥1

σk.

A best rank r approximation, Kr, to K is given by a

solution of the following problem: find the minimizer over all

rank r operators Fr of the operator norm error ‖K −Fr‖. A

solution of this problem (which may not be unique) is given

by the rth order truncated singular value decomposition of

K. The best value of the operator norm error is σr+1, the

first neglected singular value. The truncated singular value

decomposition also gives a best rank r approximation of K
if the norm is taken to be the trace norm. In this case, the

best trace norm error is given by
∑

k>r σk, the sum of the

neglected singular values.

In this work, many of the operators we consider map a

Hilbert space into itself and are compact, self adjoint, and

nonnegative. The eigenvalues of such an operator can be

ordered λ1 ≥ λ2 ≥ · · · ≥ 0. Furthermore, the eigenvalues

are equal to the singular values and the truncated eigenvalue

expansion is equal to the truncated singular value decompo-

sition. Thus, the truncated eigenvalue expansion provides the

best low rank approximation in this case.

B. Main Results

We now state the main theoretical results. The proofs will

be given in a later work.

As in the algorithm in Section II, we let {wN
j }m

j=1 be

approximations of the solutions {wj}
m
j=1 of the solutions of

the differential equations (2). We let {λN
k , ϕN

k } and {λk, ϕk}

denote the POD eigenvalues and modes of {wN
j } and {wj},

respectively. Recall from Corollary 1 above that {λk, ϕk}
are also the eigenvalues and orthonormal eigenvectors of the

Lyapunov operator.

Let ZN
r : X → X as defined in (3) denote the approximate

Lyapunov solution. Also let Zr : X → X as defined in (10)

denote the rth order truncated eigenvalue expansion of the

Lyapunov solution.

Our first result is that the approximate POD eigenvalues

and modes converge to the eigenvalues and orthonormal

eigenvectors of the Lyapunov solution Z; thus, ZN
r converges

to Zr, a best rank r approximation of Z.

Theorem 2: Let r be given. Suppose, for j = 1, . . . ,m,

wN
j → wj in L2(0,∞;X) as N → ∞. Then λN

k → λk and

ϕN
k → ϕk for 1 ≤ k ≤ r. Also, as the POD eigenvalues and

modes converge, ZN
r → Zr in the operator norm.

Furthermore, the approximation error between Z and ZN
r

in the operator norm depends on the speed of the convergence

of the POD eigenvalues and modes.

Theorem 3: The operator norm error between ZN
r and Z,

the exact solution to the Lyapunov equation (1), is bounded

as follows:

‖Z −ZN
r ‖ ≤ λr+1 +

r
∑

k=1

(

|λk − λN
k | + 2λN

k ‖ϕk − ϕN
k ‖X

)

.

By Theorem 2, the second term in the error bound

converges to zero as each wN
j → wj in L2(0,∞;X). Also,

by Theorem 1, the first term in the error bound, λr+1, can

be approximated by λN
r+1. Thus, if the first r + 1 POD

eigenvalues and the first r POD modes are converged, then

λN
r+1 is a good approximation of the operator norm error

bound between Z and ZN
r .

The following result gives a bound on the approximation

error in the stronger trace norm.

Theorem 4: The trace norm error between ZN
r and Z, the

exact solution to the Lyapunov equation (1), is bounded as

follows:

‖Z−ZN
r ‖tr ≤

∑

k>r

λN
k +CN

( m
∑

j=1

‖wj−wN
j ‖2

L2(0,∞;X)

)1/2

,

where the constant CN is given by

CN =

(

∑

k≥1

λN
k

)1/2

+

(

∑

k≥1

λk

)1/2

.

As each wN
j → wj in L2(0,∞;X), the last term in the error

bound tends to zero, and also

∑

k>r

λN
k →

∑

k>r

λk, CN → 2

(

∑

k≥1

λk

)1/2

.

We note that both terms in the error bound can be

approximately computed or estimated. First, the sum of the

neglected POD eigenvalues,
∑

k>r λN
k , is computable. For

the second term in the error bound, the constant CN cannot

be computed exactly; however it can be approximated by

CN ≈ 2

(

∑

k≥1

λN
k

)1/2

.
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This is due to equation (8) in Theorem 1. The L2(0,∞;X)
errors between wj and wN

j are not computable. However,

error bounds or estimators can often be used to approximate

this error term.

This error bound also points to one potential strength of

this algorithm. Since the L2(0,∞;X) errors between wj and

wN
j appear in the error bound, error estimators or adaptive

solvers can be used to guide refined computations to reduce

the approximation error. Of course, increasing the order, r,

will decrease the first term in the error bound.

VI. NUMERICAL RESULTS FOR A MODEL PROBLEM

In this section, we present numerical results for an infinite

dimensional model problem. The results are compared with

matrix Lyapunov computations using matrix approximations

of the infinite dimensional operators.

A. The Model Problem

We take the A and B operators from the one dimensional

convection diffusion equation

wt(t, x) = µwxx(t, x) − κwx(t, x) + b(x)u(t),

w(t, 0) = 0, w(t, 1) = 0, w(0, x) = w0(x),

where subscript denote partial derivatives, µ is a positive

constant, and κ is a real constant. The function b(x) is in

L2(0, 1).
Let the Hilbert space X equal L2(0, 1), the space of square

integrable functions, with the standard inner product (f, g) =
∫ 1

0
f(x)g(x) dx. The A operator is defined by

Aw = µwxx − κwx, D(A) = H2 ∩ H1
0

and B is given by [Bu](x) = b(x)u. Here, Hm is the

standard Sobolev space of functions with m derivatives all

of which are square integrable; also, any function w ∈ H1
0

must satisfy the Dirichlet boundary conditions w(0) = 0 and

w(1) = 0.

The eigenvalues of the convection diffusion operator A are

given by λn = −µn2π2 − κ2/4µ. Since the eigenvalues are

all negative and bounded away from the imaginary axis, the

results in [14] and [13, Section 2.3] can be used to show that

A generates an exponentially stable C0-semigroup.

B. Numerical Results

We now compare the numerical results of the POD-based

algorithm with matrix Lyapunov computations using matrix

approximations of the A and B operators.

For the computations, we chose µ = 0.1, κ = 1, and

b(x) = 5(1 − x)2 sin(πx). Standard piecewise linear finite

elements were used for the spatial discretization of the partial

differential equation (2). The discretized equations were

integrated over 0 ≤ t ≤ 2 using Matlab’s ode15s solver

with default error tolerances; at t = 2, the numerical solution

is nearly zero. The time points returned from ode15s were

used in the method of snapshots to approximate the POD

eigenvalues and modes.

Standard piecewise linear finite elements were also used

to provide the matrix approximations of the A and B opera-

tors for the matrix Lyapunov computations. Matlab’s lyap

function was used to solve the resulting matrix Lyapunov

equations.

Figure 1 shows the POD eigenvalues computed by the

method of snapshots for N = 64, 128, and 256 equally

spaced finite element nodes. Eigenvalue computations for

the matrix Lyapunov solution using the standard matrix

approximations produced similar results. The larger POD

0 5 10 15 20 25
10

−20

10
−15

10
−10

10
−5

10
0

 

 

N = 64

N = 128

N = 256

Fig. 1. POD eigenvalues computed using N = 64, 128, and 256 equally
spaced finite element nodes.

eigenvalues are converged at this level of refinement; the

POD eigenvalues nearer to machine precision (10−16) have

not yet converged. Further refinement is unnecessary since

only the larger POD eigenvalues are used to construct the

approximate Lyapunov solution.

Figure 2 shows the first POD mode computed by the

method of snapshots for N = 32 equally spaced finite

element nodes. The mode is converged at this level of

refinement. The other POD modes converged in a similar

0 0.2 0.4 0.6 0.8 1
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

x

Fig. 2. The first POD mode computed using N = 32 equally spaced finite
element nodes.

fashion, however the higher numbered modes were slower to

converge under refinement. This behavior is likely due to the

fact that the higher numbered modes tend to oscillate more
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than the lower numbered modes. Eigenvector computations

for the matrix Lyapunov solution using the standard matrix

approximations produced similar results.

Figure 3 shows approximate Lyapunov solutions acting

on w = exp(x). POD-based approximations are shown with

N = 32 equally spaced finite element nodes with orders

r = 1 and r = 2. The matrix Lyapunov computations using

the standard matrix approximations is shown with N = 128
equally spaced finite element nodes for comparison. The low

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

 

 

Standard: N = 128

POD: N = 32, r = 1

POD: N = 32, r = 2

Fig. 3. Approximate Lyapunov solutions acting on w = exp(x).

order POD-based approximations give excellent agreement

with the refined standard matrix approximation computa-

tions. In particular, for r = 2 the POD approximation is

indistinguishable from the result of the standard computation.

The operator norm error bound in Theorem 3 gives a good

indication of the accuracy of the POD-based approximation

without comparison to other computations. Recall ‖(Z −
ZN

r )w‖ ≤ ‖Z − ZN
r ‖‖w‖X . As discussed after Theorem

3, we approximate ‖Z−ZN
r ‖ by λN

r+1. For w(x) = exp(x),
‖w‖X ≈ 1.7873. For r = 1, ‖Z − ZN

r ‖ ≈ 0.0569; for

r = 2, ‖Z −ZN
r ‖ ≈ 0.0031. These values give approximate

error bounds for ‖(Z − ZN
r )w‖ of 0.1016 for r = 1 and

0.0055 and r = 2. The above computations agree with these

approximate error bounds.

We also look at the the trace norm error bound in Theorem

4. For r = 1, the sum of the neglected eigenvalues is

approximately 0.0601; for r = 2, this sum is approximately

0.0032. These values also give a good estimate of the

approximation error. Of course, the full error bound involves

the L2(0,∞;X) error between the exact and approximate

solution to the partial differential equation (2); we do not

attempt to estimate this here.

VII. CONCLUSION

We presented a POD-based algorithm to compute ap-

proximate low rank solutions of Lyapunov equations. The

algorithm is applicable to large-scale matrix problems as

well as a class of infinite dimensional problems. Since

the algorithm is based on approximating the solutions of

linear evolution equations, the computations can use existing

simulation code as well as tools such as adaptive solvers and

parallel algorithms. The quality of the approximate solution

can be ascertained by simple, computable a priori error

bounds. Numerical results confirmed the convergence theory.

In future work, we will compare this approach with other

large-scale matrix Lyapunov solvers. We also will consider

other classes of infinite dimensional systems, such as those

with an unbounded B operator.

We also note that the solution of Lyapunov equations plays

an important role in standard methods to compute truncated

balanced reduced order models of linear systems (see, e.g.,

[1], [15]). Although the POD-based algorithm presented here

could be used for these Lyapunov computations, we propose

that it is more natural to use Rowley’s POD-based algorithm

for approximate balanced truncation [16]. (In fact, Rowley’s

algorithm inspired the present work and also [17], which

extends the algorithm in [16] to an infinite dimensional case.)

This method requires the solution of the linear differential

equations (2) and (5) and bypasses the solution of Lyapunov

equations (1) and (4).
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