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Abstract— Network congestion control schemes for the
Internet aim to achieve efficient sharing of the available
bandwidth while at the same time avoiding congestion
collapse. Previous work has concentrated on users who are
not delay-sensitive in the benefit they see when allocated
a specific bandwidth share. In this paper, we consider a
congestion control scheme that takes into account delay
sensitive traffic and derive stability conditions for arbitrary
network sizes that include propagation delay. The nature
of the algorithm allows both the development of delay-
independent and delay-dependent conditions, something
unique to ‘dual’ algorithms proposed thus far.

I. INTRODUCTION

Internet congestion control [20] is a distributed algo-

rithm to allocate available resources to competing sources

so as not to exceed link capacities and hence avoid

congestion collapse. Congestion signals are generated at

the Active Queue Management (AQM) part of the algo-

rithm implemented at the links; the congestion measure

is usually based on either delay or packet loss. The

source rates are then adapted at the Transmission Control

Protocol (TCP) part of the algorithm according to the size

of the aggregate price signal that the user sees on the links

he uses. The challenge is to use these feedback signals

in order to stabilize the system around a ‘fair’ research

allocation equilibrium for arbitrary networks sizes in a

robust way.

What is interesting and extensively researched in the

last few years is that the problem of Internet congestion

control can be cast as a fully centralized optimization

program [11], [10], [5], which aims to maximize the

aggregate Utility of all the users, subject to the constraint

that the total flow on each link should be no greater than

the link capacity. Here, the Utility of each user i with

a transmission rate xi is a strictly concave, continuously

differentiable non-decreasing function Ui(xi), measuring

the user’s ‘happiness’ when allocated transmission rate

xi. Essentially, it is a measure of the Quality of Service
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(QoS). For best-effort data traffic, a function of the

transmission rate alone is good enough to reflect QoS,

but for delay-sensitive traffic, a Utility function that is

only a function of the transmission rate of user i may

not reflect user’s perception of QoS. For example, for a

Voice over IP (VoIP) application, the R-factor which is

a measure of user’s satisfactory of the QoS, has a linear

term of the end-to-end average delay in it [1].

When the Utility functions are only functions of the

transmission rate, the resource allocation problem can

be decomposed into a primal and a dual problem by

introducing duality-based price signals [11]. In this way,

the congestion measures are the ‘dual’ variables, while

the transmission rates are the ‘primal’ variables. The aim

of the designed AQM and TCP algorithms is to drive

the congestion signals and the source rates exactly at or

approximately close to the optimum of the distributed

resource allocation optimization problem. In the simplest

case, the structure of the dynamics that are chosen for

TCP and AQM are usually based on a sub-gradient

descent algorithm on the dual decomposition [5], [3],

[2], whose nonlinear dynamics can be shown to be

asymptotically stable.

Congestion control for delay-sensitive traffic is under-

explored and was investigated in e.g., [8], [9], [18],

[19] (see also the references therein). In this work, the

Utility function was extended and made a function of the

transmission rate as well as the end-to-end average delay.

If queueing delay is considered, the end-to-end average

delay of user i is a function of all the flows of the links

on its path, where the link flow itself is the aggregate

transmission rate of all the users sharing it. Such a Utility

function couples the rate of the user and the flow on

the links. It explicitly reflects how the transmission rate

and delay affect users’ satisfaction of the service, and

provides a richer framework on how to accomplish rate

control for delay sensitive traffic.

In this paper, we focus on an important feature

that was ignored in the stability analysis in [8].

This is the presence of communication delays during

packet/acknowledgement transfer. Delays should not be

ignored as in general their presence results in degradation

of performance or even instabilities. Indeed stability is

an important measure of the functionality of the system;
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without stability transmission rates oscillate which could

result in a reduction in the link utilization, ‘mice’ pack-

ets, i.e., short-lived small packets on which congestion

control is difficult get dropped, and predictability of the

behaviour of the system is lost. The problem of analyz-

ing system behaviour at the linear and nonlinear level

with heterogeneous delays is difficult [17] but several

procedures have been developed for that purpose: for

example the methodology developed in [21] analyzes the

linearizations of the nonlinear equations and the methods

developed in [15] and [22] deal with nonlinear system

descriptions.

In this paper we analyze stability of a congestion con-

trol scheme with delay sensitive traffic that was proposed

in [8] when propagation delays are taken into account.

For this, we use the linearization of the scheme around

the optimum and derive two conditions, one based on the

delay and one that is delay-independent.

The rest of this paper is organized as follows. In

Section II we present the problem and the congestion

control algorithm we wish to analyze. In Section III we

present the stability analysis of the linearization including

the effect of delays. We conclude the paper in Section IV.

II. PROBLEM FORMULATION

A. Basic review

Consider a network of L communication links shared

by S sources. The routing matrix R is given by:

Rli =

{

1 if source i uses link l
0 otherwise

(1)

Associated with each source i is a transmission rate

xi. All sources whose flow passes through resource l
contribute to the aggregate rate yl, the rates being added

with some forward time delay τf
i,l:

yl(t) =

S
∑

i=1

Rlixi(t − τf
i,l) , rf (xi, τ

f
i,l). (2)

The resources l react to the aggregate rate yl by setting a

price pl. This is the Active Queue Management (AQM)

part of the algorithm. The prices of all the links that

source i uses are added to form qi, the aggregate price

for source i, again through a delay τ b
i,l:

qi(t) =

L
∑

l=1

Rlipl(t − τ b
i,l) , rb(pl, τ

b
i,l). (3)

The prices qi can then be used to set the rate xi of source

i. This is the Transmission Control Protocol (TCP) part

of the algorithm, which completes the picture shown in

Figure 1. The capacity of link l is denoted by cl. The

forward and backward delays can be combined to yield

-

?

�

6

TCP AQMẋi = Fi(xi, qi, τi)

yl = rf(xi, τ
f
i,l)

yl

plqi

xi

qi = rb(pl, τ
b
i,l)

ṗl = Gl(yl, pl, cl)

Fig. 1. The Internet as an interconnection of sources and links through
delays.

the Round Trip Time (RTT) for source i, τi:

τi = τf
i,l + τ b

i,l. (4)

This setting is universal, and what needs to be specified

are two control laws that describe how the ith source

reacts to the price signal qi that it sees

ẋi = Fi(xi, qi, τi), (5)

and how the lth router reacts to the signal yl it observes

ṗl = Gl(yl, pl, cl). (6)

Here Fi models TCP algorithms (e.g. Reno, Vegas) and

Gl models AQM algorithms (e.g. RED, REM).

It is well known that the resource allocation algo-

rithm can be reverse-engineered as the solution of an

optimization problem [11], [20]. We associate with each

user i a strictly concave, continuously differentiable non-

decreasing Utility function Ui(xi) when being allowed to

have a transmission rate xi. Then the optimization of the

whole system can be cast as follows:

maxxi≥0

∑S

i=1
Ui(xi)

s.t.
∑S

i=1
Rlixi ≤ cl, ∀ l = 1, . . . , L

(7)

where the inequality constraint is the natural limitation

that the sum of all transmission rates through link l has

to be less than or equal to its capacity. The uniqueness

of solution to the above problem is guaranteed since Ui

are strictly concave functions.

The above optimization problem cannot be solved in

a decentralized way, as the source rates are coupled in

the shared links through the inequality constraints and

solving for x∗ would require cooperation among possibly

all sources. However it can be decomposed into a primal

problem that the sources are trying to solve and a dual that

the links are trying to solve, regarding the sources xi as

primal variables and the prices set by the links pl as dual

variables. Under specific assumptions the optimal point
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of the two sub-problems coincides with the optimal point

of the original problem, which is unique. More details can

be found in [11]. The dynamical system defined by (5–6)

with delays ignored aims to drive the system close to or

exactly at the optimal point (x∗, p∗), using well-known

sub-gradient algorithms.

B. Delay-sensitive utility maximization

In this paper, we consider users with delay-sensitive

Utility functions. In particular, we set the Utility function

as in [8]:

Ui = fi(xi) − bi

L
∑

l=1

Rlidl(yl)

where fi is a function in rate xi, yl =
∑

i Rlixi is

the link load on link l, dl(yl) is the average delay

experienced by a packet on link l, and bi > 0 is some

constant incorporating the normalization and the relative

importance of the delay versus rate of user i.

We have the following assumptions:

Assumption 1: The function fi(xi) is increasing and

strictly concave in xi ≥ 0, for all i.

Assumption 2: The function dl(yl) is positive, increas-

ing and strictly convex in yl ≥ 0, and dl(cl) = ∞ for all

l.

Note that Assumption 2 implies that yl ≤ cl. The function

dl(yl) is a delay function. For instance, if dl is the average

queueing delay of an M/M/1 queue [6], then dl(yl) =
a

cl−yl
where a > 0 is some constant. With this Utility

function, problem (7) still decentralizes and has similar

properties to the one with bi = 0.

The corresponding optimization problem becomes

maxxi≥0

∑S

i=1
[fi(xi) − bi

∑L

l=1
Rlidl(yl)]

s.t.
∑S

i=1
Rlixi ≤ yl, ∀l = 1, . . . , L,

where yl ≤ cl, ∀l. Note that the inequality sign is equiva-

lent to the equality sign in the constraint
∑S

i=1
Rlixi ≤ yl

because the objective function is monotonically decreas-

ing in yl.

In this paper, we will concentrate on a ‘dual’ con-

gestion control scheme using the above Utility function

with dynamics at the links but a static source law.

The stability properties of the undelayed system can be

obtained directly, as the gradient algorithm results in a

weighted potential system [20].

When the communication delays during

packet/acknowledgement transfer are introduced,

say, when τi are brought in the dynamics, the dynamic

analysis becomes more complicated, and a scalable

analysis methodology is difficult. Here we will obtain

two results that hold for arbitrary network topologies

- one that is delay-independent and one that is delay-

dependent. The tools we use are based on [21].

Note that the delay dl(yl) in the Utility function

for the delay-sensitive traffic considered here is mainly

the queueing delay, which provides a richer profile for

rate control; the delay τi in our dynamic analysis is

the communication delay which includes the queueing

delay, propagation delay, processing delay, and so on.

For the simplicity of the analysis, τ ′
is are assumed to

be constants. In future work, we will consider the case

where τ ′
is are time varying.

The routing matrix R is assumed fixed and full row

rank. This means that there are no algebraic constraints

between link flows, i.e., they can vary independently by

choice of source flows xi. As a consequence, equilibrium

prices are uniquely determined.

C. The dual congestion control scheme

The congestion control algorithm we will be looking

at has the following laws at the sources and links:

ṗl(t) = κl

[

S
∑

i=1

Rlixi − d′−1

l

(

pl

Bl

)

]+

pl

(8)

xi(t) = f ′−1

i (qi), (9)

where Bl =
∑S

i=1
Rlibi > 0, κl > 0 and [f(x)]+x means

[f(x)]+x =

{

f(x) x > 0
max{f(x), 0}, x = 0

.

The equilibrium of interest for the above system is at:

y∗
l = d′−1

l

(

p∗l
Bl

)

x∗
i = f ′−1

i (q∗i ),

given the relations y∗
l =

∑S

i=1
Rlix

∗
i and q∗i =

∑L

l=1
Rlip

∗
l .

We proceed to linearize the above system about this

equilibrium. In this case we have

˙δpl = κl

(

S
∑

i=1

Rliδxi −
1

Bl

δpl

d′′l (y∗
l )

)

δxi =
δqi

f ′′
i (x∗

i )

where all δ’s indicate small changes about the equilibrium

position. Define the following matrices,

F = diag{f ′′
i (x∗

i )} < 0, D = diag{d′′l (y∗
l )} > 0,

K = diag{κl} > 0, B = diag{Bl} > 0.

We also have the relation

δq = RT δp.

3
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Then the above equations become:

δ̇p = K(RF−1RT − B−1D−1)δp , Aδp.

The matrix A < 0 by construction, therefore the equilib-

rium is locally asymptotically stable. In fact, it is globally

asymptotically stable as shown in [8].

III. A MODEL WITH DELAY AND ITS

STABILITY ANALYSIS

We now introduce heterogeneous delays to the system

in order to describe the transmission and propagation

time needed for the packets to reach the destination and

acknowledgements to be received by the source.

The presence of delays is most of the times desta-

bilizing and may affect greatly the performance of the

system. Stability analysis of linear time delay systems

has been investigated greatly in the past years [12].

Just as in the stability analysis of system described by

linear Ordinary differential equations, there are in gen-

eral two methodologies for investigating stability: using

time-domain (Lyapunov) or frequency domain arguments.

Using a frequency domain methodology more accurate

descriptions of the stability boundaries can be obtained

and this method is scalable for the special case of

Internet Congestion Control [21]. On the other hand,

Lyapunov-based arguments are more conservative; they

are however useful for the exact investigation of the

stability of nonlinear systems [7]. In this paper we will

analyze the system described in the previous section using

a generalized Nyquist criterion.

The nonlinear delayed model when heterogeneous

time-delays are taken into account becomes

ṗl(t) = κl

[

S
∑

i=1

Rlixi(t − τf
i,l) − d′−1

l

(

pl(t)

Bl

)

]+

pl

xi(t) = f ′−1

i (qi(t))

qi(t) =

L
∑

l=1

Rlipl(t − τ b
i,l).

We define the following matrices, that will simplify the

notation:

[Rf (s)]li =

{

e−sτ
f

i,l if user i uses link l
0 otherwise

and

[Rb(s)]li =

{

e−sτb
i,l if user i uses link l

0 otherwise
.

Note that

Rb(s) = Rf (−s)diag{e−sτi}.

Linearizing the nonlinear time-delayed system about

the same equilibrium as before, we get:

˙δpl(t) = κl

[

S
∑

i=1

Rliδxi(t − τf
i,l) −

δpl(t)

Bld′′l (y∗
l )

]

(10)

δxi(t) =
1

f ′′
i (x∗

i )
δqi(t) (11)

δqi(t) =

L
∑

l=1

Rliδpl(t − τ b
i,l). (12)

In the following two subsections, we will present two

stability results for the linearization, one that is delay-

independent and one that is delay-dependent.

A. Delay-dependent sufficient condition for stability

Here is the result concerning delay-dependent stability.

Theorem 1: Given Equations (10)-(12), for κl = 1

y∗

l

and f ′′
i (x∗

i ) = −Miτi

x∗

i
αi

where αi < π/2 and Mi =
∑L

l=1
Rli the equilibrium is asymptotically stable.

Proof: Taking Laplace transforms and dropping all

δ’s:

sp(s) − p(0) = K
(

Rf (s)x(s) − B−1D−1p(s)
)

x(s) = F−1q(s)

q(s) = RT
b (s)p(s).

Combining we get:

sp(s) − p(0) = K
(

Rf (s)F−1RT
b (s) − B−1D−1

)

p(s).

Therefore,

p(0) =
(

sI + KB−1D−1
)

p(s)
+KRf (s)(−F−1)T (s)RT

f (−s)p(s).

This system is stable if its poles lie in the left half plane,

i.e., if the solution to

det

((

s +
κl

Bld̂l

)

I +

(

s +
κl

Bld̂l

)

G

)

= 0

has only negative real parts, where the return ratio is

G = diag

{

κl

s+
κl

Bld̂l

}

Rf (s)

diag
{

τi

−f̂i

}

diag
{

e−sτi

τi

}

RT
f (−s)

,

where f̂i = f ′′
i (x∗

i ) and d̂l = d′′l (y∗
l ). We then show if

f̂i = −Miτi

x∗

i
αi

and κl = 1

y∗

l

, then for αi < π/2 the equi-

librium is asymptotically stable for arbitrary topologies.

Since the open-loop system is stable, we need to ensure

that the eigenvalues of the above function G, for s = jω
do not encircle the −1 point. These eigenvalues are the
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same as the eigenvalues of

diag

(

jω

jω+
κl

Bld̂l

)

R̂(jω)diag
(

αie
−jωτi

jωτi

)

R̂T (−jω)

where

R̂(jω) = diag

{√

1

y∗
l

}

Rf (jω)diag

{

√

x∗
i

−Mi

}

.

Note that

σ2(R̂(jω)) ≤ 1

where σ2(R̂(jω)) = ρ(R̂(jω)R̂T (−jω)), where ρ(Z)
denotes the spectral radius of a matrix Z. The argument

is similar as the one in [21].

Now if λ is an eigenvalue of the above, then there

exists a v for which ‖v‖ = 1 such that

diag

(

jω

jω+
κl

Bld̂l

)

R̂(jω)diag
(

αie
−jωτi

jωτi

)

R̂T (−jω)v

= λv

and hence

λ =
v∗R̂(jω)diag

(

αi
e−jωτi

jωτi

)

R̂T (−jω)v

v∗diag
(

1 − kl

Bld̂ljω

)

v

Since ‖R̂T (−jω)v‖ ≤ 1 this implies that

λ ∈
Co
(

0 ∪
{

αi
e−jωτi

jωτi

})

Co
{(

1 − kl

Bld̂ljω

)}

and since the eigen-loci cannot cross the real axis at or

to the left of the point −1 for αi < π/2, the closed

loop system is stable by the generalized Nyquist stability

criterion [21].

We note that the condition is similar to the one that

is given in [13] - however, the dynamics that we are

considering are far more interesting, as they take into

account delay-sensitive traffic.

Remark 3: In general, it may be difficult for the re-

sources to be able to estimate y∗
l and for the sources to

know Mi. However it is possible to relax the condition

that κl = 1

y∗

l

to the condition that κl = 1

cl
, which can be

implemented in a decentralized way. Note that due to the

nature of the algorithm, y∗
l < cl, i.e., the links may not

be fully utilized.

B. Delay-independent sufficient condition for stability

Here we present a delay-independent stability condi-

tion.

Theorem 2: Given Equations (10)-(12), if κl = 1

y∗

l

,

f ′′
i (x∗

i ) = − Mi

αix
∗

i

, κl > Bld
′′
l (y∗

l ) and αi < 1 then the

equilibrium is asymptotically stable.

Proof: Again, we write f̂i = f ′′
i (x∗

i ) and d̂l =
d′′l (y∗

l ). The return ratio in this case is the same as in the

proof of Theorem 1, i.e.,

L(s) = diag

{

κl

s+
κl

Bld̂l

}

Rf (s)

diag
{

1

−f̂i

}

diag {e−sτi}RT
f (−s).

The eigenvalues of this are the same as the ones of

diag

{

1

s+
κl

Bld̂l

}

Rf (s)

diag
{

1

−f̂i

}

diag {e−sτi}RT
f (−s)diag {κl}

In the same way as before, and imposing that f̂i = − Mi

x∗

i
αi

and that κl = 1

y∗

l

we get:

λ =
v∗R̂(jω)diag

(

αie
−jωτi

)

R̂T (−jω)v

v∗diag
(

κl

Bld̂l

+ jω
)

v

In this case, for asymptotic stability we require that κl >
Bld̂l and αi < 1. This condition is delay-independent.

Remark 3 also holds in this case. Note that the delay-

independent condition allows us to have a fixed gain at the

sources which is irrespective of the size of the delay, i.e.,

the sources don’t have to compensate their gain for long

delays. The price, of course, is performance degradation.

The delay-independent condition above ensures that

the Nyquist plot not only does not encircle the −1
point (which is what we ensured in the delay-dependent

condition), but rather that the whole Nyquist plot never

leaves the unit disc.

C. A simple network

In order to put the above results in perspective, we will

consider the stability conditions we get by looking at a

simple, single-link single-source network with the ones

given by Theorems 1 and 2 when they are reduced to

this simple case.

The model for a simple such network reads:

δṗ = κ

(

1

f̂
δp(t − τ) −

δp(t)

Bd̂

)

.

where f̂ = f ′′(x∗) and d̂ = d′′(x∗). This system is [4]

• Delay-dependent stable if − 1

f̂
> 1

Bd̂
and

τ <
arccos

(

f̂

Bd̂

)

κ
√

1

f̂2
− 1

B2d̂2

(13)

• Delay-independent stable if

1

Bd̂
>

1

−f̂
. (14)
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The delay-dependent condition that is given in Theo-

rem 1 makes the following assumptions:

κ =
1

x∗
, f̂ = −

τ

x∗α
, α < π/2.

Under these conditions, condition (13) simplifies to

τ <
arccos

(

− τ

αBd̂x∗

)

1

x∗

√

α2x∗2

τ2 − 1

B2d̂2

and this condition is valid for αBd̂x∗ > τ . Let us

introduce a variable µ = τ

x∗αBd̂
, µ ∈ [0, 1]. Then the

above condition reads

α
√

1 − µ2 < arccos (−µ)

Indeed this condition is only valid for α < π
2

. Hence the

two conditions, the one given in Theorem 1 for arbitrary

network sizes and the one above are equivalent; therefore

the delay-dependent condition is necessary and sufficient

for the single-source single-link case.

The delay-independent condition that we have in The-

orem 2 reduces in the single-source single-link case to

κ =
1

x∗
, f̂ = −

1

αx∗
, Bd̂ < κ, α < 1.

Combining these we get Bd̂ < −αf̂ , and since we

required α < 1 in the conditions of Theorem 2, the two

conditions are again equivalent in the simplest network

case.

IV. CONCLUSIONS

In this paper we have considered an Internet congestion

control scheme which takes into account both delay

in utility function for delay-sensitive traffic and delay

in the algorithm’s dynamics. Stability conditions in the

presence of heterogeneous propagation delays have been

developed. Two sets of such conditions emerged: a delay-

independent and delay-dependent one, which makes it the

first dual algorithm to have this feature.

We note, however, that the conditions in Theorems 1

and 2 involve knowledge of y∗
l at the links. This may not

be possible, but as remarked in Remark 3, the two condi-

tions can be relaxed to κl = 1

cl
, where cl is the capacity of

the link. This relaxation would make the two conditions

conservative, but is more easily implementable. Other

approaches can also be considered.

Another feature of the algorithm that we will be

considering in the future is the choice of the delay-free

Utility function fi at the users. Right now, the conditions

that impose f ′′
i (x∗

i ) = β
x∗

i

for some β < 0 imply a

particular shape of Utility function. Future research will

concentrate on primal-dual algorithms that would allow

the sources to adapt to a Utility function of their choice

at a much slower time-scale, like the one in [14].

Nonlinear stability analysis, as in [16] is another next

step in research on this topic.
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