
 
 

 

  

Abstract—Recursive estimation of constrained nonlinear 
dynamical systems has attracted the attention of many 
researchers in recent years. In this work, we propose a 
constrained recursive formulation of the ensemble Kalman 
filter (CEnKF) that retains the advantages of unconstrained 
Ensemble Kalman Filter while systematically dealing with 
bounds on the estimated states. The efficacy of the proposed 
constrained state estimation algorithm using the EnKF is 
illustrated by application on a simulated gas-phase reactor 
problem. 

I. INTRODUCTION 

The area of nonlinear state estimation is very rich and has 
been very well researched over the last four decades. The 
methods available for state estimation can be broadly 
categorized as nonlinear estimators developed under a 
deterministic framework and nonlinear estimators developed 
under the Bayesian framework. Approaches such as the 
Extended Kalman filter (EKF), unscented Kalman filter 
(UKF), moving horizon estimation (MHE) belong to the 
later category. These are employed for state estimation in 
nonlinear systems subject to unmeasured stochastic inputs. 
The Extended Kalman Filter (EKF) has long been the de-
facto standard for state estimation of nonlinear systems. It 
may be noted that the covariance propagation step in the 
EKF requires linearization of nonlinear system dynamics 
around the mean of a Gaussian distribution. When the 
system dimension is large, computing derivatives of 
nonlinear state transition functions and measurement 
functions at each time step can prove to be a 
computationally demanding exercise.  
 

Alleviating difficulties arising out of Jacobian 
computation has been the main motivation behind a new 
class of derivative free Kalman filters that have appeared 
recently in the literature. Prominent among these is the 
unscented Kalman filter (UKF) proposed by Uhlmann and 
Julier (2004), divided difference filter (DDF) proposed by 
Norgaard et al. (2000), and the central difference and Gauss-
Hermite filters proposed by Ito and Xiong (2000). These 
approaches employ results from approximation theory 
(polynomial interpolation or matrix factorization) for 
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calculating the statistics of a random variable, which 
undergoes a nonlinear transformation. A deterministic 
sampling technique is employed to select a minimal set of 
sample points around the mean. These sample points are 
then propagated through the nonlinear functions and used to 
approximate the covariance of the state estimate. The sample 
points straddle the discontinuity and, hence, can 
approximate the effect of discontinuity (Julier and Uhlmann, 
2004). Thus, when compared to the EKF, the derivative free 
filters can be used for state estimation in a much wider class 
of nonlinear systems. Uhlmann and Julier (2004) have 
shown that the UKF results in an approximation that are 
accurate to the third-order for Gaussian inputs for all 
nonlinearities. For non-Gaussian inputs, approximations are 
accurate to at least the second-order, with the accuracy of 
third and higher order moments determined by the choice of 
tuning parameters.  
 

More recently, a new class of filtering technique, called 
particle filtering, has attracted the attention of many 
researchers. The particle filter is a numerical method for 
implementing an optimal recursive Bayesian filter by 
Monte-Carlo simulation. Furthermore, a particle filter, can 
deal with state estimation problems arising from multimodal 
and non-Gaussian distributions (Arulampalam et al., 2002, 
Bakshi and Rawlings, 2006). These filters can also be 
classified as derivative free nonlinear filters. The Ensemble 
Kalman filter (EnKF), originally proposed by Evensen 
(Burger et al., 1998), belongs to the class of particle filters. 
In the EnKF formulation, similar to the deterministic 
derivative free filters, the observer gain is computed using 
second order moments of state error and innovations. 
However, the main difference is that the covariance 
information is generated using Monte Carlo sampling 
without making any assumption on the nature of underlying 
distributions of state estimation error. In addition, the EnKF 
formulation can also deal with state and measurement noise 
with non-Gaussian and multimodal distributions. 

In most physical systems, states and/or parameters are 
bounded, which introduces constraints on their estimates. 
While the EnKF formulation appears to be a promising 
approach for dealing with a wide class of nonlinear state 
estimation problems, it cannot handle bounds on state and or 
the parameters that are being estimated. Nonlinear dynamic 
data reconciliation (NDDR) (Liebman et al. 1992) and 
Moving horizon estimation (MHE) (Rao and Rawlings, 
2002) formulations proposed in the literature ensure that the 
state and parameter estimates satisfy bounds. However, the 
MHE and NDDR techniques are non-recursive and 
computationally intensive. Recursive Nonlinear Dynamic 

Constrained State Estimation Using the Ensemble Kalman Filter  
 J. Prakash, Sachin C. Patwardhan, Sirish L. Shah

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThC18.3

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 3542



 
 

 

Data Reconciliation (RNDDR) has been recently developed 
to take into account the constraints on the state estimates 
(Vachhani et al. (2005)). This approach combines 
computational advantages of recursive estimation while 
handling constraints on the states. The state and covariance 
propagation steps and the step for updating the covariance in 
RNDDR formulation are identical to that of the Extended 
Kalman filter. Like the EKF, the RNDDR also requires 
computing derivatives of nonlinear state transition functions 
and nonlinear measurement functions and is accurate to the 
first order. Most recently, Vachhani et al. (2006) have 
proposed unscented recursive nonlinear dynamic data 
reconciliation (URNDDR) to estimate the states and 
parameters of the nonlinear system in real-time by 
combining the advantages of the unscented Kalman filter 
and the recursive nonlinear dynamic data reconciliation. The 
URNDDR formulation, however, inherits all limitations of 
the UKF arising from assumptions regarding distributions of 
estimation error, state noise and measurement noise. 

 
In this work, we propose a constrained recursive 

formulation of the ensemble Kalman filter (CEnKF) that 
retains the advantages of unconstrained EnKF while 
systematically dealing with bounds on estimated states. To 
generate initial samples (particles), it becomes necessary to 
generate samples from the truncated distribution of the 
initial state. In the update step of the EnKF, a constrained 
optimization problem is formulated over one sampling 
interval for each particle to compute the updated state 
estimates for each particle. The updated state estimate is 
then computed using the ensemble mean of these 
constrained state estimates. It may be noted that, unlike the 
URNDDR formulation, the proposed CEnKF formulation 
can handle state and measurement noise with multi-modal 
distribution.  

 
 The organization of the paper is as follows. Section I 

discusses recursive Bayesian state estimation and the 
unconstrained EnKF formulation. Details of the proposed 
constrained state estimation formulation based on the 
Ensemble Kalman filter are presented in Section II. 
Simulation results are presented in Section III followed by 
main conclusions drawn through the analysis of these results 
as discussed in Section IV. 

I. ENSEMBLE KALMAN FILTER  
Consider a nonlinear system represented by the following 

nonlinear state space equations: 
(k 1)T

kT

(k) (k 1) F[ (t), (k 1), (k 1), (k 1)]dt (1)

(k) H[ (k), (k) ] (2)

+

= − + − − − −

= −

∫x x x u d w

y x v
 
In the above process model, (k)x  is the system state 
vector n( R )∈x , u(k) is known system input m(  R )∈u , 

(k)w is the state noise ( pR∈w ) with known distribution, 

(k) y is the measured state variable ( rR∈y ) and (k) v is the 
measurement noise ( r(k) R∈v ) with known distribution. 
The parameter k represents the sampling instant, 

[ ]F . and [ ]H . are the nonlinear process model and nonlinear 
measurement model respectively. The random state noises 
can be either due to random fluctuations in the input 
variables or the inaccuracies in the system model. It may be 
noted that we are interested in the most general case 
whereby state and measurement noise may have arbitrary 
(but known) distributions. Also, they can influence the 
system dynamics and measurement map in a non-additive 
manner. 

A. Recursive Bayesian Estimation 
The objective of the recursive Bayesian state estimation 
problem is to find the mean and variance of random variable 
x(k) using the conditional probability density function 

(k)p (k)|⎡ ⎤⎣ ⎦x Y  under following assumptions:   
(i) the states follow a first-order Markov process and  
(ii) the observation are independent of given states.   
Here, (k)Y denotes the set of all the available measurements, 
i.e. (k) { (k), (k 1),......}.−Y y y� The posterior density 

kp (k) |⎡ ⎤⎣ ⎦x Y is estimated in two stages: prediction, which is 
computed before obtaining an observation, and, update, 
which is computed after obtaining an observation 
(Arulampalam et al., 2002).  In the prediction step, the 
posterior density k 1p( (k 1) | )−−x Y at the previous time step 
is propagated into the next time step through the transition 
density { [ ]p (k) | (k 1)−x x } as follows: 

[ ]

k 1

k 1

p (k) |

p (k) | (k 1) p (k 1) | d (k 1) (3)

−

−

⎡ ⎤⎣ ⎦
⎡ ⎤= − − −⎣ ⎦∫

x Y

x x x Y x

 
The update stage involves the application of Bayes’ rule: 

[ ]

[ ]

k k 1
k 1

k 1

k 1

p (k) | (k)
p (k) | p (k) | (4)

p (k) |

where,

p (k) |

p (k) | (k) p (k) | d (k 1)d (k) (5)

−
−

−

−

⎡ ⎤ ⎡ ⎤= ×⎣ ⎦ ⎣ ⎦⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦
⎡ ⎤= −⎣ ⎦∫∫

y x
x Y x Y

y Y

y Y

y x x Y x x

 
Combining 3, 4 and 5 gives 

[ ] [ ]
[ ]

k

k 1

k 1

p (k) |

p (k) | (k) p (k) | (k 1) p (k 1) | d (k 1)
(6)

p (k) | (k) p (k) | d (k 1)d (k)

−

−

⎡ ⎤ =⎣ ⎦

⎡ ⎤× − − −⎣ ⎦
⎡ ⎤ −⎣ ⎦

∫
∫∫

x Y

y x x x x Y x

y x x Y x x

 

Equation (6) describes how the conditional posterior density 
function propagates from k 1p (k) | −⎡ ⎤⎣ ⎦x Y  to kp (k) |⎡ ⎤⎣ ⎦x Y . It 
should be noted that the properties of the state transition 
equation (1) are accounted through the transition density 
function [ ]p (k) | (k 1)−x x  while  [ ]p (k) | (k)y x  accounts 
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for the nonlinear measurement model (2). The prediction 
and update strategy provides an optimal solution to the state 
estimation problem, which, unfortunately, involves high-
dimensional integration. The solution is extremely general 
and aspects such as multimodality, asymmetries and 
discontinuities can be incorporated (Julier and Uhlmann, 
2004). The exact analytical solution to the recursive 
propagation of the posterior density is difficult to obtain. 
However, when the process model is linear and noise 
sequences are zero mean Gaussian white noise sequences, 
the Kalman filter describes the optimal recursive solution to 
the sequential state estimation problem. (Soderstrom, 2002). 
 
B. Unconstrained State Estimation using Ensemble Kalman 
Filter  
In this section we describe the most general form of the 
EnKF as available in the literature (Gillijns et al. (2006). The 
filter is initialized by drawing N particles ( j){ (0 | 0)}x from a 
suitable distribution. At each time step, N samples 

( j) ( j){ (k 1), (k) : j 0,1,..N}− =w v  for { (k)w } and { (k) v } 
are drawn randomly using the distributions of state and 
measurement noises. These sample points together with 
particles ( j)ˆ{ (k 1 | k 1) : j 0,1,..N}− − =x  are then propagated 
through the system dynamics to compute a cloud of 
transformed sample points (particles) as follows: 

(i) (i)

kT
(i)

(k 1)T

ˆ ˆ(k | k 1) (k 1| k 1)

F ( ), (k 1), (k 1) (k 1) d (7)

i 1,2,....N
−

− = − − +

⎡ ⎤τ − − + − τ⎣ ⎦

=

∫

x x

x u d w

These particles are then used to estimate sample mean and 
covariance as follows:  

N
(i) (i)

i 1

1 ˆ(k | k 1) (k | k 1) (8)
N =

− = −∑x x

 
N

(i) (i) (i)

i 1

1 ˆ(k | k 1) H (k | k 1), (k) (9)
N =

⎡ ⎤− = −⎣ ⎦∑y x v

 
N T(i) (i)

,
i 1

1P (k) (k) (k) (10)
N 1 =

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦− ∑ε e ε e

  
N T(i) (i)

i 1

1P (k) (k) (k) (11)
N 1 =

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦− ∑e,e e e

 
Where, 

(i) (i) (i)ˆ(k) (k | k 1) (k | k 1) (12)= − − −ε x x
 

(i) (i) (i) (i)ˆ(k) H (k | k 1), (k) (k | k 1) (13)⎡ ⎤= − − −⎣ ⎦e x v y
 
The Kalman gain and cloud of updated samples (particles) 
are then computed as follows:   

1
L(k) P (k) P (k) (14)

−
⎡ ⎤= ⎣ ⎦ε,e e,e  

{ }(i) (i) (i)ˆ(k | k 1) (k) H (k | k 1), (k) (15)⎡ ⎤ϒ − = − −⎣ ⎦y x v  
(i) (i) (i)ˆ ˆ(k | k) (k | k 1) L (k) (k | k 1) (16)= − + ϒ −x x  

{ }(i) (i) (i)ˆ(k | k) (k) H (k | k), (k) (17)⎡ ⎤ϒ = − ⎣ ⎦y x v  

The updated state estimate is computed as the mean of the 
updated particles cloud, i.e.  

N
(i)

i 1

1ˆ ˆ(k | k) (k | k) (18)
N =

= ∑x x  

C. Comparison with Conventional approaches 
At this point, we would like to juxtapose the EnKF 
formulation described above with the EKF and UKF 
formulations. The following observations can be made by 
comparing these formulations: 

The main limitations of EKF formulations is that the 
propagation step is equivalent to approximating the expected 
value of a nonlinear function of a random variable by 
propagating the mean of the random variable through the 
nonlinear function, i.e. [ ] [ ]E g(x) g E(x)≈  (Daum, 2005). 
The predicted mean of the estimate is defined as follows: 

k

k 1

t

t

ˆ ˆ(k | k 1) (k 1| k 1)

E F ( ), (k 1), (k 1), d (19)
−

− = − −

⎡ ⎤
⎡ ⎤+ τ − + − τ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦
∫

x x

x u d w θ

 
In the EKF formulation, this is approximated by 

propagating only the previous mean as follows: 
k

k 1

t

t

ˆ ˆ(k | k 1) (k 1| k 1) F ( ), (k 1), , d (20)
−

⎡ ⎤− ≈ − − + τ − τ⎣ ⎦∫x x x u d θ  

 k 1 ˆ(t ) (k 1 | k 1)− = − −x x  
On the other hand, in the EnKF formulation the predicted 
mean is computed as follows:  

  
N

(i) (i)

i 1

1 ˆ(k | k 1) (k | k 1)
N =

− ≈ −∑x x          (21) 

In addition, state covariance propagation is carried out 
using Taylor series expansion of nonlinear state transition 
operator and neglecting terms higher than second order. This 
step requires analytical computation of Jacobians at each 
time step. The EnKF approach, on the other hand, provides a 
derivative free method for estimation of predicted 
covariances required in the update step. Moreover, this also 
implies that nonlinear function vectors F[.] and H[.] need not 
be smooth and are at least once differentiable. Thus, a major 
advantage of the EnKF is that it can be applied for state 
estimation in systems with discontinuous nonlinear 
transformations. The particles straddle the discontinuity and, 
hence, can approximate the effect of discontinuity while 
estimating the covariances.   
 

The main difference between UKF and EnKF is that the 
EnKF formulation can deal with state and measurement 
noise with arbitrary multimodal distribution. In UKF 
formulation, the method for drawing samples 

( j) ( j){ (k 1), (k) : j 0,1,..N}− =w v  and ( j)ˆ{ (k 1| k 1)− −x  
: j 0,1,..N}= has been derived based on the assumption that 
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underlying distributions are multivariate Gaussian (Julier 
and Uhlmann, 2004). While it is claimed that it is possible to 
adjust tuning parameters to account for non-Gaussian 
distributions, it is far from clear how to choose these 
parameters when distributions are non-Gaussian. Also, in the 
case of UKF, the method of selecting particles (called as 
sigma points) is deterministic and these sample points, form 
a symmetric set of 2N points that lie on the N ’th 
covariance contour (Julier and Uhlmann, 2004). 

Divided difference filter (DDF) formulations proposed by 
Norgaard et al. and Central difference and Gauss-Hermite 
filters proposed by Ito and Xiong (2000) are qualitatively 
similar to UKF. These formulations also inherit similar 
limitations. In the EnKF formulation, on the other hand, the 
particle cloud from the previous step is propagated to the 
next step. This step does not involve any assumptions on the 
nature of distribution of state estimation error. 

II. CONSTRAINED STATE ESTIMATION USING THE 
ENSEMBLE KALMAN FILTER 

In many practical problems of interest in process industry, it 
becomes necessary to account for bounds on states and 
parameters being estimated. If it is desired to apply the 
ensemble Kalman filter for state estimation when states are 
bounded, then it becomes necessary to modify the ensemble 
Kalman filter described in the section II. To deal with 
bounds in EnKF framework, we have to deal with the 
following issues: 
• Generating initial particles { (i) (0)x }that is consistent 

with bounds on states. 
• Reformulation of the update step to account for bounds 

on state variables.  
Based on the motivation from the URNDDR formulation, 
we propose a constrained version of the EnKF, which is 
referred to as CEnKF in the rest of the text. To begin with 
we describe the procedure for truncation of the distribution 
for a special case when, the distribution of (0)x  is 
approximated by multivariate Gaussian density function. We 
then proceed to present the CEnKF algorithm. 
 
A Generation of Truncated Distribution of Initial State  
 When states have bounds, it becomes necessary to 
generate particles that are consistent with these bounds. This 
can be achieved by using the concept of truncated 
distributions. A truncated distribution is a conditional 
distribution that is conditioned on the bounds on the random 
variable. For example, given probability density function  
f ( )ζ  and cumulative distribution function ( )Φ η  defined 
over ( , )−∞ ∞ , the truncated density function can be defined 
as follows  

 [ ] f ( )f | a b
(b) (a)

ζ< ≤ =
Φ − Φ

ζ ζ   (22) 

such that  

[ ]b b

a a

1f | a b f ( )d 1
(b) (a)

< ≤ = ζ ζ =
Φ − Φ∫ ∫ζ ζ  

In particular, the truncated uni-variate normal distribution 
can be obtained as follows :  

[ ]

( )2

2

2 2

1 exp
22

N , | a b
b a
2 2

⎛ ⎞ζ − ζ⎜ ⎟−
⎜ ⎟σσ π
⎝ ⎠ζ σ < ζ ≤ =

⎛ ⎞ ⎛ ⎞− ζ − ζΦ − Φ⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠ ⎝ ⎠

 (23) 

Now, consider a situation in which the distribution of (0)x  
is approximated by truncated multivariate Gaussian density 
function as [ ](0 | 0),P(0)N x defined over L H( , )x x . In this 
work, we propose the following approach for the 
construction of truncated normal distribution starting from 

[ ](0 | 0),P(0)N x  defined over L H( , )x x . Since P(0)  is a 
symmetric and positive definite matrix, Cholesky 
factorization on P(0) will lead to   

11

21 22

ii

n1 n 2 n1 nn

S 0 ... 0 0
S S .. 0 0

P(0)
. . S 0 0

S S ... S S

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
It should be noted that [ ](0 | 0),P(0)N x  defined 
over L H( , )x x can be rewritten as  
ˆ (0 | 0) (0 | 0) P(0) (0) (24)= +x x u  

such that 
L,1 1 H,1 1

11 11

1L,2 2 21 1 H,2 2 21 1

222 22

n 1 n 1
n

L,n n nr r H,n n nr r
r j 1 r j 1

nn

(0 | 0) (0 | 0)
S S

u (0)(0 | 0) S u (0) (0 | 0) S u (0)
u (0)S S

.. .
u (0)

(0 | 0) S u (0) (0 | 0) S u (0)

S

− −

= − = −

⎡ ⎤− −
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤− − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥− − − −
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑

x x x x

x x x x

x x x x

≺ ≺

nnS

(OR)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑

      
L,1 H,11

L,2 H,22

L,n H,nn

u (0) u (0)u (0)
u (0) u (0)u (0)

. ..
u (0) u (0)u (0)

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

≺ ≺             (25) 

The above transformation requires that we draw samples 
recursively. Thus, we first draw 1u (0)  

from L,1 1 H,1 1

11 11

(0 | 0) (0 | 0)
N 0,1| ,

S S

⎡ ⎤− −
⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x , then 2u (0)  from 

L,2 2 21 1 H,2 2 21 1

22 22

(0 | 0) S u (0) (0 | 0) S u (0)
N 0,1| ,

S S

⎡ ⎤− − − −
⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x  and so on.  

Now, we can define n-truncated uni-variate normal 
distributions ( j) (i) (i) (i)

L, j j H, jN 0,1| u (0) u (0) u (0)⎡ ⎤< ≤⎣ ⎦ , for j=1,2, …n. 

and the sample for i’th particle can now be drawn 
recursively from the above n-truncated uni-variate normal 
distribution as follows:    

 
(i) (i) (i)

(i) ( j)
j L, j j H, j

x̂ (0 | 0) x (0 | 0) P(0) (26)

N 0,1| u (0) u (0) u (0) (27)

= + ϒ

⎡ ⎤ϒ < ≤⎣ ⎦∼
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Thus, in the proposed Constrained EnKF formulation, the 
above mentioned initialization steps  is carried out. 

 
B Constrained EnKF formulation 

The calculation steps from equations (7) – (15) in the 
proposed Constrained EnKF are identical to the 
unconstrained formulation described in section II. The 
modifications necessary in the update step of the constrained 
formulation are as follows: 

  To begin with, the covariance of the predicted estimates 
is estimated as  

N T(i) (i)

i 1

1P(k | k 1) (k) (k)
N 1 =

⎡ ⎤ ⎡ ⎤− = ⎣ ⎦ ⎣ ⎦− ∑ ε ε           (28) 

The updated state estimates are then obtained by solving a 
constrained optimization problem formulated over one 
sampling interval for each particle as follows:  

(i) T 1 (i) T 1
(i)

(i) (i)

(i) (i) (i)

L U

min
(k) P(k | k 1) (k) (k) R (k) (29)

ˆ (k | k)

ˆ(k) (k) H (k | k), (k)

ˆ ˆ(k) (k | k 1) (k | k)
subject to:

ˆ (k | k)

− −⎡ ⎤ξ − ξ +⎣ ⎦

⎡ ⎤= − ⎣ ⎦
ξ = − −

≤ ≤

e e
x

e y x v

x x

x x x

 

The updated state estimate is computed using equation (18).  

III. SIMULATION STUDIES 

A. Gas-Phase Reactor (Rawlings and Bakshi, 2006) 
Consider the gas-phase irreversible reaction in a well 

mixed, constant volume, isothermal batch reactor  
12A B k 0.6→ =  

The governing equation for the isothermal batch reactor is as 
follows: 
 

2A
1 A

2B
1 A

dp
2k p (30)

dt
dp k p (31)
dt

= −

=

[ ] A

B

p
P 1 1

p
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

Where, [ ]A BP ;P=x  denotes the partial pressures of A and 
B. We have assumed that the random errors (Gaussian 
White noise) are present in the measurement (Total 
Pressure) as well as in the state variables. The covariance 
matrices of state noise and measurement noise are assumed 

as
2

2
2

(0.001) 0
Q and R (0.1)

0 (0.001)
⎡ ⎤

⎡ ⎤= =⎢ ⎥ ⎣ ⎦
⎣ ⎦

.             

The sampling time has been chosen as 0.1. The initial state 
error covariance matrix has been chosen 

as
36 0

P(0 | 0)
0 36

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. The initial state for the process and 

the state estimator are chosen as [ ](0 | 0) 3 1=x  and 

[ ]ˆ (0 | 0) 0.1 4.5=x respectively.  In all the simulation runs, 
the process is simulated using the nonlinear first principles 
model (30 and 31) and the true state variables are computed 
by solving the nonlinear differential equations using 
differential equation solver in Matlab 6.5. 
 
B. Performances of Constrained and Unconstrained EnKF 

The problem at hand is to generate non-negative estimates 
of partial pressures starting from given initial estimates. 
Thus, the lower bound and upper bound values imposed on 
the state variables are T

L [0 0]=x  and T
U [100 100]=x  

respectively. The sample points used to estimate the 
statistics of the estimated state of the model in the 
constrained EnKF are chosen to be equal to 25 in the case of 
Constrained Ensemble Kalman filter. It should be noted that 
initial samples for the state variables ( (i)ˆ (0 | 0)x ) are drawn 
from the truncated normal distribution. The performance of 
the constrained Ensemble Kalman filter(CEnKF) and EnKF 
(Unconstrained) in the presence of deliberately introduced 
large initial plant model mismatch are shown in figures 1 
and 2 respectively. From figure 1 it can be concluded that 
reasonably accurate estimates of the partial pressures of A 
and B are obtained using the constrained Ensemble Kalman 
filter, whereas, the estimated partial pressures A and B are 
found to be significantly biased in the case of 
EnKF(Unconstrained) for N= 25 and 100 respectively. 
 

IV. CONCLUSIONS 
In this paper, the performances of the proposed 

constrained EnKF and the Unconstrained EnKF based state 
estimation algorithm on the benchmark example (Gas-phase 
reactor) have been compared. The estimated value of the 
partial pressure of A has been found to be negative in the 
case of unconstrained EnKF. On the other hand, constraints 
never get violated when the proposed CEnKF method is 
employed for state estimation. The estimates stay far from 
the constraint boundaries and quickly converge to the true 
values.  
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             Figure 1: Evolution of true and estimated states of  
             Partial pressures in Gas-phase reactor (CEnKF) 
            (a) Partial Pressure of A (b) Partial Pressure of B 
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               Figure 2: Evolution of true and estimated states of  
               Partial pressures in Gas-phase reactor 
               (Unconstrained EnKF) a) Partial Pressure of A  
               (b) Partial Pressure of B 
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