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Abstract— In this paper we derive a controller for an elec-
tropneumatic clutch actuator system. On/off valves are being
used as control valves, and this impose restrictions on the
control design. We show that the system with the derived
controller are asymptotically stable in the whole region of
operation of the system, and we discuss robustness of the design.
The presented simulations verify the results of the paper.

I. INTRODUCTION

During the last years, the interest for automated manual
transmission (AMT) systems has increased due to increases
in the demand of driving comfort. Automated clutch ac-
tuation makes it easier for the driver, particularly in stop
and go- traffic, and have especially seen a recent growth in
the European automotive industry. An AMT system consist
of a manual transmission through the clutch disc, and an
automated actuated clutch during gear shifts. Some of the
AMT’s largest advantages are low cost, high efficiency,
reduced clutch wear and improved fuel consumption.

The automatic control of the clutch engagement plays a
crucial role in AMT vehicles, and in this paper we deal
with the problem of controlling an electropneumatic clutch
actuator for heavy-duty trucks using on/off valves. Hydraulic
actuator systems are more common and have been the main
focus in literature e.g [1]-[4], but as trucks already have
pressurized air present it is desired to use this. Pneumatic
systems are in general more difficult to model and control
due to the compressible of air. The clutch actuators for
heavy-duty trucks also differ from the ones for ordinary cars
as a much higher level of torque has to be transmitted through
the clutch plates. Thus, the dimension of the mechanical part
of a truck clutch system has to be bigger, something which
also influences the control task.

On/off valves are chosen as control valves over propor-
tional valves. This because of cost, space and robustness
advantages, but they also have a dynamic response that
is harder to model accurately, especially for positions in
between fully open and fully closed. On/off valves are often
controlled by pulse width modulation as in [5]-[8], but to
avoid the difficult modeling task, we choose to only allow
the valves to be either fully open or fully closed. This is
the same approach as we took in [9], and then we only
need to know the size of the input voltage which guarantees
fully opening/closing of the valves. While [9] investigated a
modification of a backstepping design for switched control,
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here we consider a Lyapunov-design that yields a larger
region of attraction.

The paper is organized as follows. In Section II we present
the clutch system and its model. Section III gives the design
of the controller and its stability proof. Simulation results are
presented and robustness properties are discussed in Section
IV, and conclusions are presented in Section V.

II. SYSTEM DESCRIPTION

Figure 1 shows a sketch of the system. The position of
the piston in the clutch actuator valve decides the position
of the clutch plates. These plates can either be fully engaged,
fully disengaged or slipping. The on/off valves get electrical
control signals from the electronic control unit (ECU), and
control the flow of air to the clutch actuator valve based on
these. A position sensor feeds back the position to the ECU,
while the other states of the system have to be obtained from
estimations.

Fig. 1. Sketch of the clutch system

We use a rather simpler model of clutch actuator valve for
the development of the controller

ẋ1e = x2

ẋ2 = f(x1e, x3)− D

M
x2 (1)

ẋ3e = RT0w

where f(x1e, x3) = 1
M (−Kl(1−e−Llx1)+Mlx1+ Ax3

V0+Ax1
−

AP0) and includes both the clutch load characteristic and
the pressure forces. Parameter values and description can
be found in Appendix A. The states, xie, are error in
position, velocity and accumulated air, where accumulated
air is proportional with the amount of air in the actuator
valve. The errors can be written as xie = xi− x∗i , where x∗i
are the reference points,

x∗ = [x∗1, 0, x
∗
3]T (2)
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and the reference point x∗1 is given and x∗3 can be found from

0 =
1
M

(−Kl(1− e−Llx
∗
1 ) +Mlx

∗
1 (3)

+A
x∗3

V0 +Ax∗1
−AP0).

or

x∗3 =
V0 +Ax∗1

A
(4)

(Kl(1− e−Llx
∗
1 )−Mlx

∗
1 +AP0).

The region of operation for the clutch actu-
ator valve considered in this paper is O =
{x1 ∈ [0, 0.0025], x2 ∈ R, x3 ∈ [80, 504.68]}. The
only available inputs due to our restrictions are
w ∈ {−Umax, 0, Umax} where Umax = ρ0CPS is a
simplified expression of the maximum flow capacity
through the valves.

III. CONTROLLER DESIGN

The strict input restrictions complicate the control design.
We choose a Lyapunov function based on knowledge of the
system and use this to design a controller that will provide
asymptotical stability results for the system.

The proposed Lyapunov function

V = α

∫ x1e

0

−f(y, x3)dy +
β

2
x2

2 +
λ

2
x2

3e (5)

is chosen based on the function V = α
∫ x1e

0
−f(y)dy+ β

2x
2
2

which can be used to show asymptotic stability of the open
loop system, w = 0, with x3 = x∗3. (See Appendix B for
proof of this). The proposed Lyapunov function is positive
definite if the ratio α

λ ≤ 3.839, see Appendix C. The
Lyapunov function time derivative is

V̇ = −αf(x1e, x3)x2 −
α

M
ln
(
Ax1 + V0

Ax∗1 + V0

)
RT0w

+βx2(f(x1e, x3)− D

M
x2) + λx3eRT0w (6)

= −βD
M

x2
2 + (λx3e −

α

M
ln
(
Ax1 + V0

Ax∗1 + V0

)
)RT0w

= −βD
M

x2
2 + s(x1e, x3e)RT0w

where

β = α (7)

s(x1e, x3e) = λx3e −
α

M
ln
(
Ax1 + V0

Ax∗1 + V0

)
(8)

If we choose the following control law

w =
{
−Umaxsgn(s(x1e, x3e)) if s(x1e, x3e) 6= 0

0 if s(x1e, x3e) = 0
(9)

we get a negative semidefinite Lyapunov function time
derivative,

V̇ = −βD
M

x2
2 − |λx3e −

α

M
ln(

Ax1 + V0

Ax∗1 + V0
)|RT0Umax ≤ 0

(10)

and the variables α and λ can be tuned to weight the parts
of s(x1e, x3e).

Proposition 1: The equilibrium point x∗ of the system
(1) with the switched controller given in (9) is asymptotical
stable in the region of operation if α

λ < 3.839.
Proof: First we prove existence, uniqueness and conti-

nuity of the solution using Filippov solution theories in the
same way as in [9] based on [10]. The discontinuity surface
is described by

S := {x : s(x1e, x3e) = 0} (11)

which divides the solution domain Ω into two regions

Ω− := {x : s(x1e, x3e) < 0} (12)
Ω+ := {x : s(x1e, x3e) > 0} . (13)

The right hand side of (1) is defined everywhere in Ω and
are measurable and bounded. This means that the system
(1) satisfy condition B of Filippov’s solution theory [11],
and according to Theorems 4 and 5 in the same reference,
we when have local existence and continuity of a solution.
The right hand side of (1) is also continuous before and
after the discontinuity surface, S, and this surface is smooth
and independent of time. Hence, the conditions A, B and
C of Filippov’s solution [12] are satisfied. By following the
procedure introduces in [11] the vector functions f− and f+

can be defined as the limiting values of the right-hand sides
of the state space equations in Ω− and Ω+

f− =

 x2

f(x1e, x3)− D
M x2

RT0Umax

 (14)

f+ =

 x2

f(x1e, x3)− D
M x2

−RT0Umax

 . (15)

Vector h, which is along the normal of the discontinuity
surface,

Ns = (
1√
2
, 0,

1√
2

)T (16)

is defined as

h = f+ − f− =

 0
0

−2RT0Umax

 (17)

for all points on the discontinuity surface. The scalar, hN ,
defined as the projection of h on Ns is

hN = Nsh = −
√

2RT0Umax < 0 (18)

and will always be negative. According to Lemma 7 in [12],
the uniqueness of the Filippov solution is then guaranteed.

Next we consider the stability properties of the solution.
From (10) we have that V̇ ≤ 0, and we use LaSalle’s
invariance principle to prove asymptotical stability. From
V̇ = 0 we get

x2 = 0 & |s(x1e, x3e)| = 0 (19)
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From this it follows that x2 = 0 → ẋ1e = 0 → x1e = c1,
x2 = 0 → ẋ2 = 0 → f(x1e, x3) = 0 and |s(x1e, x3e)| =
0 & x1e = c1 → x3e = c2. This gives the solution
(x1e, x2, x3e) = (c1, 0, c2). It then remains to show that
c1 = c2 = 0 is the only possible solution. The equation

|s(x1e, x3e)| = 0 (20)

have the two possible solutions

x3e = 0 &
α

M
ln
(
Ax1 + V0

Ax∗1 + V0

)
= 0→ x1e = 0 (21)

and
x3e =

α

λM
ln
(
Ax1 + V0

Ax∗1 + V0

)
(22)

The equation

f(x1e, x3) = f(x1e) +
Ax3e

M(V0 +Ax1)
= 0 (23)

where f(x1e) = 1
M (−Kl(1− e−Llx1) +Mlx1 + Ax∗3

V0+Ax1
−

AP0) and f(0) = 0, also have two possible solutions

f(x1e) = 0 &
Ax3e

M(Ax1 + V0)
= 0 (24)

x1e = 0 & x3e = 0

and

f(x1e) = − Ax3e

M(V0 +Ax1)
(25)

x3e = −M(V0 +Ax1)
A

f(x1e)

Defining

g(x) = Kl(1− e−Lx)−Mlx+AP0 (26)

gives

f(x1e) =
1
M

(
−g(x1) +

Ax1 + V0

Ax∗1 + V0
g(x∗1)

)
(27)

By combining (22) and (25)

−Ax1 + V0

A

(
Ax∗1 + V0

Ax1 + V0
g(x∗1)− g(x1)

)
(28)

=
α

λM
ln
(
Ax1 + V0

Ax∗1 + V0

)
and rearranging we get

(Ax1 + V0)g(x1)− (Ax∗1 + V0)g(x∗1) (29)

=
αA

λM
ln
(
Ax1 + V0

Ax∗1 + V0

)
From the proof of positive definiteness of the Lyapunov
function (Appendix C) we have that

|(Ax1 + V0)g(x1)− (Ax∗1 + V0)g(x∗1)| (30)

>
2Aα
Mλ

∣∣∣∣ln(Ax1 + V0

Ax∗1 + V0

)∣∣∣∣
for α

λ ≤ 3.839. From this it follows that the only solution of
(29) is x1e = 0. This show that x1e = x2 = x3e = 0 is the

Fig. 2. The position reference

only solution and by the LaSalle’s invariance principle we
can show asymptotically stability; The only solution which
can stay identically in the set S =

{
x ∈ O|V̇ (x) = 0

}
is

the reference point (x1e, x2, x3e) = 0.

IV. SIMULATION

A. Practical considerations

The on/off valves cannot open/close instantaneously. The
sampling time, and hence the minimum switching period, for
the simulations is therefore set to 5 ms. This will guarantee
that the valves have opened/closed before a new input signal
is given.

In order to avoid unnecessary chattering, w = 0 has been
chosen whenever V is sufficiently close to zero, which is the
same as saying that x is close to x∗. All the simulations are
done with the parameters α = 3.893 and λ = 1.

The position reference used in the simulations is a typical
clutch sequence, and is shown in Figure 2. It is desired that
the controller makes the system reach the reference point
within 0.1 s and with a steady state error of less than 0.2
mm in the area where the clutch engages/disengages. Outside
this area, the requirements can be somewhat relaxed.

B. Results and robustness

Figure 3 shows the result of the simulation of the system
with the derived controller. The requirements in precision
and response are fulfilled, and this result verifies the stability
results. The clutch load characteristic change during the life-
time of the clutch, mostly due to wear. It is therefore natural
to check how our design cope with changes in the load
characteristics. A variation in the clutch load characteristic
influence both the model of the system and the calculation
of x∗3. In the rest of the simulations we consider a different
clutch load characteristic which is only encountered in the
model, for robustness analysis. In Figure 4 both clutch loads
are shown. As the ratio between α and λ is restricted by
3.893, it is the error in x3e which is the the main factor
in the calculation of the input. The requirements for the
system is defined for position, and velocity and accumulated
air are not important in this perspective. The results from
simulation with the derived controller and the smaller load
characteristics, see Figure 5, show as expected that the error
in position is much greater than the specifications. To avoid
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Fig. 3. Switched control

Fig. 4. Clutch load

this problem we propose a simple solution. Instead of the
reference point x∗3 we use the reference x∗3 − c where c is a
correction term that we update by

c+ = c+Ksgn(x1e) (31)

whenever x3e
∼= 0 and |x1e| > 0.2 mm. The limit for

position error is chosen as the upper permitted deviation in
the requirements and K is the size of the correction step.
Figure 6 show result from simulation where this correction
term have been implemented. In this simulation, a sudden
change in the clutch load is assumed before t = 0. This is
not realistic, but show how the correction term works. We

Fig. 5. Switched control with error in load characteristics

Fig. 6. Switched control with error in load characteristics and update of
x∗3
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Fig. 7. Switched control which error in load characteristics and precalcu-
lated correction in x∗3

see that the simple correction approach works satisfactory.
We get a rather large deviation for a period after the first
time the position reference change, at t = 0.5, but after this
the control method seems to work satisfactory. Whenever the
correction term are updated we would expect such periods
where the position error is much larger than the requirements.
But as the load characteristics are not likely to change rapid,
the correction do not have to be used to often. One can make
sure that the correction term is updated when the position
reference is outside the area with the strictest restrictions.

In Figure 7 we see results from a more realistic simulation,
where the correction term found from the previous simulation
is used.

V. CONCLUDING REMARKS

A stabilizing controller has been derived and verified
by simulation results. The Lyapunov function used in the
development is based on a Lyapunov function with which
stability of the reduced second order system can be proven.
To account for changes in the clutch load characteristics
a correction term was implemented. This solves partly the
problem that the input depend mostly on the error in accumu-
lated air. In further work we will look at other and improved
methods for adaption of x∗3, and consider the option of
estimation of the clutch load characteristic. It will also be
considered to modify the Lyapunov function and to combine
the control method in this paper and the one in [9] such that
the position error influence more in the choice of input.
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APPENDIX

A. Parameters

Variable Value Unit Description

A 12.3e−3 m2 Actuator area
P0 1e5 Pa Ambient pressure
T0 293 K Temperature
R 288 J

kgK Gas constant of air
M 10 kg Mass of piston
V0 0.8e−3 m3 Volume at y=0
D 2000 Ns

m Viscous damping
Kl 5000/4000 N

m Load char. term
Ll 500/250 - Load char. term
Ml 25000/20000 N

m Load char. term
C 26.7e−9 m4s

kg Capacity
ρ0 1.185 kg

m3 Density
PS 9.5e5 Pa Supply pressure
α 3.839 − Control parameter
β 1 − Control parameter
λ 1 − Control parameter

1517



B. Open loop stability

Consider the input w = 0 and assume x3 = x∗3. We when
can rewrite the system as a simple second order system

ẋ1e = x2 (32)

ẋ2 = f(x1e)−
D

M
x2

which also can be expressed as

ẍ1e +
D

M
ẋ1e −

1
M
f(x1e) = 0 (33)

If
D

M
x2

2e > 0 x2e 6= 0 (34)

−f(x1e)x1e > 0 x1e 6= 0

in the region O
′

= {x1 ∈ [0, 0.025], x2 ∈ R}, we can choose
Lyapunov function as the sum of potential and kinetic energy

V =
1
2
x2

2e +
∫ x1e

0

−f(y)dy (35)

and by differentiating it we obtain

V̇ = x2eẋ2e − f(x1e)ẋ1e

= −D
M
x2

2e + f(x1e)x2e − f(x1e)x2e (36)

= −D
M
x2

2e ≤ 0

Consider S =
{
x ∈ O′ |V̇ (x) = 0

}
, and the only solu-

tion that can stay identically in S is the reference point
(x1e, x2e) = 0 as

x2e(t) ≡ 0 =⇒ ẋ2e ≡ 0 =⇒ f(x1e) ≡ 0 =⇒ x1e ≡ 0.
(37)

As the second condition of (34) is satisfied, as shown below,
when by LaSalle-Krasovski’s theorem, the origin is proven
asymptotically stable.

1) Proof of the second condition of (34): We have that

f(x1e) =
1
M

(−Kl(1− e−Llx1) +Mlx1

+
Ax∗3

V0 +Ax1
−AP0)

=
1
M

(−Kl(1− e−Lx1) +Mlx1 (38)

+
A
V0+Ax

∗
1

A (Kl(1− e−Llx
∗
1 )−Mlx

∗
1 +AP0)

V0 +Ax1
−AP0)

=
1
M

(
−g(x1) +

V0 +Ax∗1
V0 +Ax1

g(x∗1)
)

=
1

M(V0 +Ax1)
(P (x∗1)− P (x1))

where P (x) = (V0 +Ax)g(x) is a positive function strictly
increasing in x for x ∈ [0, 0.025] and

g(x) = Kl(1− e−Lx))−Mlx+AP0 > 0 (39)

For ∀ x1e > 0 we have

x1 > x∗1 ⇔ P (x1) > P (x∗1)⇔ f(x1e) < 0 (40)

and
−f(x1e)x1e > 0 (41)

For ∀ x1e < 0 we have

x1 < x∗1 ⇔ P (x1) < P (x∗1)⇔ f(x1e) > 0 (42)

and

−f(x1e)x1e > 0 (43)

When we have −f(x1e)x1e > 0 ∀ x1e 6= 0 and the second
condition of (34) is satisfied.

C. Positive definiteness of the Lyapunov function

We rewrite the Lyapunov function (5) as

V = α

∫ x1e

0

−f(y, x3)dy +
β

2
x2

2 +
λ

2
x2

3e

= α

∫ x1e

0

−f(y)dy +
β

2
x2

2 +
λ

2
x2

3e (44)

− α

M

∫ x1e

0

Ax3e

V0 +A(x∗1 + y)
dy

where we have that−
∫ x1e

0
f(y)dy is positive from the cal-

culations above. When if
α

M

∫ x1e

0

− Ax3e

V0 +A(x∗1 + y)
dy +

λ

2
x2

3e (45)

= x3e(−
α

M
ln(

V0 +Ax1

V0 +Ax∗1
) +

λ

2
x3e) > 0

we have V > 0, as the other parts of (44) are positive.
Equation (45) is satisfied if

|λ
2
x3e| > |

α

M
ln(

V0 +Ax1

V0 +Ax∗1
)| (46)

This is true except for small x3e. For small x3e, |x3e| <
| 2α
λM ln(V0+Ax1

V0+Ax∗1
)|, we need to show that

−f(x1e, x3)x1e > 0 (47)

is fulfilled. Remember that f(x1e, x3) can be written as

f(x1e, x3) = f(x1e) +
Ax3e

M(V0 +Ax1)
(48)

=
P (x∗1)− P (x1)
M(Ax1 + V0)

+
Ax3e

M(Ax1 + V0)

As −f(x1e)x1e > 0 the condition (47) is satisfied if f(x1e)
dominates the term Ax3e

M(Ax1+V0)
i.e:

|P (x∗1)− P (x1)| > |Ax3e| (49)

This is the case if

|P (x∗1)− P (x1)| > 2αA
λM
| ln
(
Ax1 + V0

Ax∗1 + V0

)
| (50)

and this inequality is satisfied if α
λ ≤ 3.839. The proposed

Lyapunov function (5) is positive definite when α
λ ≤ 3.839.
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