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Abstract— Update intervals for data renewal in a 3-server
distributed database are optimized to provide maximum system
availability. A Semi-Markov model of the database unit is
defined. Given probability distributions, analytical expressions
are derived for the expected availability of the database.
Under the case of unknown failure rates and renewal intervals,
estimates for the gradients of the sample performance functions
are derived using infinitesimal perturbation analysis. Optimal
values of the update interval are found using a stochastic
approximation algorithm.

I. INTRODUCTION

THE 3-server database in Fig. 1 presents a distributed

database designed to counteract the consequences of

data failures such as data loss, corruption, and aging. In

order to prevent failure and restore failed servers, this paper

introduces a fixed-interval data renewal process that restores

data integrity and removes server failures. Availability is

defined as either the percentage of time all servers are avail-

able or the average number of available servers. Maximum

availability of the database is obtained through optimization

of the update interval between data renewals. In order to opti-

mize this interval, gradients of the availability functions are

derived with perturbations analysis. Using these gradients,

a stochastic approximation algorithm optimizes the update

interval. Comparisons are drawn to state-based overhaul

and restoration techniques previously investigated by Wu,

Metzler, and Linderman [1] and optimized by Ruschmann,

Wu [2].

The introduction of a non-Poisson fixed update interval

relaxes the reduced-state database model to a Semi-Markov

process. This is contrary to the Markov chain models derived

and analyzed in previous work [1], [2]. Sample performance

functions representing availability of the system are defined.

Although the lack of standard results for Semi-Markov

processes limits typical approaches to simulations, analytical

expressions for the expected sample performance functions

are derived under the assumption of known exponentially

distributed failure and data renewal rates.

In order to optimize availability under unknown distribu-

tions, perturbation analysis is applied to sample paths of the

database model. More specifically, infinitesimal perturbation

analysis (IPA) techniques derive estimates of the sample

performance functions’ gradients. Analysis of infinitesimally
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Fig. 1. A queuing network representation of a partitioned database unit
with three servers

small perturbations in the fixed update interval provides

unbiased estimators as originally introduced in Zazanis’s

doctoral thesis [3] and formally presented in [4], [5]. Cas-

sandras provides a chapter on perturbation analysis in [6].

Unbiasedness of IPA estimators relies on several conditions

and assumptions on the underlying Semi-Markov process.

The conditions and assumptions are shown to be satisfied

except the non-interruption condition requiring that all events

executed are not cancelled prior to expiration of their event

lives. Elimination of event cancellation in the model is

conducted following the methods provided by Savage in [7].

The IPA estimates of the availability gradients provide

insight into the dynamics of the system and introduce the

ability to optimize the system with respect to the update in-

terval. Traditional gradient search methods, such as Newton’s

method, require exact knowledge of the functions gradient.

Inaccurate gradient estimates require stochastic approxima-

tion algorithms such as the one presented by Robbins and

Monro [8]. A multi-run optimization determines the optimal

value before implementation of the database. Lastly, a single

run optimization is also considered in which the parameter’s

optimal value is located while the simulated database runs.

The paper is organized as follows. Section II describes the

reduced-state, Semi-Markov model of the database system,

based on the presentation of [1]. This section also defines

sample functions to measure availability of the system and

their expected values. Section III derives infinitesimal per-

turbation analysis (IPA) estimators for the gradients of the

sample performance functions. Section IV describes applica-

tion of the gradient estimates to a stochastic approximation

algorithm and discusses optimal results. Section V offers a

comparison to previous work. The paper is concluded in

section VI and future goals are noted.
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II. REDUCED-STATE MODEL OF THE

DISTRIBUTED DATABASE

Notation of the reduced-state database model without

customer considerations is specified along with event-life

distributions. A Semi-Markov process is defined with failure

event cancellation. In order to satisfy the requirements of

IPA, event cancellations are then eliminated within the Semi-

Markov process. Sample performance functions are defined

to measure performance of the database model.

A. Model Notation and Specification

The database system in Fig. 1 contains three servers in

parallel to answer three classes A, B, C of queries for

which relevant information can be found in the partitioned

data sets A, B, C of the database, respectively. Each of the

three servers, SA, SB , and SC , contains data for serving

the respective customer set. The queues preceding servers

are named QA, QB , and QC , respectively. However for the

reduced state model, database queries and queue sizes are

ignored. Only failure events, the fixed data update interval,

and data renewal procedures are considered.

The model is built in this study with the premise that

event life distributions have been established for the process

of data failure within a server (exp(ν)) and the process

of system renewal (exp(γ)) during which the active and

inactive servers’ data is renewed. All such processes are

independent. The model also contains a fixed update interval,

T , determining the interval between data renewal in the

servers. Markov chains require the process to be independent

of past state information and independent of the elapsed time

in the current state [6]. A non-exponentially distributed fixed

update interval introduces a dependency on the elapsed time

in the current state. Therefore, the process is relaxed to a

Semi-Markov process where only state independence holds.

B. Definition of a Semi-Markov Process

State space X . A state name is coded into five states

with a two-digit number indicative of the total number of

unavailable servers and ongoing data renewal, Nr. The

first and second digits represents the number of unavailable

servers, N ∈ {0, 1, 2, 3}, and a binary indication of ongoing

data renewal, r, respectively. Customers are not considered in

the reduced-state model of the database system. In addition,

symmetry of the model in Fig. 1 indicates state-based knowl-

edge of the specific server with data failure is irrelevant. For

example, state x = 20 indicates failure in two of the database

servers with renewal inactive. x = 31 represents the only

state with ongoing data renewal as all servers are assumed

to be deactivated during this period. The entire state space

is contained in X = {00,10,20,30,31} as seen in Fig. 2.

Initial state. It is assumed that the database system starts

operation from state x = 00, i.e. the database begins opera-

tion with all data recently renewed. A regenerative process

[9] results from the model in 1. The process enters state

x = 31 upon expiration of the update interval. Proceeding

completion of data renewal, the process returns to the initial

state x = 00 resulting in regeneration of the process.

Fig. 2. Event transition diagram summarizing state propagation in a reduced
state model of the distributed database system.

Fig. 3. A single sample path of the reduced-state model. Dotted red lines
indicate periods in the renewal state, x = 31. Dashed blue lines represent
periods that the database system is fully available.

Set of state transition events. Events that trigger the tran-

sitions and the corresponding transition distributions. Data

failure occurs within a server at an exponential rate ν. This

event triggers a state transition to N = N + 1. Renewal of

data within the database is triggered by an update event after

a fixed interval T . Expiration of the update event migrates

the process to the renewal state, x = 31, and subsequently

cancels all data failure events. Renewal time of data within

the servers is determined by an exponential distribution of

rate γ. Upon expiration, the process returns to the initial

state, x = 00, and executing another update interval, T .

At this point a Semi-Markov model for the database

system of Fig. 1 has been established. An event-transition

diagram summarizes the model in Fig. 2. The aggregation

of a single sample path is carried out in Fig. 3.

C. Elimination of Event Cancellations

It was previously noted that unbiased IPA estimators

require a non-interruption condition to be satisfied [6]. After

a failure event is executed, it must terminate by expiration

of its event life. This is violated upon expiration of an

update event and subsequent cancellation of the remaining

failure events before their termination. However, computation

theory dictates that event cancellation is never necessary [7].

Using methods of event cancellation elimination similar to

those proposed in [7], a model without event cancellation

is derived. Sets of three failure events are numbered and

tracked until all failure events have expired. If the failure

events expire after the corresponding update period, they are

simply ignored.

The modified state space and transition events follows.

The new state-space is now defined by an string of digits

in the form NrIf1f2...fn where N and r were previously

defined. I is the index of the currently active (not ignored)
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set of failure events. Each fi stores the remaining number of

events in set i. Upon expiration of a failure event in set i,
νi, fi is decremented along with N if i = I is the active set.

Expiration of an update event now deactivates the current

set of failure events by setting I = 0 eliminating event

cancellation. When a renewal is completed, event γ, new

failure events νi are activated where i is the smallest value

such that fi = 0.

D. Sample Performance Functions

In order to quantify the availability of the database, sample

performance functions must be defined. As customers are not

considered in the model, sample performance functions must

rely solely on availability of the servers. Two such measures

are expected uptime of the full system and the expected

number of available servers. Simplicity of the model and

event-life distributions allows simple analytical expressions

to be derived for each measure.

1) Full System Uptime: Full system uptime is defined as

the expected percentage of time all servers are available.

These periods are indicated by dashed blue lines in Fig.

3 where the state x = Nr = 0. The system is consid-

ered unavailable as a result of data failure within a server

or deactivation of the servers during the renewal process.

Conveniently the system is a regenerative process, and there

is only one period of uptime during each regeneration of the

system. Therefore, the average uptime given a sample path,

ω, with update interval T is defined as

Lup(T, ω) = Uave =

∑K
i=1

Ui

tK
=

1

K

K
∑

i=1

Ui

Ti

(1)

where K is the number of regenerations, tK is the total

length in time of sample path ω, Ui is the length of uptime

in each regeneration i as labeled in Fig. 3, and Ti is the

length of time of each regeneration period i. The law of

large numbers [6] dictates that this estimate of the full system

uptime approaches the actual value as K approaches infinite.

An analytic expression results from the expected value of

(1) as

E[Uave] =
1

K

K
∑

i=1

E[Ui]

E[Ti]
. (2)

The value E[Ti] is formulated as the expected time of each

regeneration period. Fig. 3 shows the expected time of each

regeneration consists of the update interval T and the expect

length of a renewal event. The renewal event-life distribution

is defined as exponential with expected delay 1

γ
. E[Ui] is the

average amount of time to either a server failure or system

update. The cumulative probability distribution of the uptime

interval is represented by an exponential distribution with

rate 3ν (the rate of failure in all servers superpositioned)

truncated at T . It has a mean of 1

3ν
(1 − e−3νT ). Hence,

E[Uave] =
1

3ν
(1 − e−3νT )

T + 1

γ

. (3)

For comparison, Fig. 4 plots the analytical value in (3)

along with the value estimated by averaging the uptime
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Fig. 4. The calculated analytic value of full system uptime and corre-
sponding estimate versus update interval over K = 100 update periods.

intervals over K = 100 database update intervals. The

estimates are consistent with the derived analytic value.

2) Average number of available servers: The average

number of available servers is determined by sum of the

fraction of time the system is in a state with a given number

of available servers. The average number of available servers

given sample path ω is then

Lavail(T, ω) = Save =

∑M
i=1

AiSi

tK
=

1

M

M
∑

i=1

AiSi

Ti

(4)

where M is represents the final, M th, state of the system

with each state lasting a duration of Ai with Si servers

available. Ti is again length of each individual period, and

tK is defined as before.

Analysis of the expected value results from considerations

similar to the previous section. The expected availability of

each individual server is given an availability distribution as

a cumulative exponential distribution with rate ν truncated

at update interval T . Multiplying the mean availability of an

individual server by three servers results in

E[Save] = 3
1

ν
(1 − e−νT )

T + 1

γ

. (5)

III. DERIVATION OF IPA ESTIMATORS

Infinitesimal perturbation analysis (IPA) derives estima-

tors for the gradient of a sample function by considering

infinitesimally small perturbation in the update interval, T ,

on a single sample path of the process, ω. The strict re-

quirements on the target process for this derivation technique

to be unbiased given in [6] are shown to be satisfied by

the previously defined Semi-Markov process. Gradients of

the sample performance functions are then taken and their

estimates are derived by IPA techniques. Performance of the

resulting estimators is investigated.
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A. Conditions and Assumptions for Unbiased IPA

The unbiasedness and consistency of an IPA estimator

is proven if the underlying process satisfies a set of ba-

sic conditions and assumptions [6]. These conditions is to

guarantee smoothness of the sample functions and their

derivatives over small perturbations in the update interval.

Most simply, the non-interruption condition must be satisfied

along with smoothness of the sample function and event-life

distributions with respect to the parameter in question. In

addition, a more cumbersome commuting condition [6] is

placed on the underlying process.

1) Non-interruption condition: The non-interruption con-

dition requires that events are not cancelled or interrupted

after their execution [6]. The process originally defined

required event cancellation, but this requirement was relaxed

in the preceding section.

2) Smoothness of the sample functions: The sample per-

formance functions are required to be smooth subject to the

parameter of interest, θ = T . Clearly, discontinuities in the

performance function itself result in non-existent gradients

and biased estimates. An example of a non-smooth sample

function is the number of failed servers within a given period.

Discontinuities exist because the function jumps between

integer values. This condition is satisfied by the sample

performance functions provided in section I. as they represent

periods of time that change continuously with changes in θ.

3) Smoothness of event-life distributions: In order to

prove the IPA estimates of the gradients are unbiased,

two assumptions are made on the continuity of event-life

distributions. All distributions must be not only continuous

in the parameter of interest, θ = T , but also almost surely

continuously differentiable in θ [6]. Because the distribution

of our update interval is discrete with P (T ) = 1, these

assumptions are not satisfied. However, a specific exception

exists for the case of discrete distributions where only values,

and not probabilities, vary with parameter θ [6].

4) The commuting condition: The commuting condition

is often the most difficult to satisfy. In words, it requires

that any sequence of events (α, β) bring state x to y must

also bring state x to y when their order is reversed to (α, β)
[6]. In this case, the commuting conditions holds as verified

by manually observing the state-transitions switches in Fig.

2.

B. Derivatives of the sample performance functions

The IPA estimators are derived directly from the deriva-

tives of the sample performance functions for full system

uptime and the average number of available servers,

dLup(T, ω)

dT
=

tK
∑K

i=1

dUi

dT
− dtK

dT

∑K
i=1

Ui

t2K
, (6)

dLavail(T, ω)

dT
=

tK
∑M

i=1

dYi

dT
Ai −

dtK

dT

∑M
i=1

SiAi

t2K
, (7)

respectively. tK , Ui, Ai, and Si are directly calculated from

sample path ω as previously defined. dtK

dθ
, dUi

dθ
, and dYi

dθ
are

calculated with IPA estimations.

C. Derivation of IPA estimators

To simplify (6), the values of dtK

dT
and dUi

dT
are formulated

using IPA. The fixed update interval, T , can be described

as a location parameter, dT
dT

= 1. A change in the update

interval results in a corresponding change in the discrete

update interval distribution. As the set of K update intervals

over sample path ω is perturbed, the termination time of the

sample path is perturbed by dtK

dT
= K. By substituting these

values into (6), the IPA estimator is found to be

[

dLup(T, ω)

dT

]

IPA
=

tK
∑K

i=1

dUi

dT
−

∑K
i=1

Ui

t2K
. (8)

Each interval of uptime, Ui, is defined by Ui = ti,f − ti, 0
where ti,f and ti,0 are the final time of the period and

initial time of the period, respectively. The perturbation in

the initial time, dti,0
dT

, is simply the number of preceding

update intervals, dti,0
dT

= i. If ti,f is determined by server

failure, then dti,f
dT

= 0. Otherwise ti,f is determined by

the termination of an extra update interval, and dti,f
dT

= i.
Therefore,

dUi

dT
=

{

0 if terminated by a failure event,

1 if terminated by the update event.
(9)

By substituting (9) into (8) and defining I as the number

of uptime intervals terminated by an update event, the IPA

estimator becomes
[

dLup(T, ω)

dT

]

IPA
=

I − KLup(T, ω)

tK
. (10)

The IPA estimate for the gradient of Lavail(T, ω) is

similarly derived. The period Yi is determined to remain

constant under perturbations in T unless terminated by an

update event. Therefore,

dYi

dθ
=

{

1 when terminated by an update event,

0 otherwise.
(11)

After substituting dtK

dT
= K and dYi

dθ
,

[

dLavail(T, ω)

dT

]

IPA
=

∑K
i=1

Ai − KLavail(T, ω)

tK
(12)

where the sum of Ai only includes intervals terminated by

the update interval.

D. Performance of IPA estimators

In order to verify the performance of the estimates (10)

and (12), simulations of the database are conducted. As a

stopping rule, the simulations are carried out over K =
100 update intervals. These results are plotted against the

analytical gradients in Fig. 5 and Fig. 6 for the full system

uptime and average number of available servers, respectively.

The estimates appear to be unbiased as previously de-

termined by satisfying the assumptions and conditions of

IPA. In fact, the standard deviation of the IPA estimate for

full system uptime appears smaller than the deviation of the

sample performance function in Fig. 4.
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Fig. 5. Comparison of the IPA estimate and analytical value for the gradient
of the full system uptime.
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Fig. 6. Comparison of the IPA estimate and analytical value for the gradient
of the average number of available servers.

IV. STOCHASTIC APPROXIMATION OF THE

OPTIMAL UPDATE INTERVAL

Gradient estimates are derived to analyze and optimize

the performance of the database under a data-update policy.

The uncertain gradient estimations require a stochastic ap-

proximation method as opposed to a standard optimization

algorithm. The optimal update interval is found over a

series of different failure rates. Additionally, a single-run

optimization scheme is formulated to optimize the database

live.

Optimization requires a stochastic approximation algo-

rithm with consideration of inaccurate gradient estimates.

The first and simplest of such iterative algorithms was intro-

duced by Robbins and Monroe [8]. The iterative Robbins-

Monroe algorithm takes the following form:

θn+1 = θn − an∇̃L(θn, ω) (13)

where an, n = 1, 2, ..., is an appropriately chosen set of

gains.

Robbins and Monroe originally proved the algorithm to

converge using an unbiased estimator with independent noise

between samples [8]. Convergence is not proven for this

particular process and sample performance functions because

noise is not independent. However, convergence has been

proven for the GI/G/1 queue and other IPA estimators [10],

[11]. Convergence under independent samples requires [8],

[12]

lim
n→∞

(an) = 0, (14)

∞
∑

n=1

|an| = ∞, and (15)

∞
∑

n=1

a2
n < ∞. (16)

In order adherence to these convergence requirements,

an =
C

n
(17)

where the rate of convergence is dependent on selection of

C. C = 10000 is chosen by educated guesses and checks of

the convergence rate.

A. Multi-run Optimization

A multi-run optimization locates the optimal value of θ us-

ing multiple simulations prior to implementing the database.

The optimal update interval in Fig. 7 compares the optimal

solutions found with (13) to the known optimum calculated

analytically. In this case, K = 100 for each individual

gradient estimation.

B. Single-run Optimization

A single-run optimization algorithm is also desired to

update the database as it runs live. Instead of simulating

the database before it is implemented, optimization is done

as the database runs live. The stochastic approximation is

carried out as before, but the update interval is changed to

θn+1 after ever K = 100 update intervals. The results over

88 update intervals are shown in Fig. 8. The live value of

update interval, T , converges to the known analytic optimum.

V. COMPARISON TO PREVIOUS WORK

Previously Wu, Metzler, and Linderman investigated the

effectiveness of state-based overhaul and restoration tech-

niques in a similar database unit [1] through simulation and

Markov chain analysis. In their investigation, a state-based

overhaul policy renewed all servers whenever a single failure

occurred. A second restoration policy was also defined where

secondary data stores in adjacent servers reduce unavailabil-

ity by restoring failed servers. Later, Ruschmann and Wu

formulated a Markov Decision Process to solve optimal state

based restoration policies based on the service time of this

model [2].

Table I summarizes the performance of the overhaul,

restoration, and optimal service time policies implemented in

[13], [2] through state-based control policy. In this case, fail-

ure rate is ν = 0.001, overhaul rate is 0.01, and restoration
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Fig. 8. Convergence of a single run optimization to the analytic optimal.

rate is 0.05. Table II summarizes optimal performance of the

renewal policy implemented in this database system under

similar system parameters. The loss of state information

clearly reduces the systems ability to perform.

VI. CONCLUSIONS AND FURTHER WORK

A Semi-Markov model of the database under a fixed

update interval renewal policy is formulated. Sample perfor-

mance functions are defined and solved analytically given

known exponential failure and renewal rates. Although ana-

lytical solutions of the sample performance functions exist,

gradient estimates are derived using IPA techniques. These

TABLE I

AVAILABILITY UNDER THE PREVIOUSLY INVESTIGATED POLICIES.

Control Policy Uptime Average Available Servers

Restoration 88% 2.74

Overhaul 77% 2.31

Optimal 87% 2.74

estimates perform regardless of the event-life distributions.

The conditions and assumptions for application of IPA are

validated. Failure event cancellation is eliminated by intro-

ducing a larger process and state-space. The gradients are

applied to a stochastic approximation algorithm in order to

locate the optimal fixed update interval of the process.

As further work, a proof of convergence regarding stochas-

tic approximation presents itself. Furthermore, reintroducing

customers to the model is of significant interest to the

authors. Maximizing response times for customer process

can be the most significant performance consideration of a

database system. Unfortunately, the resulting system violates

the commuting condition. Therefore, smoothed perturbation

analysis (SPA) will be required to derive gradient estimator.
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