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Abstract— This paper analyzes the locomotion of simple
mechanisms when the inertial forces are much smaller com-
pared to the applied forces. The induced motion of the body is
entirely due to viscous friction contact with the environment.
The friction coefficient depends on the body geometry, and we
assume a model where it is simply a function of the sign of the
velocity. In this case the kinematics and dynamics are easily
solvable as a hybrid system. Moreover, scale invariance of the
solution is shown. Thus only the pattern as function of time is
left to be determined and/or optimized.

We consider a hypothetical flapper in detail, for which the
optimal control is derived. This is further illustrated on similar
models mimicking locomotion found in nature.

I. INTRODUCTION

Animal locomotion has long been studied by many re-

searchers. Legged locomotion is currently a vast and inter-

disciplinary field with many contributions from engineers,

scientists and applied mathematicians [4]. Unlike legged

animals, legless animals such as snakes and fish propel

themselves by deforming their body accordingly to interact

with the environment. Legless animals are generally more

capable in moving on different types of terrains than legged

animals. A snake, for example, move effortlessly both on

ground and water by using essentially the same type of

locomotion. It can also climb trees by extending its body

from branch to branch. In comparison, the varieties of legged

locomotion seem to be rather small. Swimming is also well

studied. For instance, swimming at low speed was studied in

[11]. It was shown that at low Reynold’s number microscopic

organisms propel themselves by periodically changing their

body’s boundaries. Animal locomotion is the foundation of

essentially all biologically inspired robots.

In this paper, inspired by the many varieties of legless

locomotion, we shall study self-propulsion of a few legless,

toy creatures based on differential friction. This friction

model is based on viscous friction which is predominant

in wet environment. The model is not as restrictive as it

may seem since in [3] it is shown that motion in dry sand

can be approximately modeled as motion in fluid. In the

differential friction model the friction experienced depends

on the direction of locomotion. This results in hybrid systems

which are linear in the control. In our study we shall neglect

the inertia of the creatures. With this assumption the problem

at hand becomes a quasi-static one. This allows us to write

down static kinematic equations and static relations between

the forces and velocities involved. In [13] this friction

model has been used to study worm-like motion and Fourier

techniques have been used to investigate its periodicity.

In section II we introduce the friction model used through-

out this paper. In section III we derive the equation of motion

of the flapper. In section IV we study the periodic motion

of this creature. Several periodic, suboptimal locomotions

will be presented. Furthermore, an optimal periodic control

will be obtained. In section V we consider several extensions

based on the ideas of section III. In section VI we extend the

previous results to a simplified model of a snake. In section

VII we will conclude and present various future research

directions.

II. FRICTION MODEL: DIFFERENTIAL FRICTION

Scales form an integral part of many crawlers. In order

to study locomotion effectively the frictional effects of these

scales need to be modeled accurately. Scales come in differ-

ent shapes and sizes. An approximation is shown in Fig.1.

Forward (axial )direction

FBW

Lateral direction

FFW
vv

Fig. 1. Differential Friction Model

We model the frictional effects of these scales as the

friction one would experience when he/she pushes these

rectangular plates raised at one end over a surface. Obviously,

the friction experienced depends on the direction in which

these plates are being pushed. In short, the differential

friction model is a friction model, where the force of friction

depends on the direction of locomotion. An animal with

scales as in Fig. 1 experiences a friction of FFW = −µFW v
when the scales slide forward with a velocity v. This

friction points to the backwards direction as µFW > 0 is

the forward friction coefficient. Similarly, when the scales

slide backwards over its environment the total friction is

FBW = −µBW v, where µBW > 0 is the backward friction

coefficient. The friction in the transversal or lateral direction

is Ft = −µtv, where µt > 0 is the transversal friction
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coefficient. In the differential friction model, it is assumed

that the friction coefficients satisfy the following ordering:

µBW >> µt > µFW > 0, where µBW is much larger

than the other friction coefficients. This implies that the

backwards friction FBW is much larger when the scales slide

backwards, which agrees with the geometry of the scales of

the body. As a shorthand notation, we introduce a function

µA(v), which describes the axial friction coefficient with the

positive direction shown in Fig. 1. Thus,

µa(v) =

{
µFW if v > 0;

µBW if v < 0.
(1)

III. FLAPPER

In this section we consider our first simple toy creature.

Consider the flapper system in Fig. 2. Two (inflexible) rods

are hinged at O with the scales orientations as shown. We

assume that the instantaneous velocity of the flapper aOb is

directed towards the left. The half-opening angle is θ. Let

θ̇ = ω be the angular velocity of rod Oa. At a point P, which

is a distance s away from the hinge O, the resulting linear

velocity is ωs.

v

ωs

v

θ

s

O

P a

b

A

A’

s0

Scales orientation

Fig. 2. The Flapper

The combined velocity component in the axial and

transversal direction of the section of the rod Oa at P is

va = v cos θ and vt = ωs + v sin θ. This results in an

axial and transversal friction force at this point Fa(s) =
−µa(v) v cos θ and Ft(s) = −µt (v sin θ+ωs). where µa(v)
is as defined in (1). We consider Fa positive if directed

towards O. Likewise Ft is positive in counterclockwise

direction.

Integrating over the total length of Oa, which is assumed

to have length one, we get the total axial and transversal

force of Oa
Fa = −µa(v)v cos θ (2)

Ft = −µt

(

v sin θ +
ω

2

)

. (3)

For both rods, the resulting friction forces imposed by v and

ω in the x-coordinate direction is

Fx = −Fa cos θ − Ft sin θ (4)

and for rod Oa, the resulting friction force in the y-direction

is Fy = −Fa sin θ+Ft cos θ. Substituting (2) and (3) into (4)

we find the condition for equilibrium: Fa cos θ+Ft sin θ = 0
from which µa(v) v cos2 θ + µt

(
v sin θ + ω

2

)
sin θ = 0. It

follows that for given ω and θ, the instantaneous velocity,

neglecting inertia (equivalently, the mass of the flapper is

zero), is

v(ω, θ) = −
1

2

µtω sin θ

µa(v) cos2 θ + µt sin2 θ
(5)

Note that v still appears in the right hand side. However, it

is clear that with ω > 0, v must be negative, and vice versa.

Hence

v(ω, θ) = −
1

2

µtω sin θ

µa(−ω) cos2 θ + µt sin2 θ
(6)

We note that this requires a force F extended by

the arm A’A to counter the vertical friction Fy

F = −µa(−ω) v cos θ sin θ + µt

(
v sin θ + ω

2

)
cos θ.

Substituting the equilibrium condition, we get F =
µtµa(−ω)ω cos θ

2[µa(−ω) cos2 θ+µt sin2 θ]
. The work done by this force when

the rod rotates over dθ is dW = Fdy = Fs0 cos θ dθ =
Fs0ω cos θ dt. Thus,

dW =
µtµa(−ω)s0ω

2cos2 θ

2[µa(−ω) cos2 θ + µt sin2 θ]
dt. (7)

IV. PERIODIC REGIME

In this section we study the behavior of the flapper when

it has a periodic steady state. Equivalently, we may assume

that the variables, ω, θ, and v are periodic with period T .

We denote the corresponding radial frequency as ν = 2π
T .

A. Similitude

Assume the applied force is such that it results in an

angular velocity ω1(t) of the flapper. What happens if we

speed this up by a factor k? Let thus ωk(t) = kω1(kt). We

have θ1(t) = θ0+
∫ t

0 ω1(τ) dτ and θk(t) = θ0+
∫ t

0 ωk(τ) dτ.

Thus θk(t) = θ0 +k
∫ t

0 ω1(kτ) dτ = θ0 +
∫ kt

0 ω1(σ) dσ. and

θk

(
t
k

)
= θ0 +

∫ t

0
ω1(σ) dσ = θ1(t).

It follows then from (6) also that v(ωk(t), θk(t)) =
k v(ω1(kt), θ1(kt)) Likewise, the rate of applied energy

(required instantaneous power) is obtained from (7) and

scales as P (ωk(t), θk(t)) = k2 P (ω1(kt), θ1(kt)).
The distance traveled by the flapper in one period is given

by the integral, assuming k is a positive integer

xk

(
T

k

)

=

∫ T/k

0

v(ωk(t), θk(t)) dt = x1(T ). (8)

This is therefore independent of the frequency. The energy

spent in one complete stroke is

Ek

(
T

k

)

=

∫ T/k

0

P (ωk(t), θk(t)) dt = kE1(T ). (9)

Hence to travel a total distance x1(T ), we either spend

one cycle at frequency ν, requiring E1(T ), or k cycles at a

frequency kν. Hence the average velocity is vk = xk(T/k)
T/k =

kx1(T )
T = kv1 and the average power is P k = Ek(T/k)

T/k =
k2

E1(T )
T = k2P 1. This gives a quadratic model for the

effective friction. Indeed, consider the simple friction model

F = −µeffv A distance x is covered in x/v time units. The
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work done against friction is W = |F |x. The power is thus

P = |F |x/(x/v) = |F |v = µeff v2. Here, we get thus

µeff =
P 1

v2
1

=
E1/T

x1(T )2/T 2
= T

E1(T )

x1(T )
. (10)

B. Harmonic control

In this section we do not yet consider the optimal periodic

control, but let θ vary harmonically. Let θ(t) = θ0+ω0 cos νt
with ν = 2π/T . We require that θ0 −ω0 ≥ 0 and θ0 +ω0 ≤
π
2 . Then ω(t) = −ω0ν sin νt, which means that we start with

the flapper closing stroke, which provides the push for the

creature.

We found for the period T = 1 and parameters µB =
1, µt = 0.5 the resulting speed (towards the left) and

distance traveled in Fig. 3 and Fig. 4 for various values of

µFW , µFW = 0.01, 0.1 and 1. As expected, in the latter case

there is no net motion and the most power is consumed. The

required power as function of the time within one period is

also shown for the same values of µFW in Fig. 5.

The effective friction coefficient for the flapper is shown

as function of µFW for this periodic regime with µt = 0.5
and µBW = 1 in Fig. 6.

1.51.00.5
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0.0

0.01                    

0.1                     

1                       

Fig. 3. Speed for µF W = 0.01, 0.1, 1, µB = 1 and µt = 0.5.
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Fig. 4. Distance traveled for µF W = 0.01, 0.1, 1, µB = 1 and µt = 0.5.
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Fig. 5. Power for µF W = 0.01, 0.1, 1, µB = 1 and µt = 0.5.
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Fig. 6. Effective friction coefficient.

C. Optimal Periodic Regime

In this section we will study the optimal periodic control.

Assume that the flapper’s motion is in a periodic steady state

with period T . Over one period the excursion of the flapper

is x(T ) =
∫ T

0
v(ω, θ) dt. We maximize the excursion in one

period with the constraints that the amount of energy is fixed,

i.e W (T ) = WT and that the motion is periodic; θ(0) =
θ0 = θ(T ). Let θ0 be arbitrary in [0, π/2]. The extended

state equations are θ̇ = ω, Ẇ = µtµ(−ω)s0ω2 cos2 θ
2[µa(−ω) cos2 θ+µt sin2 θ] .

The control input is ω. From (6) the Hamiltonian is

H =
1

2

µtω sin θ

µa(−ω) cos2 θ + µt sin2 θ
+ λθω +

+λW
µtµa(−ω)s0ω

2 cos2 θ

2[µa(−ω) cos2 θ + µt sin2 θ]

Since the function µa(−ω) is not differentiable the

Pontryagin Maximum Principle [6] needs to be used.

The Hamiltonian is bi-modal and it is quadratic in ω
for ω > 0 and ω < 0. Therefore, the optimal-

ity condition for ω > 0, the backward moving stroke,

is ωBW = −µt sin θ−2λθ[µBW cos2 θ+µt sin2 θ]
2λW µtµBW s0 cos2 θ > 0. For

w < 0, the forward moving stroke, is ωFW =
−µt sin θ−2λθ [µF W cos2 θ+µt sin2 θ]

2λW µtµF W s0 cos2 θ < 0, The costate equations

are λ̇θ = −∂H
∂θ and λ̇W = − ∂H

∂W = 0.
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For the simulation it is assumed that the period T = 1sec

and the initial starting angle θ(0) = π/17. A standard

gradient descent algorithm has been implemented to find the

optimal control ω(t). The results are shown in Fig. 7, Fig. 8,

Fig. 9 and Fig. 10. As in Fig. 10 the creature goes backwards

initially when opening its flappers and moves forward when

they are closed. The net effect is a forward motion due to

the differential friction.
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Fig. 7. Flapper’s angle θ(t)
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Fig. 8. Angular frequency ω(t)
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V. EXTENSIONS

Previous discussions can be extended to other robotic

devices. One could offset two flappers to obtain a tortoise

Fig. 11. In this case the flapper angles θ1 and θ2 have
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Fig. 10. Distance x(t)

opposite phases to accommodate locomotion. In the next

section we will extend the flapper to a simplified snake

model.

θ1

θ2

P Q

Fig. 11. Tortoise

VI. TWO-PIECE SNAKE

We extend the previous analysis to a simplified model of

a snake, Fig. 12. We will derive the friction forces exerted

by the environment on the snake. First, consider a small

piece with length dr of the snake from either the upper or

lower bar, which is located at r(t) with respect to a inertial

reference frame with basis {ex, ey}, Fig. 13.

According to the differential friction model (1) the friction

experienced by this differential slab is

FBx
(r, β) = −µa(〈ṙ, Bx〉)〈ṙ, Bx〉Bx

FBy
(r, β) = −µT 〈ṙ, By〉By, (11)

γ

θ

Forward directionrh = (x, y)

γ − θ

ex

ey
Upper bar

Lower bar

B
u
x

B
u
y

B
l
x

B
l
y

ru

rl
Heading angle

Fig. 12. Two-piece snake.
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By

β

ey

ex

dr

ṙ

Fig. 13. Differential piece of snake.

where 〈·, ·〉 denotes the inner product, Bx =
[

cos(β) sin(β)
]′

is the axial direction and

By =
[
− sin(β) cos(β)

]′
is the transversal

direction, both with respect to the inertial reference

frame. The total x and y components of the friction

force are Fx(r, β) = 〈FBx
, ex〉 + 〈FBy

, ex〉, and

Fy(r, β) = 〈FBx
, ey〉 + 〈FBy

, ey〉, respectively. The

virtual work due to virtual displacements in the x and y
direction of the differential piece at r is

δWr = Fx(r, β)δx + Fy(r, β)δy (12)

We now proceed to derive the friction forces acting on the

entire snake. Let rh = (x, y) denote the position of the hinge

of the snake, Fig. 12. We further assume that both links have

unit length. A point r ∈ [0, 1] units away from the hinge on

the upper and lower bar is

ru = rh + rBu
x , (13)

rl = rh − rBl
x, (14)

where with respect to the inertial reference frame,

Bu
x =

[
cos(θ + γ), sin(θ + γ)

]′
and Bl

x =
[

cos(γ − θ), sin(γ − θ)
]′

, respectively. We will use

the Lagrangian dynamics approach to find the generalized

friction forces. Recall the Euler-Lagrange equations

d

dt

∂L

∂q̇
−

∂L

∂q
= Q, (15)

where L is the Lagrangian and Q contains the external

and control forces. Let the generalized coordinates be q =
[x, y, θ, γ], Fig. 12. From (13) the virtual displacements

at a distance r from the hinge on the upper bar, δru =
(δxu

r , δyu
r ), due to the virtual displacements in the general-

ized coordinates, are

δxu
r = δx − r sin(θ + γ)(δθ + δγ), (16)

δyu
r = δy + r cos(θ + γ)(δθ + δγ)

Similarly from (14), the virtual displacements on the lower

bar are

δxl
r = δx + r sin(γ − θ)(δγ − δθ), (17)

δyl
r = δy − r cos(γ − θ)(δγ − δθ)

Substituting (13), (14), (16), (17) into (12), the friction

forces on both the upper and lower bar r units away from

the hinge rh may be expressed in the form

δWr = Tx(r, ẋ, ẏ, q)δx + Ty(r, ẋ, ẏ, q)δy +

+Tθ(r, ẋ, ẏ, q)δθ + Tγ(r, ẋ, ẏ, q)δγ. (18)

The exact expressions are omitted due to the limitation of

space.

Integrating the previous expression (18) over [0, 1], we

obtain the total virtual work of the external friction forces

on the entire snake. Indeed, the integral is

δW =

∫ 1

0

Tx(r, ẋ, ẏ, q)dr

︸ ︷︷ ︸

F t
x(ẋ,ẏ,q)

δx +

∫ 1

0

Ty(r, ẋ, ẏ, q)dr

︸ ︷︷ ︸

F t
y(ẋ,ẏ,q)

δy

+

∫ 1

0

Tθ(r, ẋ, ẏ, q)dr

︸ ︷︷ ︸

F t
θ
(ẋ,ẏ,q)

δθ +

∫ 1

0

Tγ(r, ẋ, ẏ, q)dr

︸ ︷︷ ︸

F t
γ(ẋ,ẏ,q)

δγ,

from which we can easily identify the total general-

ized friction forces, F t
x(ẋ, ẏ, q), F t

y(ẋ, ẏ, q), F t
θ (ẋ, ẏ, q) and

F t
γ(ẋ, ẏ, q).
The applied control is the torque Fc around the hinge. The

external generalized force Q in (15) is

Q=[F t
x(ẋ, ẏ, q), F t

y(ẋ, ẏ, q), F t
θ(ẋ, ẏ, q)+Fc, F

t
γ(ẋ, ẏ, q)]′(19)

We further assume that the snake is in a quasi-periodic state

and the inertia is small. This allows us to set the left hand

side of (15) to zero, because the Lagrangian is linear in mass.

Then (19) can be rewritten in the form

A(ẋ, ẏ, q)q̇ = [0, 0, Fc, 0]′ . (20)

After a long but straight forward computation, the determi-

nant of A(ẋ, ẏ, q) can be shown to be

det A(ẋ, ẏ, q) = a cos(θ)4 − a cos(θ)2 +
2µ2

T

9
(gu + gl), (21)

where

gu =µa(〈ṙu, Bu
x〉)=µa(ẋ cos(θ + γ) + ẏ sin(θ + γ)) (22)

gl =µa(〈ṙl, Bl
x〉)=µa(ẋ cos(−θ + γ) − ẏ sin(−θ + γ))

and a = −
µ2

T

9 (µ2
T − 4(gu + gl)µT + 16gugl). It is obvious

that, since −π
2 ≤ θ ≤ π

2 , (21) is quadratic in cos(θ)2 over

the interval [0, 1]. The extremum of (21) is at cos(θ)2 = 1/2

and at this value (21) is
µ2

T

36 (µ2
T + 4(gl + gu) + 16glgu) > 0

by the positivity of each term. Furthermore, if cos2 θ = 0 or

1 ( i.e., θ = ±π
2 or θ = 0), then (21) is

2µ2

T

9 (gu + gl) > 0
by the definition of µa(·). Thus, (21) is always positive in

the interval −π
2 ≤ θ ≤ π

2 , regardless of the sign of a. Thus

A(ẋ, ẏ, q) is invertible over th interval. Hence, (20) can be

written

q̇ =
b(ẋ, ẏ, q)

det A(ẋ, ẏ, q)
Fc, (23)

where b(ẋ, ẏ, q) is the third column of the adjugate matrix,

Adj A(ẋ, ẏ, q).
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Due to the bi-modal nature of µa(·) the system (23) is

hybrid and from the previous equations it seems that the

system has at least 4 modes. However, it can shown that

〈ṙu, Bu
x〉

〈ṙl, Bl
x〉

= −
4gl + µT tan2 θ

4gu + µT tan2 θ
, (24)

by using the first two components of (23). Thus, the ve-

locities on both the upper and lower link along the axial

directions, at a distance r away from the hinge, have opposite

sign. This further implies that when the upper link is gliding

forward, the lower link is sliding backwards and vice versa.

We now proceed to compute the work imparted by the

snake. From (11) the total friction forces on the snake at

both the upper and lower link, at a distance r from the hinge

rh, are Fu
tot(r) = FBx

(ru, θ + γ) + FBy
(ru, θ + γ) and

F l
tot(r) = FBx

(rl,−θ + γ) + FBy
(rl,−θ + γ), respectively.

The total work at r is

Wtot(r) = Fu
tot(r)

drh

dt
dt + F l

tot(r)
drl

dt
dt.

After dividing the previous expression by dt and integrating

over [0, 1], we obtain the power consumed by the snake is

dWtot

dt
= −

(∫ 1

0

Fu
tot(r)

drh

dt
dr

)

−
(∫ 1

0

F l
tot(r)

drl

dr

)

. (25)

To simulate the snake we assume the input torque is

Fc(t) = 20 cos t. The starting angles are θ(0) = 0 and

γ(0) = −0.35. The simulation duration is over one period

T = 2π. (Fig. 14). The forward direction is to the right. As

in the flapper the two-piece snake slides backwards initially

and then forward. The locomotion is inefficient as seen in

the figure. The total distance traveled sideways is almost four

times the forward motion. This is due to the overly simplified

model. If additional links are added, this sideways motion

will decrease substantially. Notice that when the torque is

positive (counter clockwise) the snake moves in the negative

y-direction, and vice verse for clockwise torque. This is in

accordance with our intuition because of the tangential (to

the body) friction. It is also shown by experimentation that

sideways motion is decreased when the tangential coefficient

µT is increased (for rounded scales).
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Fig. 14. Hinge position rh(t).
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VII. CONCLUSIONS

In this paper we introduced the differential friction model

which was used throughout the paper to study locomotion.

As a result of this model the equations of motions obtained

are of hybrid nature which are linear in the control. In

our study we have neglected inertia of the creatures con-

sidered. This allowed us to obtain static relations between

the forces and velocities for our creatures. This is not

particularly restrictive since it is long known that acceleration

is only a means to an end when it comes to locomotion

[1]. Furthermore, we have studied the locomotive behavior

under periodic steady state assumption. Suboptimal periodic

controls as well as an optimal periodic control problem were

considered.
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