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Abstract— A new approach for formation flight control of
multiple aircraft is presented. Constraint forces are used to
derive the dynamics of a constrained, multi-body system. A
stable, distributed control algorithm is designed based on the
information flow graph for a group of aircraft. The aircraft
will achieve a particular formation while ensuring accurate
navigation of the entire group. It is assumed that uncertainty
exists in the drag coefficient of each aircraft. An adaptation
algorithm is developed to compensate for the uncertainty and
estimate the drag coefficient. The advantage of the proposed dis-
tributed control algorithm is that it allows the addition/removal
of other aircraft into/from the formation seamlessly with simple
modifications of the control input. Furthermore, the algorithm
provides inherent scalability. Simulations were conducted to
verify the proposed approach.

I. INTRODUCTION

The problem of autonomous formation flight is an impor-

tant research area in the aerospace field. Multiple aircraft

flight in formations with defined geometries leads to many

advantages and applications. For example, energy saving

from vortex forces and fuel efficiency via induced drag

reduction. Formation flying can also be used for airborne

refueling and quick deployment of troops and vehicles.

Moreover, many aircraft involved in a mission can be better

managed if they fly in a specific formation rather than in an

undefined structure.

The main goal of the formation flight is to achieve a

desired group formation shape, while controlling the overall

behavior of the group maneuver of multiple aircraft. Most

of the formation flight strategies consist of variations in the

leader/wingman formation [1]. To overcome the limitation of

the leader/wingman strategy, Giulietti et al in [2] proposed

a strategy in which each aircraft is not required to keep

its position with respect to the formation leader, but an

imaginary point in the formation. In addition to research on

aircraft formation flight, there have also been a number of

studies on coordinating multiple mobile robots and space-

crafts. Numerous control schemes have been proposed for

the multi-agent coordination problem.

A popular approach to achieve coordination is to consider

the mechanical nature of the systems and shape the dynamics

of the formation using potential fields. Some recent work

using potential functions can be found in [3], [4]. The basic

idea is to create an energy like function in terms of the

distance constraints between vehicles; the negative gradient

of the potential function is used as a restoring force on

each vehicle to achieve coordination. In [3], an approach

for distributed control of multiple agents by using artificial

potential functions and virtual leaders was given. The in-

dividual agent behaves according to the interaction forces

generated by sensing the positions of neighboring agents. In

[4], a specific potential function which is a function of the

distance constraints of the desired formation is used. The

idea of artificial potential functions for obstacle avoidance for

multiple vehicles with kinematic models can be found in [5].

Instead of relying on repelling potential forces, [6] presented

a control law for multiple systems based on gyroscopic forces

for collision and obstacle avoidance; the gyroscopic forces

were used for obstacle avoidance without affecting the global

potential function.

The new approach for formation flight of multiple aircraft

presented in this paper uses the theory of constraint forces

to build a formation from arbitrary initial conditions for the

aircraft. The idea of constrained dynamics for a system of

multiple bodies with constraints is that the description of

the system not only includes the external forces acting on

the bodies but also the constraint forces which limit the

motion of the system to be consistent with the constraints.

The constraints on the system are imposed by adding a set

of forces to the governing equations which keep formation

separation constraints satisfied for all time [7]. The key idea

of the proposed work is to use the theory of constraint

forces to determine the total force required on each aircraft

to maintain the formation separation. The force required to

maintain the constraints for formation of a group of aircraft

is calculated directly. A centralized control strategy with full

information for formation of a group of vehicles using the

notion of constraint forces was given in [8].

In the potential (or penalty) function approach, the square

of the constraint function (or some other appropriate positive

function of constraints) is treated as a potential energy. A

formation keeping force that is proportional to the gradient

of the potential energy is used. Since these restoring forces

are regular forces which rely on displacements, they com-

pete with every other applied force. The advantage of the

constraint force approach is that the calculated constraint

forces cancel only those applied forces that act against the

constraints. The main contribution of this paper is in the

development of a stable, scalable, and distributed control
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algorithm for multiple aircraft using constraint forces that

will simultaneously achieve, and maintain, a given formation

together with tracking of a desired group trajectory. More-

over, the control algorithm is adaptive in the sense that the

uncertain drag coefficient of each aircraft is estimated by an

adaptive algorithm.

The rest of the paper is organized as follows. Section II

gives the point-mass model for each aircraft. In Section III,

the distributed formation flight control is developed. Section

IV gives simulation results on an example of three aircraft.

Conclusions are given in Section V.

II. AIRCRAFT MODELS

We consider a group of n aircraft. In this work, the

following point-mass aircraft model is considered [9]:

ẋi = Vi cos χi cos γi (1)

ẏi = Vi sin χi cos γi (2)

ḣi = Vi sin γi (3)

V̇i = −g sin γi +
1

mi

(Ti − Di) (4)

χ̇i =
Li sinµi

miVi cos γi

(5)

γ̇i =
1

miVi

(Li cos µi − mig cos γi) (6)

where i = 1, 2, . . . , n . The coordinates xi and yi and

the altitude hi specify the position of the center of gravity

of the i-th aircraft in an earth-based reference frame. The

orientation of the aircraft, i.e, the direction of the velocity

vector, is denoted by the heading angle χi, flight path angle

γi, and bank angle µi. Heading angle is the angle between the

projection of the velocity vector onto the xy plane and the x-

axis. The angle between the velocity vector and its projection

onto the xy plane is the flight path angle. The bank angle

is then the rotation around the velocity vector. The aircraft

velocity Vi is assumed to be equal to the airspeed. In Fig. 1,

Ti is the engine thrust, Di is the drag, Li is the lift, mi is the

aircraft mass, and g is the acceleration due to gravity. The

thrust depends on the altitude hi, velocity Vi, and the throttle

setting ηi by a known relationship Ti = Ti(hi, Vi, ηi). Also,

it is assumed that the drag is a function of hi, Vi and Li,

that is, Di = Di(hi, Vi, Li).
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Fig. 1. Three-dimensional geometry of aircraft model.

In the model, the engine thrust Ti, the lift Li, and the bank

angle µi are the control variables for the aircraft. The drag

can be expressed as a function of a non-dimensional drag

coefficient CDi
in the form of Di = 1

2ρV 2
i SiCDi

, where

Si is an aerodynamic reference area of the aircraft, and the

quantity ρ is the average density of air. For simplicity, the

air density is assumed to be a constant. The drag coefficient

is assumed to have a nominal component and a component

which increases quadratically with the lift as CDi
= CD0i

+
KiC

2
Li

, where CD0i
is the profile drag coefficient, which

is assumed to be a constant, CLi
is the lift coefficient and

KiC
2
Li

is the induced drag. Typical values for CD0i
for the

whole aircraft, are of the order of 0.003 to 0.02. Replacing

the lift coefficient with the load factor, the drag Di can be

computed as Di = 1
2ρV 2

i SiCD0i
+ 2Ki

L2
i

ρV 2
i

Si
.

It is assumed that aggressive maneuvering will not be

necessary to hold a desired formation and the aircraft will

operate close to wing level, steady-state flight. Therefore,

any uncertainties in drag forces will dominate and be most

influential to the aircraft dynamics. To compensate for un-

certainties in drag, the coefficient CD0i
is considered to be

an unknown parameter and be estimated with an adaptive

law.

Differentiating the expressions (1)-(3) with respect to

time, and substituting dynamics of Vi, χi and γi from the

expressions (4)-(6), the dynamics of the position of the

aircraft is given by

q̈i = Ui + ∆i (7)

where qi = [xi, yi, hi]
T ∈ R

3 is the position and Ui =
[Uxi

, Uyi
, Uhi

]T ∈ R
3 is the virtual control input. The

uncertain quantity ∆i in (7) can be expressed as ∆i =
ΨiCD0i

where Ψi ∈ R
3 is a known function given by

Ψi =




−ρV 2
i Si cos χi cos γi/2mi

−ρV 2
i Si sin χi cos γi/2mi

−ρV 2
i Si sin γi/2mi


 . (8)

If the virtual control variables are known, the actual control

variables can be obtained using the following expressions [9]:

µi = atan

(
Uyi

cos χi − Uxi
sin χi

cos γi(Uhi
+ g) − sin γi(Uxi

cos χi + Uyi
sin χi)

)

(9)

Li = mi

cos γi(Uhi
+ g) − sin γi(Uxi

cos χi + Uyi
sin χi)

cos µi

(10)

Ti = mi [sin γi(Uhi
+ g) + cos γi(Uxi

cos χi + Uyi
sin χi)]

+ 2Ki

L2
i

ρV 2
i Si

. (11)

Based on the pre-linearized aircraft dynamics given by (7)

for each of the n aircraft, the goal is to design a distributed

formation controller that achieves and maintains a given

formation together with tracking of a desired group trajectory

under a given information flow between different aircraft

within the group.
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III. FORMATION CONTROL DESIGN

The formation structural topology of the aircraft can be

defined as a formation graph, which can be used to study

the relative position of aircraft in the group by applying

graph theory. The formation graph of n aircraft is defined

as an undirected graph G = (V, E), where V = {1, 2, . . . , n}
is a finite set of vertices (nodes) in correspondence with

the n aircraft in the group and E ⊆ V × V is a set of

edges (i, j) representing inter-aircraft position specifications.

For simplicity, the information flow graph and the formation

graph are assumed to be identical.

In the constraint force approach, geometric constraints are

imposed on the system of bodies (aircraft in this case) by

adding a set of constraint forces to the governing equations

which keep the constraints satisfied. The overall control input

Ui for the ith aircraft that is required to achieve/maintain

the formation and track the desired group trajectory can be

expressed as

Ui = Fi + Fci
(12)

where Fi is the applied force per unit mass and Fci
is the

constraint force per unit mass that limits the motion of the

system to be consistent with the constraints. To compensate

for the uncertainties in the model, the applied force Fi is

Fi = Fni
− Fadi

. (13)

where Fni
is the navigational feedback control given as

Fni
= q̈di

− c1ei − c2ėi (14)

where c1 and c2 are positive constants, ei = qi − qdi
and

ėi = q̇i − q̇di
are navigational tracking errors, and qdi

, q̇di

and q̈di
are the desired position, velocity, and acceleration,

respectively. The adaptive term Fadi
is used to compensate

for the uncertainties,

Fadi
= ΨiĈD0i

(15)

where ĈD0i
is the estimate of CD0i

.

First, the constraint force between a pair of communicating

aircraft will be designed. The application of such a force on

each aircraft, in addition to the applied force (both navigation

and adaptive), will ensure that the constraint is satisfied

between the two aircraft. Second, the distributed control

algorithm for the entire group will be developed based on the

constraint force between a pair of communicating aircraft.

A. Constraint Force Between a Pair of Aircraft

Consider a pair of aircraft i and j which share an edge

in the information flow graph, i.e., (i, j) ∈ E . Denote the

constraint corresponding to the (i, j) edge in the formation

graph G = (V, E) by φij(qi, qj) = 0 for any (i, j) ∈ E and

i 6= j, with φij(qi, qj) in some specific form. Define the

composite position vector of two communicating aircraft by

qij = [qT
i , qT

j ]T ∈ R6. The constraint function is defined as

a function of distance between the two aircraft ‖qi − qj‖,

φij(qij) = h(‖qi − qj‖, dij), (i, j) ∈ E (16)

where dij is the length of the edge (i, j) which is the

desired distance between the two aircraft in the formation.

The structural constraint can be expressed as φij(qij) = 0.
Differentiating (16) once, we get the constraint velocity as

φ̇ij(qij , q̇ij) =
∂φij(qij)

∂qij

q̇ij := Aij(qij)q̇ij (17)

where Aij(qij) =
∂φij(qij)

∂qij
is a specially structured 1 × 6

matrix called the constraint matrix, which is in the form of

Aij(qij) =
[

aT
ij aT

ji

]
with aij = −aji ∈ R

3. (18)

For example, if the constraint function can be defined as

the function of the Euclidean distance between two aircraft,

φij(qij) = ‖qi − qj‖ − dij , (i, j) ∈ E , then the constraint

matrix is Aij(qij) =
[

(qi−qj)
T

‖qi−qj‖
−

(qi−qj)
T

‖qi−qj‖

]
.

Differentiating φ̇ij(qij , q̇ij) again, we get the constraint

acceleration as

φ̈ij(qij , q̇ij , q̈ij) = Ȧij(qij , q̇ij)q̇ij + Aij(qij)q̈ij (19)

where Ȧij(qij , q̇ij) =
∂φ̇ij(qij ,q̇ij)

∂qij
.

Assuming that the configuration qij and the velocity

q̇ij both have the desired initial values, i.e., φij(q
0
ij) =

φ̇ij(q
0
ij , q̇

0
ij) = 0, The idea behind the constraint force

approach is that we need to choose Fcij
such that the

constraint acceleration is identically zero, that is, φ̈ij = 0,

then all subsequent motion is such that φij = 0.

Based on the discussion of the constrained dynamics, the

dynamics of the constrained system can be written as

q̈ij = Fnij
+ Fcij

+
(
∆ij − Fadij

)
(20)

where Fnij
= [FT

ni
, FT

nj
]T , Fcij

= [FT
ci

, FT
cj

]T , Fadij
=

[FT
adi

, FT
adj

]T and ∆ij = [∆T
i ,∆T

j ]T .

Substituting the constrained system dynamics (20) into

(19), we get

φ̈ij = Ȧij q̇ij + AijFnij
+ AijFcij

+ Aij

(
∆ij − Fadij

)
.

(21)

Ignoring the uncertainties in the constraint dynamics, we

use the following nominal constraint dynamics to derive the

constraint forces

φ̈nom
ij = Ȧij q̇ij + AijFnij

+ AijFcij
. (22)

Setting (22) to be zero, the constraint force satisfies the

following equation:

Aij(qij)Fcij
= −Ȧij(qij , q̇ij)q̇ij − Aij(qij)Fij . (23)

Equation (23) alone does not uniquely determine the con-

straint force, since we have only one equation and six

unknowns (the six components of Fcij
). The widely used

procedure in dynamics is to use the principle of virtual work

[10] ; which states that the constraint forces do not add or

remove energy. Therefore, to ensure that the constraint force

does no work, we require that FT
cij

q̇ij be zero for every q̇ij

satisfying φ̇ij(qij , q̇ij) = 0, that is,

FT
cij

q̇ij = 0, ∀ q̇ij ∈ {q̇ij | Aij(qij)q̇ij = 0}. (24)
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From Eq. (24), it is clear that Fcij
must be orthogonal to the

velocity vector q̇ij . Since q̇ij must lie in the null space of

Aij(qij), the constraint force Fcij
must lie in the null space

complement of Aij(qij). Thus, the vector Fcij
satisfying

Eq. (24) can be expressed in the form

Fcij
= AT

ij(qij)λij (25)

where λij is the Lagrange multiplier, which is obtained by

substituting (25) into (23),

Aij(qij)A
T
ij(qij)λij = −Ȧij(qij , q̇ij)q̇ij − Aij(qij)Fij . (26)

The constraint force for aircraft i and j are then given by

Fci
= [I3, Ø3]Fcij

and Fcj
= [Ø3, I3]Fcij

where I3 and Ø3

are the identity and zero matrices, respectively, of dimension

of three.

The entire discussion on the development of the constraint

forces so far was based on the assumption that at the start of

the motion of the aircraft, the constraint equations are satis-

fied. To consider arbitrary initial conditions for the aircraft,

which do not satisfy the constraint equations, we will use the

notion of feedback in the constraint acceleration equation;

this will account for the mismatch in the initial condition

and appropriately compute the constraint force. This idea was

used to prevent numerical drift in the simulation of dynamic

equations with constraints in [11]. Instead of solving for

φ̈nom
ij = 0 to determine the constraint force, as it was done

in our earlier work [8], the following equation will be used:

φ̈nom
ij = −kdφ̇ij − kλij (27)

where kd and k are positive constants. Therefore, the con-

straint force vector for the two aircraft is calculated based

on the following equations:

Fcij
= AT

ijλij , (28)

λij =
1

k + AijAT
ij

(
−Ȧij q̇ij − AijFnij

− kdφ̇ij

)
. (29)

The constraint force for aircraft i and j are then given by

Fci
= [I3, Ø3]Fcij

and Fcj
= [Ø3, I3]Fcij

. Note that the

constraint forces on the two aircraft satisfy Fci
= −Fcj

.

Since they are internal forces – addition of the i-th and j-th

dynamics will result in cancelation of these forces for the

two aircraft case.

We consider the following Lyapunov function candidate

Eij =
1

2
kc1e

T
ijeij +

1

2
kėT

ij ėij +
1

2
φ̇2

ij +
1

2
ΓC̃T

D0ij
C̃D0ij

(30)

where Γ is a positive constant, eij = [eT
i , eT

j ]T , and C̃D0ij
=

[C̃D0i
, C̃D0j

]T with C̃D0i
= ĈD0i

− CD0i
. The derivative

of Eij with respect to time is given by

Ėij = kc1ė
T
ijeij + kėT

ij

(
Fnij

+ Fcij
+ (∆ij − Fadij

) − q̈dij

)

+ φ̇ij

(
Ȧij q̇ij + AijFnij

+ AijFcij
+ Aij(∆ij − Fadij

)
)

+ ΓC̃T
D0ij

˙̃
CD0ij

= −kc2ė
T
ij ėij − kdφ̇

2
ij + (kėT

ij + φ̇ijAij)(∆ij − Fadij
)

+ ΓC̃T
D0ij

˙̃
CD0ij

.

Note that Aij = [aT
ij , a

T
ji] with aij = −aji, then

Ėij = −kc2ė
T
ij ėij − kdφ̇

2
ij + (kėT

ij + φ̇ijAij)

[
−ΨiC̃D0i

−ΨjC̃D0j

]

+ ΓC̃T
D0ij

˙̃
CD0ij

= −kc2ė
T
ij ėij − kdφ̇

2
ij

+
[

C̃T
D0i

C̃T
D0j

] [
−kΨT

i ėi − φ̇ijΨ
T
i aij + Γ

˙̃
CD0i

−kΨT
j ėj − φ̇ijΨ

T
j aji + Γ

˙̃
CD0j

]
.

(31)

To estimate the unknown parameters CD0i
and CD0j

, we use

the gradient projection algorithm [12]. Consider a convex

parameter set Πi given by

ĈD0i
∈ Πi ⇐⇒ |ĈD0i

− ρi| < σi (32)

with ρi some given real number. Consider the function

Pi(ĈD0i
) =

2

ǫi

[∣∣∣∣∣
ĈD0i

− ρi

σi

∣∣∣∣∣

q

− 1 + ǫi

]
(33)

where 0 < ǫi < 1 and q ≥ 2. Consider the ‘smooth

projection’ Proj (·), which will be used to estimate ĈD0i

while maintaining it in Πi:

Proj(ĈD0i
, yi) =





yi, if Pi < 0
yi, if Pi = 0 and ∇T

Pi
yi ≤ 0

yi −
Pi∇Pi

∇T
Pi

‖∇Pi
‖2 yi, otherwise

(34)

where ∇Pi
=

[
∂Pi(ĈD0i

)/∂ĈD0i

]T

is a column vector.

Based on the smooth projection defined above, ĈD0i
and

ĈD0j
are estimated by

˙̂
CD0i

= Γ−1Proj
(
ĈD0i

, kΨT
i ėi + φ̇ijΨ

T
i [I3, Ø3]A

T
ij

)

˙̂
CD0j

= Γ−1Proj
(
ĈD0j

, kΨT
i ėi + φ̇jiΨ

T
i [I3, Ø3]A

T
ji

)

where the corresponding projection for the j-th aircraft is

given by replacing the index i by j in (32), (33) and (34).

Substitution of the adaptation law in (31) gives

Ėij = −kc2ė
T
ij ėij − kdφ̇

2
ij ≤ 0. (35)

Therefore, Eij is a Lyapunov function. As a result, eij ,

ėij , φ̇ij , and C̃D0ij
are bounded. From (30) and (35), we

can conclude that ėij and φ̇ij are square integrable signals.

Further, from the dynamics of the constraint and the tracking

error,

φ̈ij = −kdφ̇ij − kλij − Aij

[
ΨiC̃D0i

ΨjC̃D0j

]
, (36)

ëij = −c1eij − c2ėij + AT
ijλij −

[
ΨiC̃D0i

ΨjC̃D0j

]
, (37)

we can conclude that both φ̈ij and ëij are bounded. There-

fore, ėij and φ̇ij converge to zero asymptotically by invoking

Barbalat’s lemma. Further, we can show via direct calculation
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that
...
φij and

...
e ij are bounded by differentiating Eqs. (36)

and (37). Therefore, the signals φ̈ij and ëij asymptotically

converge to zero. From Eqs. (36) and (37), we can conclude

that eij , C̃D0i
and C̃D0j

converge to the relationship given

by

eij = −
1

c1
(I6 + AT

ijAij/k)

[
ΨiC̃D0i

ΨjC̃D0j

]
. (38)

Therefore, as expected, the position tracking error depends

on the uncertain parameter estimation error. The error can be

decreased by increasing c1. Moreover, from the definition of

the constraint vector, φij(qij) =‖ qi − qj ‖ −dij =‖ (ei −
ej)+(qdi

−qdj
) ‖ −dij ≤ ‖ei−ej‖ since ‖qdi

−qdj
‖ = dij .

B. Distributed Control Algorithm for Multiple Aircraft

As in the previous section, we consider the applied force

Fi acting on the i-th aircraft to be given by (13), with the

navigational feedback control Fni
given by (14), and the

adaptive control Fadi
given by (15). The adaptation law is

given as

˙̂
CD0i

= Γ−1Proj


ĈD0i

, kΨT
i ėi +

∑

(i,j)∈E

φ̇ijΨ
T
i [I3, Ø3]A

T
ij


 .

(39)

The constraint force acting on the i-th aircraft is chosen as

the total of the constraint force contribution from all aircraft

which directly communicate with it, i.e., Fci
is given by

Fci
=

∑

(i,j)∈E

[I3, Ø3]A
T
ij

k + AijAT
ij

(
−Ȧij q̇ij − AijFnij

− kdφ̇ij

)
.

(40)

To show that this control input tracks the desired nav-

igation trajectories and achieves, and maintains, the given

formation, we consider the following composite Lyapunov

function candidate:

E =
1

2

n∑

i=1


kc1e

T
i ei + kėT

i ėi +
∑

(i,j)∈E,j>i

φ̇2
ij + ΓC̃2

D0i


 .

(41)

Taking the derivative of E with respect to time, substituting

the control law (12) and the dynamics of the aircraft (7) into

Ė, and simplifying, we get

Ė = −kc2

n∑

i=1

ėT
i ėi − kd

n∑

i=1

∑

(i,j)∈E,j>i

φ̇2
ij

+ k




n∑

i=1

q̇T
i Fci

−

n∑

i=1

∑

(i,j)∈E,j>i

φ̇ijλij


 − k

n∑

i=1

q̇T
di

Fci

−

n∑

i=1

∑

(i,j)∈E,j>i

φ̇ij

[
aT

ij aT
ji

]
[

ΨiC̃D0i

ΨjC̃D0j

]

− k

n∑

i=1

ėT
i ΨiC̃D0i

+

n∑

i=1

ΓC̃D0i

˙̃
CD0i

. (42)

In Eq. (42) , we can show that the third and fourth terms are

identically equal to zero. Note that

n∑

i=1

q̇T
i Fci

−

n∑

i=1

∑

(i,j)∈E,j>i

φ̇ijλij

=

n∑

i=1

q̇T
i

∑

(i,j)∈E

[I3, Ø3]A
T
ijλij −

n∑

i=1

∑

(i,j)∈E,j>i

Aij q̇ijλij

=

n∑

i=1

∑

(i,j)∈E

q̇T
i aijλij −

n∑

i=1

∑

(i,j)∈E,j>i

(aT
ij q̇i + aT

jiq̇j)λij .

Since λij = λji, we have
∑n

i=1

∑
(i,j)∈E,j>i(a

T
ij q̇i +

aT
jiq̇j)λij =

∑n
i=1

∑
(i,j)∈E aT

ij q̇iλij . Thus, we have

n∑

i=1

q̇T
i Fci

−
n∑

i=1

∑

(i,j)∈E,j>i

φ̇ijλij = 0. (43)

Further, since q̇di
is the desired velocity, it must satisfy

q̇T
dij

AT
ij = 0 for any i 6= j. Hence,

∑n
i=1 q̇T

di
Fci

=∑n
i=1

∑
(i,j)∈E

j>i
q̇T
dij

AT
ijλij = 0. Therefore,

Ė = −kc2

n∑

i=1

ėT
i ėi − kd

n∑

i=1

∑

(i,j)∈E,j>i

φ̇2
ij +

n∑

i=1

ΓC̃D0i

˙̃
CD0i

−

n∑

i=1

∑

(i,j)∈E

φ̇ijC̃
T
D0i

ΨT
i aij − k

n∑

i=1

C̃T
D0i

ΨT
i ėi. (44)

Using the adaptive law (39) we have

Ė = −kc2

n∑

i=1

ėT
i ėi − kd

n∑

i=1

∑

(i,j)∈E,j>i

φ̇2
ij ≤ 0. (45)

Using the same arguments as in the previous section, we can

conclude that all signals are bounded, the signals ėi and φ̇ij

asymptotically converge to zero, and ei and φij are bounded

by a function of the parameter estimation error, similar to

Eq. (38). The results of this section are summarized in the

following theorem.

Theorem 1: For a group of aircraft given by the dynamics

(1)-(6), the choice of the following control algorithm:

µi = atan

(
Uyi

cos χi − Uxi
sinχi

cos γi(Uhi
+ g) − sin γi(Uxi

cos χi + Uyi
sinχi)

)

Li = mi

cos γi(Uhi
+ g) − sin γi(Uxi

cos χi + Uyi
sin χi)

cos µi

Ti = mi [sin γi(Uhi
+ g) + cos γi(Uxi

cos χi + Uyi
sin χi)]

+ 2Ki

L2
i

ρV 2
i Si

Ui = Fni
− Fadi

+ Fci
, with Ui = [Uxi

, Uyi
, Uhi

]T

Fni
= q̈di

− c1ei − c2ėi

Fadi
= ΨiĈD0i

˙̂
CD0i

= Γ−1Proj


ĈD0i

, kΨT
i ėi +

∑

(i,j)∈E

φ̇ijΨ
T
i [I3, Ø3]A

T
ij



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Fci
=

∑

(i,j)∈E

[I3, Ø3]A
T
ij

k + AijAT
ij

(
−Ȧij q̇ij − AijFnij

− kdφ̇ij

)

will ensure that all signals are bounded, the signals ėi and

φ̇ij asymptotically converge to zero.

IV. SIMULATIONS

The performance of three aircraft flying in V-formation

along a straight path is evaluated in the three dimensional

case. Each aircraft in the group starts from an arbitrary

location which does not satisfy the constraint equations. The

desired formation is defined as a V-shape with length of

edges equal to 100 m, and at the same height of 300 m.

The desired navigation trajectory for each vehicle within

the V-formation is taken as a straight line with constant

velocity 40 m/s. The information flow graph is defined as

aircraft 3 communicating with aircraft 1 and 2, while no

communication between aircraft 1 and 2. The initial positions

of the three aircraft are given by q1(0) = [200, 0, 125]T m,

q2(0) = [−100, 125, 125]T m, q3(0) = [100, 220, 180]T m,

and initial heading angles and flight path angles are zero.

The drag coefficients are CD0i
= 0.02 and Ki = 0.25 for

each aircraft. To evaluate the performance of the adaptive

controller, the initial value of the drag coefficient estimate

ĈD0i
is taken as 0.016 which reflects as a 20% uncertainty

on the true value. The adaptation gain value is chosen as

Γ = 10000. The lower and upper bounds on the parameter

for the projection algorithm are chosen as 0.014 and 0.026,

respectively, and the tolerance is chosen as ǫ = 0.25. The

gain parameters for each aircraft in the distributed control

algorithm are selected as c1 = 2, c2 = 2.8, kd = 2.6,

and k = 2.8. The simulation result is shown as a three-

dimensional view in Fig. 2. Each aircraft in the group starts

at the initial position denoted by ◦, and reaches a desired

triangle formation while approaching the desired navigation

trajectory. The corresponding inter-aircraft distance is shown

in Figure 3.
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Fig. 2. Three-dimensional view of triangle formation for three aircraft.

V. CONCLUSIONS

Based on the notion of constraint forces, we have de-

veloped a stable, distributed control algorithm for multiple
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Fig. 3. Distance between pairs of aircraft.

aircraft formation flight. The point-mass dynamics of each

aircraft is feedback linearized with the output as positions

of the center of gravity of the aircraft in an earth-based

reference frame. Given a formation, an information flow

pattern, and a desired trajectory, the distributed control

algorithm developed for each aircraft in the group is capa-

ble of achieving and maintaining the formation along the

desired group trajectory. Moreover, the adaptive control law

is applied in the external forces to compensate for the drag

coefficient parameter uncertainty. Simulation results on an

example formation of a group of three aircraft were shown

to corroborate the proposed algorithm.
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