
  

  

Abstract—In this work we examine the performance of 
Iterative Learning Control (ILC) for systems with non-
repeating disturbances and random noise.  Single-input, single-
output linear time-invariant systems and iteration-invariant 
learning filters are considered.  We find that a tradeoff exists 
between the convergence rate and converged error spectrum.  
Optimal filter designs, which are dependant on the disturbance 
and noise spectra, are developed.  We also present simple 
design guidelines for the case when explicit models of 
disturbance and noise spectra are not available.  A numerical 
design example is presented. 

I. INTRODUCTION 
TERATIVE learning control (ILC) [1]-[3] is used to 
improve the performance of systems that repeat the same 

operation many times.  ILC uses the tracking errors from 
previous iterations of the repeated motion to generate a 
feedforward control signal for subsequent iterations.  
Convergence of the learning process results in a feedforward 
control signal that is customized for the repeated motion, 
typically yielding very low tracking error. 

One of the standard assumptions in ILC is that input 
signals repeat [1], although in all physical implementations 
measurement signals are subject to random noise and the 
system may be affected by random disturbances.  Several 
specialized learning algorithms [4]-[7] have been developed 
in recent years for systems with stochastic disturbances.  
These learning algorithms provide asymptotic noise and 
non-repeating disturbance insensitivity, but rely on an 
iteration-varying and decaying learning filter.  Most 
applications of ILC, however, use simpler iteration-invariant 
learning filters.  Furthermore, decaying learning filters also 
decrease adaptability of the ILC to changes in deterministic 
disturbances that occur after initial convergence. 

In this work we examine the sensitivity of iteration-
invariant learning filters to mixed deterministic and 
stochastic disturbances for discrete-time (DT), single-input, 
single-output (SISO), linear time-invariant (LTI) systems.  
We show that there is a tradeoff between convergence rate 
and converged error spectrum where fast convergence 
results in largest error, while slow convergence results in 
smallest error.  Optimal learning filters that minimize 
converged error for a desired convergence designs are 
obtained.  The optimal filters are functions of the 
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deterministic and stochastic disturbance and noise spectra.  
Because it may be undesirable in some applications to 
accurately model and identify these spectra, simple design 
guidelines are also presented.  Finally, a numerical example 
is presented to demonstrate the optimal filter design. 

The remainder of this paper is organized as follows.  In 
Section II the problem setup is given with system and signal 
descriptions.  In Section III convergence and performance 
results are developed.  Optimal filter design is presented in 
Section IV.  Extensions and simple design guidelines are 
presented in Section V.  A numerical example is given and 
Section VI and conclusions are given in Section VII. 

II. SYSTEM DESCRIPTION 
We are interested in deriving frequency-domain results 

and therefore assume that our system operates on an infinite 
time horizon.  Consider the LTI, SISO DT system given by, 
 ( ) ( ) ( ) ( ) ( )qj j je k P u k d k w k= − + +  (1) 

where 0,1,k = …  is the time index, 0,1,j = …  is the 
iteration index, q is the forward time-shift operator 

( ) ( )q 1x k x k= + , q-1 is the backward time-shift operator 

( ) ( )1q 1x k x k− = − , u is the control input, e is the error, d  
is a deterministic signal, w is a stationary random 
disturbance, and P is a stable system.  Iteration-invariant (II) 
disturbances [8] and II initial conditions [9] can be captured 
in ( )d k .  We assume that the error measurement, ( )ˆ je k , is 
corrupted by noise as, 
 ( ) ( ) ( )ˆ j j je k e k v k= + , (2) 
where v is stationary random noise.  Consider the first-order 
ILC algorithm, 
 ( ) ( ) ( ) ( ) ( )1 ˆq qj j ju k Q u k L e k+ ⎡ ⎤= +⎣ ⎦ . (3) 

A diagram of the complete system is shown in Figure 1.  We 
assume the following: 

A1) ( )0 0u k = . 

A2) ( )d k M≤ . 

A3) ( ) ( )
1 21 2E 0j jw k v k⎡ ⎤ =⎣ ⎦  for all 1 2 1 2, , ,j j k k . 

A4) ( ) ( )
1 21 2E 0j jw k w k⎡ ⎤ =⎣ ⎦ , ( ) ( )

1 21 2E 0j jv k v k⎡ ⎤ =⎣ ⎦ ,  

 ( ) ( )
1 1 2E 0jw k d k⎡ ⎤ =⎣ ⎦ , ( ) ( )

1 1 2E 0jv k d k⎡ ⎤ =⎣ ⎦ , 

 for 1 2j j≠  and all 1 2,k k . 

A5) ( )qP  is a rational function with relative degree 0. 
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Assumption A5 can be relaxed to include systems with 
nonzero relative degree.  In the case of relative degree, 

0m ≠ , the control signal can be shifted left by m samples so 
that the sequence of control inputs is 

( ) ( ) ( ){ }, 1 , 2 ,j j ju m u m u m− − − … .  That is, we replace 

( )ju k  in (1) with ( )ju k m−  so that we have, 

 ( ) ( ) ( ) ( ) ( )qj j je k P u k m d k w k= − − + + . (4) 

We then define a ‘new’ plant, ( ) ( )q q qm
newP P= , which has 

zero relative degree and results in 
 ( ) ( ) ( ) ( ) ( )qj new j je k P u k d k w k= − + + . (5) 
This process is possible in ILC because the entire sequence 
of control inputs for iteration j is calculated before the 
iteration begins.  Therefore, it does not violate causality to 
apply the control sequence m time steps early. 

In this work we are primarily interested in signal spectra.  
We define the spectrum of a signal, ( )s t , as, 

 ( ) ( ) i
s sR e ωτ

τ
ω τ∞ −

=−∞
Φ = ∑ , (6) 

where, 
 ( ) ( ) ( )0s t

R E s t s tτ τ∞

=
= +⎡ ⎤⎣ ⎦∑ , (7) 

is the autocorrelation.  

( )qP

( )qL( )qQIteration
Delay

( )kd ( )kjw

( )kje

( )kjv

( )kju

ILC Algorithm

( )1 kju +

 
Fig. 1.  Diagram of iterative learning control system. 

III. CONVERGENCE AND PERFORMANCE 
In this section we obtain the power spectrum of the 

asymptotic error, as well as sufficient conditions for its 
convergence, and the iteration-domain convergence rate.  
We begin by deriving the closed-loop 2-dimensional system 
by rewriting (1) as, 
 ( ) ( ) ( ) ( ) ( )q j j jP u k e k d k w k= − + + , (8) 
multiplying (3) by P, 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1q q q

q q q q ,

j j

j j

P u k Q P u k

L P e k L P v k

+ ⎡= ⎣
⎤+ + ⎦

 (9) 

and substituting (8) into (9) yielding, 

 

( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1

q 1 q q

1 q q

q q q .

j j

j j

j

e k Q L P e k

Q d k w k Q w k

Q L P v k

−

−

−

= −⎡ ⎤⎣ ⎦
+ − + −

−

 (10) 

We cannot find the power spectrum of je  from the 

recursive solution in (10) because 1je −  is correlated with 

1jw − .  Therefore, we first find the nonrecursive solution to 
(10) as, 

 
( ) ( ) ( )

( ) ( ) ( )( ) ( )
1

1 1
0

q

q ,

j j

j

r j r j r j
r

e k X d k

Y w k v k w k
−

− − − −
=

=

+ + +∑
 (11) 

for 1j ≥ , where 

 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

1

0

q q 1 q q

q 1 q q 1 q ,

q q 1 q q q q q .

j

j

j r

r
r

r

X Q L P

Q L P Q

Y Q L P Q L P

−

=

⎡ ⎤= −⎣ ⎦

⎡ ⎤+ − −⎣ ⎦

⎡ ⎤= − −⎣ ⎦

∑  (12) 

The nonrecursive solution (11), (12) can be verified by 
substituting into (10).  The verification is omitted here due 
to space constraints.  A block diagram of the nonrecursive 
solution is shown in Figure 2. 

( )qjX( )kd

( )kjw

( )1 kjw −

( )1 kjv −

( )2 kjw −

( )2 kjv −

( )0 kw

( )0 kv

( )0 qY

( )1 qY

( )1 qjY −

( )kjede
te

rm
in

is
tic

st
oc

ha
st

ic

 
Fig. 2.  Block diagram for the nonrecursive solution. 

From (11), (12) we can now find the power spectrum of 
the error for the jth iteration as, 

 
( ) ( ) ( )

( ) ( ) ( )( ) ( )

2

1 2

0
.

j

i
e j d

j
i

r w v w
r

X e

Y e

ω

ω

ω ω

ω ω ω
−

=

Φ = Φ

+ Φ + Φ + Φ∑
 (13) 

Theorem  1:  If 

 
[ ]

( ) ( ) ( )
,

max 1 1i i iQ e L e P eω ω ω

ω π π∈ −
⎡ ⎤− <⎣ ⎦ , (14) 

then the error power spectrum converges and, 
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( ) ( )

( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( )( )

2

2

2

2

lim

1

1 1

.
1 1

je ej

i

d w
i i i

i i i

w v
i i i

Q e

Q e L e P e

Q e L e P e

Q e L e P e

ω

ω ω ω

ω ω ω

ω ω ω

ω ω

ω ω

ω ω

∞ →∞
Φ Φ

−
= Φ + Φ

⎡ ⎤− −⎣ ⎦

+ Φ + Φ
⎡ ⎤− −⎣ ⎦

�

 (15) 

 Proof:  For compactness in the following, we drop the 
frequency arguments, but note that the argument for systems 
is ie ω  and the argument for signal spectra is ω .  Let 

[ ]1A Q LP= − .  From (12),(13), 

( )

( )

( )

( )

( )

( )

21

0

1 2

0

12

0

21

0

1 2

0

12

0

lim lim 1

lim ,

lim 2 1 cos

1

lim ,

lim lim 2 1 cos

lim

j

j
j r

e dj j r

j
r

w v wj r

j
j j r

jj r

j
r

d
r

j
r

w v wj r

j
j j r

d j dj j r

j

A A Q

A QPL

A A A Q

A Q

A QPL

A A A Q

θ

θ

−

→∞ →∞
=

−

→∞
=

−

→∞
=

−

=

−

→∞
=

−

→∞ →∞
=

→∞

Φ = + − Φ

+ Φ + Φ + Φ

⎡
= + −⎢

⎣
⎤

+ − Φ⎥
⎥⎦

⎡ ⎤
+ Φ + Φ + Φ⎢ ⎥

⎣ ⎦

= Φ + − Φ

+

∑

∑

∑

∑

∑

∑

( )

21
2

0

1 2 2

0

1

lim .

j
r

d
r

j
r

w v wj r

A Q

A QPL

−

=

−

→∞
=

− Φ

+ Φ + Φ + Φ

∑

∑

 

where ( )1

0
1jj r

j r
A A Qθ −

=
= ∠ − ∠ −∑ .  If (14), then,  

 

2

1

0

1 2

0

lim 0,

1lim ,
1

1lim ,
1

j

j

j
r

j r

j
r

j r

A

A
A

A
A

→∞

−

→∞
=

−

→∞
=

=

=
−

=
−

∑

∑

 

and (15) follows. □ 

 The necessary condition for convergence of the power 
spectrum, (14), is the familiar frequency-domain stability 
condition for ILC [1],[9].  In the following, we show that 
this condition is also related to the convergence rate of the 
spectrum. 
 By convention, we set ( ) ( ) 0j jw k v k= =  to find the 
convergence rate.  We assume convergence, and thus the 
asymptotic error can be found from (10) as 

 
( ) ( )

( )
( ) ( ) ( )( ) ( )

ˆ lim

1 q
1 q 1 q q

j je k e k

Q
d k

Q L P

∞ →∞

−
=

− −

�

. (16) 

Let ( )ˆ je e ω
∞ −Φ  be the power spectrum of  ( ) ( )ˆ je k e k∞ − . 

Definition 1:  The convergence rate of the system (1), (3) 
with ( ) ( ) 0j jw k v k= =  is the smallest γ  such that 

 ( ) ( )
1ˆ ˆj je e e eω γ ω

∞ + ∞− −Φ ≤ Φ  for all [ ],ω π π∈ − . (17) 

From (10) and (16), one can verify that, 

 
[ ]

( ) ( ) ( )
2

,
max 1i i iQ e P e L eω ω ω

ω π π
γ

∈ −
⎡ ⎤= −⎣ ⎦  (18) 

and, from (14) we find that  0 1γ≤ <  for stability. 

IV. OPTIMAL GAINS FOR MODEL-INVERSION ILC 
Here we consider the class of model-inversion learning 

functions, 
 ( ) ( ) ( )1i iL e P eω ωη ω −= , (19) 

where η ∈R  is the inversion gain.  To simplify the analysis 

in this section, we write ( )iQ e ω  in its Euler form, 

 ( ) ( ) ( )iiQ e e φ ωω ξ ω= , (20) 

where ,ξ φ ∈R , 0ξ ≥  and π φ π− ≥ ≥ .  Then from (15), 

 

( )
( ) ( )

( ) ( ) ( )( )
( ) ( )

( ) ( )
( ) ( )( )

( ) ( )( )

2

2

2

2

1

1 1

.
1 1

i

e d w
i

w v

e

e

φ ω

φ ω

ξ ω
ω ω ω

ξ ω η ω

ξ ω η ω
ω ω

ξ ω η ω

∞

−
Φ = Φ + Φ

− −

+ Φ + Φ
− −

 (21) 

We are interested in determining the best filter design (i.e. 
( )η ω∗ , ( )ξ ω∗ , and ( )φ ω∗ ) that will minimize the 

asymptotic power spectrum (15).  However, the results in 
this section will show that, as we approach the minimum 
asymptotic power spectrum, the convergence rate 
approaches 1 (very slow convergence).  Thus, we will find a 
tradeoff between asymptotic performance and convergence 
rate.  For practical reasons we specify an upper bound on the 
convergence rate to ensure that approximate convergence 
occurs in a reasonable number of iterations.  We pose this 
problem as the following optimal design problem. 

Optimal Design Problem 
 Given the ILC system (1), (3) with model-inversion 
learning (19), and maximum desired convergence rate γ , 

find ( )η ω∗ , ( )ξ ω∗ , and ( )φ ω∗  that solve 

 ( )
, ,

min eη ξ φ
ω

∞
Φ  such that 1γ γ≤ < . (22) 

 We solve the above optimal design problem in two 
steps.  Theorem 2 gives the solution for ( ) 0d ωΦ ≠  and 
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Theorem 3 gives the solution for ( ) 0d ωΦ = . 

Theorem 2:  If ( ) 0d ωΦ ≠ , 

 

( ) ( ) ( )
( )

( )

( ) ( )( )
( ) ( ) ( )( )

( )
1

2

1 1
2 2

, ,
1

min

1

1 1

e

d w v
w

d w v

η ω ξ ω φ ω
γ ω γ

ω

γ ω
ω

γ ω γ

∞

≤ <

Φ

− Φ Φ + Φ
= + Φ

+ Φ + − Φ + Φ

 (23) 

which is achieved by, 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )1 1 1

2 2 2

1

1 1
d

d w v

γ ω
η ω

γ ω γ γ ω ω
∗ − Φ

=
+ Φ + − Φ + Φ

, 

  (24) 

( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

1 1 1
2 2 2

1 1
2 2

1 1

1 1
d w v

d w v

γ ω γ γ ω ω
ξ ω

γ ω γ ω ω
∗

+ Φ + − Φ + Φ
=

+ Φ + − Φ + Φ
, 

  (25) 
 ( ) 0φ ω∗ = , (26) 

with convergence rate γ γ∗ = . 

 Proof:  Again, for compactness, we will drop the 
frequency arguments.  Assume 0ξ ≠  and use the change of 
variables, 1 cη ξ= − .  We have that 

( ) ( )1 1Q LP cξ η− = − =  and therefore, from (18), 
1

2c γ= .  Thus, the convergence rate constraint is a 
constraint on c, 
 1

2c γ≤ . 
With the change of variables, 

 ( )
2 2

2 2

1
.

11

i

e d w v wi

e c
cce

φ

φ

ξ ξ
∞

− −
Φ = Φ + Φ + Φ + Φ

−−
 

We first solve for φ∗  by solving 0e φ φ
φ

∗∞ =
∂Φ ∂ =  as, 

 

( )

( ) ( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

2

2

2

22

22

2

222

2

222

1
0,

1 1

1 2 cos 0,
1 2 1 cos 1

2 1 2 1 cos 1 sin

2 1 1 2 cos sin
0,

1 2 1 cos 1

2 1 1 sin
0,

1 2 1 cos 1

0.

i

di

d

e

e

φ

φ

ξ

φ ξ η

ξ φ ξ
φ ξ η φ ξ η

ξ ξ η φ ξ η φ

ξ η ξ φ ξ φ

ξ η φ ξ η

ξη ξ η φ

ξ η φ ξ η

φ∗

−∂
Φ =

∂ − −

∂ − +
Φ =

∂ − − + −

⎛ ⎞⎡ ⎤− − + −⎣ ⎦⎜ ⎟
⎜ ⎟⎜ ⎟⎡ ⎤− − − +⎣ ⎦⎝ ⎠ =

⎡ ⎤− − + −⎣ ⎦
⎡ ⎤+ −⎣ ⎦ =

⎡ ⎤− − + −⎣ ⎦
=

 

We then have, 

 
( )
( )

( )
( )( ) ( )

2 2

2

1
.

1 11
e d w v w

c
c cc

ξ ξ
∞

− −
Φ = Φ + Φ + Φ + Φ

− +−
 

We find ξ ∗  by solving 0e ξ ξ
ξ

∗∞ =
∂Φ ∂ =  as, 

 

( )
( )

( )
( ) ( ) ( )

( )( ) ( )( )( )
( ) ( )( )
( ) ( )( )

2

2 1 2
0 ,

1 11

0 1 1 1 ,

1 1
.

1 1

d w v

d w v

d w v

d w v

c

c cc

c c c

c c c
c c

ξ ξ

ξ ξ

ξ

∗ ∗

∗ ∗

∗

− −
= Φ + Φ + Φ

− +−

= − + Φ + − − Φ + Φ

+ Φ + − Φ + Φ
=

+ Φ + − Φ + Φ

 

Then, 

 

( ) ( )( )
( ) ( )( )

( )
( ) ( )( )
( ) ( )( )

( )( )
( )

( ) ( )
( ) ( )( )

( )
( ) ( )( )

( )

( ) ( )
( ) ( )( )

2

2

2

2 2

2

2 2

2

1 1
1

1 1

1

1 1
1 1

1 1

,

1

1 1

1
,

1 1

1
1 1

d w v

d w v
e d

d w v

d w v

w v w

w v
d

d w v

d
w v w

d w v

d w v

d w v

c c c
c c

c

c c c
c

c c
c c

c

c c

c

c c

c
c c

∞

⎛ ⎞+ Φ + − Φ + Φ
−⎜ ⎟⎜ ⎟+ Φ + − Φ + Φ⎝ ⎠Φ = Φ

−

⎛ ⎞+ Φ + − Φ + Φ
−⎜ ⎟⎜ ⎟+ Φ + − Φ + Φ⎝ ⎠+

− +

⋅ Φ + Φ + Φ

− Φ + Φ
= Φ

+ Φ + − Φ + Φ⎡ ⎤⎣ ⎦

− Φ
+ Φ + Φ + Φ

+ Φ + − Φ + Φ⎡ ⎤⎣ ⎦
− Φ Φ + Φ

=
+ Φ + − Φ + Φ

.w+ Φ

 

Now, 
( ) ( )

( ) ( )( )
( ) ( )( ) ( )

( ) ( ) ( )
( ) ( )( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )( )
( ) ( )

22

22

22

1
,

1 1

1 1

1
,

1 1

1 1

1 1
,

1 1

2 2
1

e d w v

d w v

d w v d w v

d w v d w v

d w v

d w v d w v

d w v d w v

d w v

d w v d w v

c
c c c

c c

c

c c

c c

c c
c c

c

∞
∂Φ − Φ Φ + Φ

=
∂ + Φ + − Φ + Φ

⎛ ⎞− + Φ + − Φ + Φ Φ Φ + Φ⎡ ⎤⎣ ⎦⎜ ⎟
⎜ ⎟− − Φ Φ + Φ Φ − Φ + Φ⎡ ⎤⎣ ⎦⎝ ⎠=

+ Φ + − Φ + Φ

⎛ ⎞− + Φ Φ + Φ − − Φ Φ + Φ
⎜ ⎟
⎜ ⎟− − Φ Φ + Φ + − Φ Φ + Φ⎝ ⎠=

+ Φ + − Φ + Φ

− Φ Φ + Φ + Φ Φ + Φ
=

( ) ( )( )
.

1d w vc c+ Φ + − Φ + Φ

 

Recall the constraint 1
2 1c γ≤ < .  Therefore, 0e c

∞
∂Φ ∂ <  

for 1
2c γ≤  and hence the optimal lies on the constraint, 

 1
2c γ∗ = . 

With the appropriate substitutions, we have arrived at (23)-
(26). 

Now, assume that 0ξ ∗ = .   Then, e d w∞
Φ = Φ + Φ , which 
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is always larger than (23) for ( ) 0d ωΦ ≠ , so the optimal 
solution must be (23)-(26). □ 

Remark 1:  As discussed earlier, there is a tradeoff 
between the asymptotic error and the convergence rate.  
From Theorem 2 we find that the minimum spectrum is 
obtained when the convergence rate approaches 1 (very 
slow convergence), ( ) ( )1lim e wγ ω ω

∞

∗
→ Φ = Φ .  The 

minimum is ( )w ωΦ  because wj adds directly to the error, as 
shown in Figure 2.  The best that can be done is for ILC to 
be insensitive to the random disturbances and noise from 
previous iterations, through the ( )qrY  terms. 

Remark 2:  It has been a long-held belief that zero-phase 
filters for Q provide the best performance [10],[11].  To the 
authors’ best knowledge, the result in Theorem 2 is the first 
proof of their optimality. 

For completeness, the following theorem obtains the 
optimal ILC for ( ) 0d ωΦ = .  That is, the case where there 
input signals have no repeatable component. 

Theorem 3:  If ( ) 0d ωΦ = , 

 
( ) ( ) ( )

( )

( ) ( )
, ,

1

min e wη ω ξ ω φ ω
γ ω γ

ω ω
∞

≤ <

Φ = Φ , (27) 

which is achieved by, 
 ( ) 0ξ ω∗ = , (28) 

with convergence rate 0γ ∗ = . 

Proof:  From (21) we have, 

 
( )

( )
2

2
1 1

e w v w w

ξη

ξ η∞
Φ = Φ + Φ + Φ ≥ Φ

− −
 

because ( ) 2
1 1ξ η γ− = < .  Clearly, 0ξ ∗ =  gives the 

minimum with convergence rate 0γ ∗ = . □ 

As expected, Theorem 3 verifies that when the input 
signal has no repeated component, the best performance is 
obtained when the ILC is disabled, or ( ) 0ξ ω∗ = . 

Using the results of the above theorems we can construct 
the noise sensitivity plot in Figure 3.  As discussed in 
Remark 1, noise sensitivity of the optimal ILC decreases 
with increasing convergence rate (slow learning).  It is worth 
noting that the spectrum for the 0th iteration, without ILC, is 

d wΦ + Φ .  Therefore, performance always improves using 
the optimal gains, as we might expect, but the performance 
improvement depends on the signal-to-noise ratio and 
desired convergence rate.  Figure 3 shows that given any 
desired performance level  desired

e w∞
Φ > Φ , one can always 

find a sufficiently slow convergence rate that meets or 
exceeds it. 
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Fig. 3.  Noise sensitivity of the optimal ILC (23)-(26). 

V. EXTENSIONS 
In this section we consider extensions of the previous 

results to several issues of practical importance.  These 
include model uncertainty robustness, finite length 
iterations, and filter construction. 

A. Model Uncertainty Robustness 
Using standard techniques [9],[12], the above results can 

be easily extended to provide robust stability for plants with 
frequency-domain bounded uncertainty 
 ( ) ( )i iP e P eω ω< . 

Recall the sufficient stability condition (14), rewritten here 
using the optimal results from Theorem 2, 

 
[ ]

( ) ( ) ( ) ( )1

,
ˆmax 1 1i iP e P eω ω

ω π π
ξ ω η ω∗ ∗ −

∈ −
⎡ ⎤− <⎣ ⎦ , 

where ( )ˆ iP e ω  is a model of the bounded uncertain system.  

Equivalently, the sufficient stability condition can be written 
as, 

 ( )
( ) ( ) ( )1

1
ˆ1 i iP e P eω ω

ξ ω
η ω

∗

∗ −
<

−
, for [ ],ω π π∈ − ,  

or, 

 ( )
( ) ( ) ( )1

1
ˆ1 i iP e P eω ω

ξ ω
η ω

∗

∗ −
≤

+
, for [ ],ω π π∈ − . 

Therefore, we can define a new, robust Q-filter with 

 ( ) ( )
( ) ( ) ( )1

1min ,
ˆ1

r i iP e P eω ω
ξ ω ξ ω

η ω
∗ ∗

∗ −

⎧ ⎫⎪ ⎪= ⎨ ⎬
+⎪ ⎪⎩ ⎭

. (29) 

B. Finite Horizon 
In all real implementations of ILC, the time horizon is 

finite.  For finite time horizon, we approximate the spectrum 
of d using its Fourier Transform and scaling by the iteration 
length N as, 

 ( ) ( )
2

1

0

1 i kN
N N
d

k
d k e

N

ω

ω
− −

=

Φ = ∑ . (30) 

The optimal filters are then constructed by replacing 

( ) ( ) ( )( )Deterministic-to-Stochastic Ratio d w vω ω ωΦ Φ +Φ

slower 
convergence

( ) ( )w dω ωΦ + Φ

( )w ωΦ
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( )d ωΦ  with ( )N
d ωΦ  in (24) and (25). 

C. Filter Construction 
The optimal Q and L filters may be difficult or impossible 

to construct to exactly meet the optimal specifications, (24) 
and (25).  Two problems arise: the construction of a zero-
phase filter and optimally selecting a filter who spectrum 
best matches the optimal spectrum.  We present one solution 
to the former problem in Section VI using the so-called 
filtfilt technique.  The latter problem is the optimal model 
fitting problem for which extensive results are available in 
the field of system identification [13].   

D. Simple Design Guidelines 
In some applications it may not be cost-effective to 

develop accurate noise and disturbance spectra models for 
optimally shaping learning and Q-filters.  For these 
applications we distill the results in the Section IV into 
simple design guidelines based on an approximate or 
assumed deterministic-to-stochastic ratio (DSR), 

( ) ( ) ( )( )d w vω ω ωΦ Φ + Φ . 

Large DSR 
At frequencies where stochastic noise is very small, there 

is no penalty to fast, unfiltered learning.  Thus, for large 
DSR, we should have ( ) 1ξ ω∗ =  and ( ) 1η ω∗ = . 
Small DSR 

At frequencies where deterministic error is very small, 
there is little advantage to learning, so we should set 

( ) 0ξ ω∗ ≈  or ( ) 0η ω∗ ≈ .  The advantage to setting 

( ) 0η ω∗ ≈  and keeping ( ) 1ξ ω∗ ≈  is that the deterministic 
error will eventually be learned (although very slowly).  The 
advantage to setting ( ) 0ξ ω∗ ≈  is the improved robustness 
this offers (see Section V.A). 

The above guidelines are frequency-dependent and the 
designer may shape ( )ξ ω  and ( )η ω  as DSR changes in 
different frequency bands.  For example, for the illustration 
in Figure 4.a, the designer may shape ( )ξ ω  and ( )η ω  as in 
Figure 4.b.  This example results in the familiar model-
inversion learning with lowpass Q-filter [9],[12]. 

 
Fig. 4.  Illustration of simple design guidelines. a) Estimated 

DSR. b) Filter design. 

E. Coordinated Feedback and ILC Design 
A possibility not considered in the optimization is 

coordinated design of the feedback controller with the ILC.  
The analysis in Section IV was based on the optimal design 
for the given disturbance and noise spectra ( )w ωΦ  and 

( )v ωΦ , but feedback controller design has the possibility to 
shape those spectra.  Thus, a coordinated design strategy 
might involve designing the feedback controller to mitigate 

( )w ωΦ  and ( )v ωΦ , especially at frequencies where 
deterministic disturbances are large.  A similar approach is 
examined in more detail in [14]. 

VI. SIMULATION EXAMPLE 
In this section we demonstrate the derived results in a 

simulation example.  The plant is given by 
( ) ( )q 0.5q q 0.5P = − , and deterministic error is the pulse 

given by ( ) ( ) ( )100 200d k step k step k= − − − , where 

( ) {1, 1;step k k ≥� }0, . .o w .  Noise with variance 0.01 and 

colored by the highpass filter ( ) ( ) ( )q q 0.9 q 0.7vF = − −  is 
added to the measurement signal and disturbances are set to 
zero, ( ) 0jw k = .  Thus, 

 ( ) ( )
( )

1.81 1.8cos
0.01

1.49 1.4cosv

ω
ω

ω
−

Φ = ⋅
−

 and ( ) 0w ωΦ = . 

The time horizon is selected as N=300.  The power spectrum 
for 0ê  is approximated by (30) and shown, along with 

( )v ωΦ , in Figure 5.  The learning function is given by 

( ) ( )( )q q q 0.5 0.5qL η= − . 
A fast convergence rate, 0γ = , and a slow convergence 

rate, 0.95γ =  are selected for comparison.  Optimal η∗  and 

ξ ∗  are calculated from (24) and (25), respectively, and 
shown in Figure 6 for 0γ =  and in Figure 7 for 0.95γ = . 

We now construct filters that approximate the optimal η∗  

and ξ ∗  figures 6 and 7.  Our filters will need to have zero-
phase, which can be emulated by using the filtfilt technique 
[15] with a nonzero-phase filter.  The filtfilt process is given 
by the following steps 
1. The signal is filtered with the nonzero-phase filter, 

adding phase lag. 
2. The result is reversed in time and filtered again with 

the nonzero-phase filter, removing the phase lag. 
3. The result is again reversed in time. 
The resultant operation has zero phase and the square of the 
nonzero-phase filter’s magnitude spectrum.  Therefore, we 
are interested in finding filters (with nonzero-phase) whose 
squared magnitude spectrum approximates the power 
spectrums in figures 6 and 7.  The following filters are 
obtained and the square of their magnitude spectrum is 

ω 
Large 
DSR 

Reference 
(deterministic) 
Noise ( )ωΦ

Small 
DSR 

ω 

( )ξ ω

( )η ω

1 

b) a) 
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plotted in figures  6 and 7.  For 0γ = , we have ( )0 q 1fitη =  

and ( ) ( )0 q 0.5q q 0.5fitξ = − .  For 0.95γ = , we have 

( ) ( ) ( )0.95 q 0.2536q 0.030432 0.88q 0.176fitη = − −  and 

( ) ( ) ( )0.95 q 0.9q 0.81 0.91q 0.091fitξ = − − .  The approximated 
filters obtained here are intended for illustrative purposes 
and do not represent optimal fits. 

0 0.5 1 1.5 2 2.5 3
10

-4

10
-2

10
0

10
2

Frequency (rad/sample)

S
pe

ct
ru

m

 

 

Φd

Φv

 
Fig. 5.  Spectrum of d  and v. 
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Fig. 6.  Filter approximations for 0γ = . 
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Fig. 7.  Filter approximations for 0.95γ = . 
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Fig. 8.  Convergence behavior. 
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Fig. 9.  Error on the 60th iteration. 

 The convergence of the error rms is shown in Figure 5 
and Figure 6 shows the error on the 60th iteration.  These 
results illustrate that slower convergence rates can be used 
effectively to decrease the converged error. 

VII. CONCLUSIONS 
In this paper we have developed frequency-domain results 

for ILC systems with mixed deterministic and stochastic 
disturbances.  Optimal filter design based on these results 
were obtained and demonstrated a fundamental tradeoff 
between convergence rate and converged performance.  
Several extensions were considered including robust design 
and finite-horizon design.  For applications where explicit 
models of the disturbance and noise spectra may not be 
available, simple design guidelines were presented.  Finally, 
a numerical example demonstrating an application of the 
optimal design was presented.  The example illustrated the 
converged result versus converged performance tradeoff. 
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