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Abstract— A new tracking filtering algorithm for a class
of multivariate dynamic stochastic systems is presented. The
system is represented by a set of time-varying discrete systems
with non-Gaussian stochastic input and nonlinear output. New
concept such as hybrid characteristic functions is introduced
to describe the stochastic nature of the dynamic conditional
estimation errors, where the key idea is to ensure the distri-
bution of the conditional estimation error to follow a target
distribution. For this purpose, the relationships between the
hybrid characteristic functions of the multivariate stochastic
input and the outputs, and the properties of the hybrid
characteristic function are established. A new performance
index of the tracking filter is then constructed based on the
form of the hybrid characteristic function of the conditional
estimation error. An analytical solution, which guarantees the
filter gain matrix to be an optimal one, is then obtained.

Index Terms— Dynamic stochastic systems; characteristic
functions; optimal tracking control; hybrid random vectors;
optimal filtering.

I. INTRODUCTION

TO reduce the effect of noises, research into filtering
design has been carried out for many years. Many ap-

proaches have been developed and widely used successfully
in real applications following the development of the Kalman
filtering (KF) algorithm [1], [2], [10]. Further examples are
the extended Kalman filters (EKF), the H∞ filters or robust
filters. The Extended Kalman filters [8] or the Unscented
Kalman Filters (UKF)[21] focus on nonlinear systems or
uncertain systems with Gaussian white noise random dis-
turbances. However, due to the presence of the nonlinearity
in the system dynamics, the system output and the estimation
error can generally be non-Gaussian. On the other hand, the
robust estimation includes the minimum variance filtering
[19], [20], the H∞ filtering [22] and the admissible variance
constraint filtering [27], etc. However, all the performance
indices in the robust filtering design are still the mean and
variance of the estimation errors.mprove

An alternative group of filtering approaches are based upon
the use of probability density functions (PDFs), where the
conditional PDFs of the system state vector are numerically
calculated using the system measurements and the estimated
state vector can then be formulated using the obtained
conditional PDFs [3], [7], [14].

Based upon the above discussions, it can be concluded
that most of the filter design techniques have used the mean
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and variance criterion for optimizing their estimation errors
and residuals under the assumption that the estimation errors
can be treated as Gaussian random processes. However, this
assumption is strict for many real systems and therefore
limits the use of the filter to non-Gaussian and nonlinear
systems because the mean and variance cannot capture all
features of non-Gaussian noise and determine the shape of
its PDF. In this paper, we aim to develop a new filtering
algorithm by shaping the conditional PDFs of the estimation
error signals ([13], [23]).

In the following, except for specially pointing out, matri-
ces are assumed to have appropriate dimensions. For two real
vectors v1 and v2, the notation v1 ¹ v2 is used to denote that
every element of v2 is no less than the corresponding one of
v1. v1 ≺ v2 and v1 º v2 have the similar meanings. diag{·}
is used to denote a diagonal matrix. E(·) and Var(·) represent
mathematical expectation and variance of random variables.
ϕZ(· · · ) represent the (hybrid) characteristic function of the
(hybrid) vector Z. f(·) is the conjugate function of f(·). In

represents an n × n dimensions identity matrix. MT is the
transpose of the matrix M .

II. PRELIMINARIES

A. System model and estimation error

Consider the following stochastic nonlinear systems,

xk+1 = Akxk + Gk+1wk+1

yk = H(xk) + vk,
(1)

where xk ∈ Rm is the state, yk ∈ Rl is the output, wk ∈ Rn

and vk ∈ Rl are the random disturbance. Ak and Gk are two
known time-varying system matrices.

wk can be an arbitrary bounded independent random
vector(or hybrid random vector, see the following definitions)
rather than Gaussian input. The following assumptions are
required in this paper.

Assumption 2.1: {wk} and {vk} are bounded, stationary
processes. {wk} , {vk} and x0 are mutually independent. wk

has a known distribution function denoted by Fw(x) with
|E(wk)| < +∞,Var(wk) < +∞. vk has a known bounded
mean value |E(vk)| < +∞.

Assumption 2.2: [11] H(·) is a known Borel measurable
and smooth vector-value nonlinear function of its arguments.

For the dynamic system given by (1), a full order ”observer
type” filter can be adopted as follows,

x̂k+1 = Akx̂k + Uk(yk − ŷk)
ŷk = H(x̂k) + E(vk).

(2)

where Uk ∈ Rm×l is a gain matrix to be determined. Denote
ek = xk− x̂k, then the conditional estimation error equation
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satisfies

ek+1 = Akek + Gk+1wk+1 − Uk(yk − ŷk) (3)

where ek ∈ Rm. A desired filter should ensure that a measure
of ek+1 be minimized.

As Guo and Wang [11] pointed out, under a set of
given Ak, Gk+1, yk, ŷk and Uk, ek+1 can be represented
by a sum of two independent random vectors Akek and
Gk+1wk+1, as well as a measurable term −Uk(yk − ŷk).
Thus, the probability of ek+1 is a conditional probability
related to the probabilities of both ek and wk+1 for given
Ak, Gk+1, yk, ŷk and Uk. For simplicity, γek

(·) and ϕek
(·)

are used to represent the conditional joint PDF and the
conditional characteristic function of ek, respectively.

The criteria that can be used to assess the accuracy of
such a filtering algorithm relies on the statistic nature of the
conditional estimation error ek, which is comprehensively
embedded in the PDF (or characteristic function) of the
conditional estimation error ek. Thus, the filter design can
be performed by minimizing the following performance
function at every sampling time k.

J =
∫

g(x) log
g(x)
γ(x)

dx + UT
k RkUk (4)

where g(x) is a pre-specified PDF for the conditional es-
timation error PDF γek

(x) to follow. In practice g(x) can
be selected as a narrowly distributed Gaussian PDF. This
means that the filtering design should be such that the error
PDF is made as narrow and as Gaussian as possible [23].
The characteristic function is employed to formulate γek

(x)
using equation (3).

B. Hybrid characteristic functions

The following definitions on hybrid random vectors, hy-
brid probabilities and hybrid characteristic functions are
introduced to generalize some conventional concepts in prob-
ability theory.

Definition 2.1: [16] If a random variable z only has a
value P (z = c) = 1, then it is called as a degenerated
distribution and the variable is referred to as a degenerated
variable.

Definition 2.2: A random vector Z ∈ Rm is called as
a hybrid random vector [5], [16], [17] if it contains both
continuous-valued and discrete-valued random variables. Let
zC ∈ Rm1 and zD ∈ Rm2 be a continuous-valued random
vector and a discrete-valued random vector, respectively, with
m = m1 + m2. Then their related probability, which is
referred to as a hybrid probability [11], is defined as

P (zC ¹ δ, zD = σi)
∆= P (zC ¹ δ)P (zD = σi), (5)

where δ ∈ Rm1 , σi ∈ Rm2 , i = 1, 2, · · · , N . Similarly, its
hybrid probability distribution function [11] is defined as

F (δ, zD ¹ σi) =
∑

zD¹σi

P (zC ¹ δ)P (zD ¹ σi). (6)

In this context, the corresponding PDF is called as a hybrid
probability density function (HPDF) [11].

Definition 2.3: The characteristic function of a hybrid
random vector Z = [zT

C ∈ R1×m1 , zT
D ∈ R1×m2 ]T is called

as a hybrid characteristic function, which is defined by

ϕZ(t1, · · · , tm) = E{exp(jtZ)} =
= E{exp(jtCzC)}E{exp(jtDzD)}

=
∫

Ω

exp

(
j

Cm1∑

k=C1

tkzk

)
dF (δ, zD ≺ +∞)

×
(

N∑

k=1

(exp(jtDσk)pk)

)

(7)

where j =
√−1 is the imaginary number unit, tC ∈

R1×m1 , tD ∈ R1×m2 , σk ∈ Rm2 , P (zD = σk) = pk, k =
1, 2, · · · , N , C1 and Cm1 represent the first and the last
variable of the continuous-valued sub-vector.

In the third equation, zD ≺ +∞ rather than zD ¹ σi as
shown in equation (6) is given because the discrete-valued
sub-vector can include both finite and infinite components in
the hybrid characteristic function (7).

Definition 2.4: If a variable contains a continuous-valued
part and a discrete-valued part then the variable is referred
as a mixed random variable denoted by zM . Similarly, the
related probability is taken as the mixed probability denoted
by P (zMC ¹ δ, zMD = σi). A hybrid random vector Z
which contains some mixed random variables (zM ∈ Rm3

) is called as system-output-type hybrid (SOTH) random
vector. The corresponding characteristic function is therefore
referred to as an SOTH Characteristic Function.

Definition 2.5: If a random vector Z only contains
continuous-valued variables and degenerated variables then
it is called as a strict system-output-type hybrid (SSOTH)
random vector. The corresponding characteristic function is
therefore referred to as an SSOTH Characteristic Function.
Based upon the definition of the hybrid characteristic func-
tion, the SSOTH characteristic function is given by

ϕZ(t1, · · · , tm) =
∫

Ω

exp

(
j

Cm1∑

k=C1

tkzk

)
dF (δ, zD ≺ +∞)

× exp(j
Dm2∑

i=D1

σiti)

(8)

where D1 and Dm2 represent the first and the last variable
of the degenerated variables.

Remark 2.1: In this paper, the SOTH or the SSOTH is
refer to that the hybrid are brought together by the linear
mapping [11] or (and) the exogenous inputs.

In order to simplify the descriptions and technical formu-
lation procedures, in the following expressions only SSOTH
random vectors will be considered.

III. CONDITIONAL CHARACTERISTIC FUNCTION OF ek

Under Assumptions 1 and 2, from (3) it can be noticed
that one key task is to calculate the conditional characteristic
function of ek+1 using the conditional characteristic function
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of Akek and the characteristic function of Gk+1wk+1. In this
regard, the computation of hybrid characteristic functions of
the linear transformation and the algebraic sum operation
among hybrid random vectors will be described. For this
purpose, the following propositions is given.

Proposition 3.1: Let ϕZ(x) = ϕZ(x1, x2, · · · , xn) be an
SSOTH characteristic function of SSOTH random vector
Z ∈ Rn , and denote A ∈ Rm×n and b = [b1, b2, ..., bm]T as
two constant matrices. Then m dimensional random vector
Y = AZ + b is still an SSOTH random vector with its
characteristic function being given by

ϕY (t1, t2, · · · , tm) = ejtbϕZ(tA) (9)

where ϕY (t1, t2, · · · , tm) is the hybrid characteristic func-
tion of Y .

Proof: Using the definition of the hybrid characteristic
functions, it can be shown that

ϕY (t) = E[ejtY ] = E[ejt(AZ+b)]
= ejtbE[ej(tA)Z ] = ejtbϕZ(tA)

which is also an SSOTH random vector.
Proposition 3.2: Let an SSOTH random vector Z be

represented by Z = Z1 + Z2, where Z1 and Z2 are
two independent SSTOH random vectors with the same
dimension. Then its SSTOH characteristic function can be
represented as follows

ϕZ(t) = ϕZ1(t)ϕZ2(t) (10)

where ϕZ1(t) and ϕZ2(t) are the hybrid characteristic func-
tions of Z1 and Z2, respectively.

Proof: Again, using the definition of the hybrid char-
acteristic functions, it can be shown that

ϕZ(t) = E[exp(jt(Z1 + Z2))] = E[exp(jtZ1) exp(jtZ2)]
= E[exp(jtZ1)]E[exp(jtZ2)] = ϕZ1(t)ϕZ2(t)

Proposition 3.1 and 3.2 provide a way to compute the hybrid
characteristic function of the algebraic sum of any two
SSOTH random vectors. Thus, the following result can be
readily obtained,

Lemma 3.1: Under assumptions 1 and 2, the conditional
hybrid characteristic function of ek+1 can be formulated
recursively by

ϕek+1(t) = exp(−jUk(yk − ŷk)t)ϕsk
(t)ϕqk+1(t) (11)

where sk = Akek, qk+1 = Gk+1wk+1. ϕsk
(t) and ϕqk+1(t)

are the corresponding (conditional) hybrid characteristic
functions which can be calculated by using proposition 3.1.

Lemma 3.1 plays a key role in the filtering design of this
paper.

IV. FILTERING DESIGN

A. PDF tracking filtering

For the required filtering algorithm design such as the
minimum entropy filter [11] and the filter designed using
the performance index (4), the conditional PDF of the ek+1

need to be obtained as a starting point. If the conditional
hybrid characteristic function of ek+1 has been formulated
using Lemma 3.1, then its corresponding conditional hybrid
probability density function can be obtained by the inverse
transformation and the filter can be readily designed. How-
ever, the different linear transformations in (11) can result in
different PDF forms with which the filter design should be
treated differently. Furthermore, the design of the filter based
on the conditional PDF shaping needs another transformation
which will possibly increase the computation time and thus
may not be suited for the real time filtering. On the other
hand, the filter design can directly use the conditional char-
acteristic function simply because controlling the shape of
conditional hybrid probability density function is equivalent
to the shape control of its conditional hybrid characteristic
function. Thus, in the rest of the paper, we will only consider
the filter design based on the conditional hybrid characteristic
function by selecting a filtering gain matrix Uk. As a result,
the aim of the filter design is to select Uk such that ϕek

(t) is
made as close as possible to ϕg(t) (ϕg(t) is the given target
characteristic function).

B. Reselection of performance indices

The direct use of performance index (4) for the filter
design can be too complicated to be used in practice. An
alternative performance index should therefore be formed
which measures directly the difference between ϕek

(t) and
ϕg(t). In addition, since the SSOTH characteristic function
can still exhibit the same basic properties of normal charac-
teristic functions such as |ϕ(t)| ≤ 1 (where |·| is the complex
modulus), and ϕ(−t) = ϕ(t), we can use the characteristic
functions for SSOTH random variables to define the distance
between two characteristic functions. The following new
performance index

J1 =
{∫

Ω

K(t)ϕg(t) log
ϕg(t)
ϕek

(t)
dt

}2

+ UT
k RkUk

= J0 + UT
k RkUk

(12)

can be defined, where J0 =
{∫

Ω
K(t)ϕg(t) log ϕg(t)

ϕek
(t)dt

}2

,
and K(t) in equation (12) is a weighting function which
should be selected so as to make J0 a real number and
to guarantee the boundness of J0. In this index, the first
term is similar to the well known Kullback-Leibler distance
widely used in the information functional measure. The use
of such a new performance index allows the transfer of the
multiplication operations in equation (11) into a simple alge-
braic sum by using a ’logarithm’ operator. Simultaneously,
by minimizing this term, ϕek

(t) can be made as close as
possible to ϕg(t). The first term is zero for ϕg(t) = ϕek

(t)
(almost surely) and infinite if there is a set of a positive
Lebesgue measure on which ϕek

(t) ≡ 0 [13]. The second
term in equation (12) is again the soft constraint on the filter
gain matrix with Rk > 0 being a pre-specified weighting
matrix.

The effect of K(t) is similar to that in [25]. However, it
only needs to guarantee the boundness of its performance
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functions. Since |ϕ(t)| ≤ 1, it can be shown that

J0 =
{∫

Ω

K(t)ϕg(t) log
ϕg(t)
ϕek

(t)
dt

}2

=
{∣∣∣∣

∫

Ω

K(t)ϕg(t) log
ϕg(t)
ϕek

(t)
dt

∣∣∣∣
}2

≤
{∫

Ω

∣∣∣∣K(t) log
ϕg(t)
ϕek

(t)

∣∣∣∣ dt

}2

≤
{∫

Ω

|K(t)|
√

log2

∣∣∣∣
ϕg(t)
ϕek

(t)

∣∣∣∣ +
π2

4
dt

}2

(13)

To guarantee the uniform boundness of J0, it is sufficient
to select the weighting function |K(t)| > 0 such that the
following inequality

|K(t)|
√

log2

∣∣∣∣
ϕg(t)
ϕek

(t)

∣∣∣∣ +
π2

4
≤ M1 exp(−tM2t

T) (14)

holds, where tT ∈ Rm, M1 > 0 and M2 = MT
2 ∈ Rm×m

are pre-specified numbers and positive definite matrix, re-
spectively. Using (14), it can be further shown that if the
following inequality

0 < |K(t)| ≤ M ′
1 exp(−tM2t

T),M ′
1 ≤

2
π

M1 (15)

holds, then the boundedness of J0 can be guaranteed.
Moreover, if K(−t) = K(t), then J0 is a real number. To
summarize, we have the following theorem.

Theorem 4.1: Suppose the weighting function K(t) has
been selected so that 0 < |K(t)| ≤ M ′

1 exp(−tM2t
T)

and K(−t) = K(t), then J0 is a real number and J0 ≤
M2

1 πn/
∏n

i=1 ξi, where ξi, (i = 1, 2, · · · , n) are the diagonal
elements of M2 .

C. Optimal filter gain matrix

Once the performance index J1 is selected, the filter design
can be readily carried out by directly minimizing the selected
performance index. In order to provide the filter with a simple
structure, the instantaneous performance index J1 in (12) is
considered firstly in the design. For this purpose, Uk should
be calculated from

∂J1

∂Uk
= 0 (16)

which leads to

2RkUk +
∂J0

∂Uk
= 0 (17)

To obtain an analytical solution, J0 should be analyzed
first. Indeed, it can be shown that

J0 =
{∫

Ω

K(t)ϕg(t) log
ϕg(t)
ϕek

(t)
dt

}2

= a2
k + 2akbkUk + UT

k bT
k bkUk (18)

where it has been defined that

ak =
∫

Ω

K(t)ϕg(t) log ϕg(t)dt

−
∫

Ω

K(t)ϕg(t) log ϕsk
(t)dt

−
∫

Ω

K(t)ϕg(t) log ϕqk+1(t)dt

bk =
∫

Ω

K(t)ϕg(t)jt(yk − ŷk)dt. (19)

Substituting equation (18) into equation (17) yields

akbk +
(
bT
k bk + Rk

)
Uk = 0 (20)

and the filter gain matrix can be obtained immediately as
follows.

Uk = − (
bT
k bk + Rk

)−1
(akbk) (21)

From equation (20), the following condition on the second-
order derivative of J1 should also be satisfied at every
sampling time in order to guarantee the minimization result.

∂2J1

∂U2
k

= bT
k bk + Rk > 0 (22)

It shows that the solution of equation (21) is a global optimal
solution.

D. Filter analysis and synthesis

In this subsection, we will study the conditions under
which the filter error is stochastically, exponentially and ul-
timately bounded in the mean square sense. This will assure
the practical use of the obtained filter. For this purpose, the
following definition will be required.

Definition 4.1: [26] For system (3), the solution is
stochastically, exponentially and ultimately bounded in the
mean square sense if there exist constants α1 ≥ 0, α2 > 0
and β > 0 such that E ‖ek‖2 ≤ α1 + α2e

−βk, where
‖ek‖ ,

√
eT
k ek.

To simplify the expression, we introduce the following
concept on hybrid cumulate generation functions.

Definition 4.2: Let ϕZ(t) be a hybrid characteristic func-
tion of hybrid stochastic vector Z, the corresponding hybrid
cumulate generation function is log ϕZ(t). The correspond-
ing property of hybrid cumulate generation function can be
referred to the property of cumulate generation function.

Using the above definitions, the following result can be
obtained.

Theorem 4.2: Under the assumptions 1 and 2, if ‖Ak‖ ,
ρ(Ak) < 1 at each sampling time, then the error system (3)
is exponentially and ultimately bounded in the mean square
sense when the filtering strategy in (21) is applied.

Proof: Firstly, assume that ϕe0(t) = 1, then from (11)
it can be obtained that

log ϕek
(t) =

k−1∑

i=1

log ϕw(tÃiGi)− j
k−1∑

i=1

tÃiUi∆yi (23)
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where ϕw(·) is the characteristic function of the random
vectors wk. Denote

{
Ãi =

∏k−1
l=i+1 Al , i = 1, · · · , k − 2

Ãi = I , otherwise

and ∆yi = yi − ŷi, i = 1, · · · , k − 1. thus by denoting

θi(t) =
ϕ′′w(tÃiGi)ϕw(tÃiGi)− ϕ′w(tÃiGi)[ϕ′w(tÃiGi)]T

ϕ2
w(tÃiGi)

it can be shown that

E ‖ek‖2 = (−j)2
∂2 log ϕek

(t)
∂t∂tT

+
∥∥∥∥
(

(−j)
∂ log ϕek

(t)
∂t

)∥∥∥∥
2

|t=0 = −
k−1∑

i=1

θi(0)

−
k−1∑

i=1

(
ϕ′w(tÃiGi)
ϕw(tÃiGi)

− j(ÃiUi∆yi)T
)

×
(

ϕ′w(tÃiGi)
ϕw(tÃiGi)

− j(ÃiUi∆yi)T
)T

|t=0 (24)

where t = [t1, · · · , tm] and

∂2 log ϕek
(t)

∂t∂tT
,

m∑

l=1

∂2 log ϕek
(t)

∂t2l
,

ϕ′′w(tÃiGi) ,
m∑

l=1

∂2ϕw(tÃiGi)
∂t2l

,

ϕ′w(tÃiGi)) , ∂ϕw(tÃiGi)
∂t

.

The first equality can be proved by using the property of the
cumulate generation function. Denote E(wk) = µ ∈ Rm and
Var(wk) = δ ∈ Rm×m, then it can be observed that

−
k−1∑

i=1

θi(0) =
k−1∑

i=1

Tr{ÃiGiδG
T
i ÃT

i }+ µTGT
i ÃT

i ÃiGiµ

≤
k−1∑

i=1

ρ2i
mρ2

n(Tr{δ}+ µTµ)

where Tr represents the trace of a matrix, ρm =
max1≤i≤k−1 ρ(Ai) and ρn = max1≤i≤k−1 ρ(Gi), ρ(Gi) ,
‖Gi‖. Similarly, if ϕe0(t) 6= 1, then we have

−
k−1∑

i=1

ϕ′′w(tÃiGi)ϕw(tÃiGi)− ϕ′w(tÃiGi)[ϕ′w(tÃiGi)]T

ϕ2
w(tÃiGi)

∣∣∣∣∣
t=0

≤
k−1∑

i=1

ρ2i
mρ2

n(Tr{δ}+ µTµ)

+ ρ2k
m ρ2

n(Tr(Var(e0) + E(e0)TE(e0))

Therefore, if ‖Ak‖ < 1 , then the boundedness of
−∑k−1

i=1 θi(0) can be guaranteed. Denote

πi(t) =

(
ϕ′w(tÃiGi)
ϕw(tÃiGi)

− j(ÃiUi∆yi)T
)

In the following we will prove that −∑k−1
i=1 πi(0)πT

i (0) is
also bounded. For this purpose and from the above proof
procedure, we only need to prove that ‖Ui∆yi‖ is bounded.
Indeed, it can be shown that

‖Ui∆yi‖ =
∥∥ai(bT

i bi + Ri)−1bT
k ∆yi

∥∥
=

∥∥ai(bT
0 ∆yT

i ∆yib0 + Ri)−1bT
0 ∆yT

i ∆yi

∥∥
≤ ∥∥ai(bT

0 ∆yT
i ∆yib0 + Ri)−1

∥∥

×
∥∥(bT

0 ∆yT
i ∆yib0 + Ri)

∥∥∥∥bT
0

∥∥
b0bT

0

≤ ‖ai‖
‖b0‖ , b0 6= 0.

because otherwise one should come to the conclusion that

‖Ui∆yi‖ = 0

where bi = ∆yib0, b0 =
∫
Ω
K(t)ϕg(t)jtdt. From (25), it can

finally be concluded that

E ‖ek‖2 < +∞

The results in theorem 4.2 is a large-scale exponentially and
ultimately bounded in the mean square sense. In the sequel,
a local exponentially ultimately bounded filtering error in
the mean square sense will be formulated. At first, it can be
observed that system (3) can be approximated to read

ek+1 = (Ak − UkBk)ek + Uk

∑

i≥2

sie
i
k + Gkwk (25)

where Bk , ∂H(·)
∂xk

∣∣∣
xk=x̂k

, si , [si1, · · · , sin] and

ei
k , [ei11

k1 · · · ei1m

km , · · · , ein1
k1 · · · einm

km ]T. In which, sip ,
∂iH(·)

∂x
ip1
k1 ···∂xipm

km

∣∣∣∣
xk=x̂k

and
∑m

l=1 ipl = i, ipl ≥ 0, p =

1, · · · , n. Denote Âk = Ak − UkBk and S(ek) =
Uk

∑
i≥2 sie

i−1
k , then we have the following local result on

the exponentially and ultimately bounded error term in the
mean square sense.

Theorem 4.3: If there exists a constants C > 0 and
Uk such that

∥∥∥Âk

∥∥∥ +
∥∥∥Uk

∑
i≥2 siC

i−1
∥∥∥ = % < 1 and

E(‖Gkwk‖2) ≤ (1 − %)2C2, then ∀E ‖e0‖2 ≤ C2, the
solution of the system (3) is exponentially and ultimately
bounded in the mean square sense when the filtering strategy
in (21) is applied, where % is called as a convergence
exponent and 1− % is regarded as a noise damp exponent.

Proof: From (25), it can be computed that

eT
k+1ek+1 = eT

k (ÂT
k Âk + ST(ek)S(ek) + 2ÂT

k S(ek))ek

+ wT
k GT

k Gkwk + 2eT
k ÂT

k Gkwk

+ 2eT
k ST(ek)Gkwk (26)

When k=0, we should have the following

E(eT
1 e1) ≤ %2C2 + (1− %)2C2 + 2E ‖G0w0‖ %C

< %2C2 + (1− %)2C2 + 2(1− %)%C2

≤ θ2
1C

2, (0 < θ1 < 1) (27)
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because E ‖G0w0‖ <

√
E(‖G0w0‖2) As a result, it can be

further obtained that

E(eT
2 e2) < %2θ2

1C
2 + (1− %)2C2 + 2(1− %)%θ1C

2

≤ θ2
2(%θ1 + 1− %)2C2, (0 < θ2 < 1) (28)

E(eT
3 e3) < θ2

3(%θ2(%θ1 + 1− %) + 1− %)2C2

= θ2
3(%

2θ2θ1 + %θ2 − %2θ2 + 1− %)2C2(29)

Denote θ̃i = %i
∏i

l=1 θn−l.Thus it can be conjectured that

E(eT
k ek) ≤ θ2

k

(
k−1∑

i=1

θ̃i − %
k−2∑

i=1

θ̃i + 1− %

)2

C2,

(0 < θk < 1, k ≥ 2).

Indeed, this conjecture is certainly true when k = 2. Thus,
if we assume that it is also true for k = n, n ≥ 2; that is,

E(eT
nen) ≤ θ2

n

(∑n−1
i=1 θ̃i − %

∑n−2
i=1 θ̃i + 1− %

)2

C2. Then
for k = n + 1, it can be shown that

E(eT
n+1en+1) ≤ θ2

n+1

(
n∑

i=1

θ̃i − %
n−1∑

i=1

θ̃i + 1− %

)2

C2

(30)
Therefor the identity also holds for k = n + 1, and thus by
the principle of mathematical induction, the identity is valid
for all k ≥ 2.

Although the SSOTH random vectors are considered, all
the propositions, lemmas, and theorems can be applied to
SOTH random vectors.

V. CONCLUSIONS

Using the concept of PDF shaping, a new optimal tracking
filter design for multivariate stochastic systems subjected to
non-Gaussian noise is presented in this paper, where the key
idea is to select the filtering gain so that the PDFs of the
filtering error can be made to follow a target distribution
shape. This has therefore extended the existing minimum
variance based filtering algorithms. Indeed, if the targeted
distribution is a narrowly distributed Gaussian PDF, then
the proposed filter aims at obtaining a state estimation error
whose PDFs is made as close as possible to a Gaussian shape.
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