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Abstract— The main contribution of this chapter is the devel-
opment of a two step switched approach for global stabilization
and local performance of large angle maneuvers of satellites.
The first step consists of parameterizing the attitude dynamics
of the satellite by modified Rodriguez parameters (MRP) and
searching for a Lyapunov-based stabilizing controller using
Sum of Squares (SOS). In the second step, when the rigid body
is close to its desired attitude set point, the control switches
to a linear controller that can guarantee local performance
and that uses less computational operations to be implemented
in a microprocessor. The effectiveness of the proposed control
technique is shown in simulations for a large angle maneuver
corresponding to a satellite rotation about a fixed axis.

I. INTRODUCTION

Rigid-body attitude control is one of the most widely

studied problems within nonlinear control theory, largely

because of its importance in applications such as robotics,

high performance aircraft, underwater vehicles and space-

craft. In spacecraft applications, satellites are often required

to perform rapid and large angle maneuvers for various

missions, such as for multi-target acquisition or for point-

ing and tracking capabilities. These rapid maneuvers are

characterized by nonlinear rigid body dynamics because of

the cross coupling of angular velocity terms. To account

for this nonlinear coupling, many researchers have applied

various nonlinear control design approaches to meet these

challenges, specifically for spacecraft applications. George

Meyer [1] lays the foundations for the work on spacecraft

modeling by providing spacecraft dynamic models. Tsiotras

[2], [3], [4] extends these results using a Lyapunov function

that involves the sum of a quadratic term in the angular

velocities and a logarithmic term in the kinematic parameters

leading to the design of linear controllers. Crassidis et al. [5]

is the first reference to consider the problem of controlling

a spacecraft without full state feedback. The controller

is designed by minimizing the norm-squared local errors

between the predicted and desired quantities. A Lyapunov-

based adaptive controller that estimates external torques has

been developed by Schaub et. al. [6]. Lim [7] developed

a linear parameter varying controller, in which a single

quadratic Lyapunov function for each frozen linear time

invariant (LTI) system was used in a parameter variation set.

Raymond and Johan [8] used integrator backstepping design

for satellite attitude control based on quaternions. In previous

work of the authors [9], a two step integrated and systematic

approach for modelling and control of large angle attitude

maneuvers of a rigid body is developed.

Notice however that the cost, the processor workload

and the time-constraints in spacecraft development and de-

ployment projects curtail the opportunity for implementing

nonlinear control laws during entire missions. For example

in a pointing mission the satellite is always required to point

toward either the Sun or the Zenith. In such a mission,

nonlinear control is only needed during the acquisition

mode [10]. This motivates the use of switching between

a global nonlinear controller for acquisition mode and a

local linear controller for pointing mode that can guarantee

performance and that uses less computational operations to

be implemented in a microprocessor.

While the problem of attitude control and stabilization has

been a subject of much research, the problem of switching

between a stabilizing nonlinear controller and a performance

linear controller has not been explicitly considered for space-

craft to the best of our knowledge. In fact, designing a

controller that has both a large region of attraction and a

good local performance has been considered one of the most

interesting research problems in nonlinear control theory

[11]. It is fair to say that much of the switching work in

the literature is between linear models. However, switching

between a nonlinear controller and a local linear controller

was considered previously to implement anti-windup con-

trollers [12] and to swing up a pendulum [13]. In [14] a

fuzzy controller was used for swinging up a pendulum and

a linear state feedback controller was used for balancing the

pendulum in the upper position.

In this paper, a switching controller is proposed between

acquisition and pointing modes of a satellite maneuver that

can achieve both global stabilization and local performance.

The paper is divided into five parts and is organized as fol-

lows. Section 2 describes briefly rigid body attitude kinemat-

ics and dynamics. Section 3 formulates stabilizing controller

synthesis as an SOS feasibility problem and performance

controller synthesis as a linear quadratic regulator problem.

Section 4 presents the switching law. Finally, section 5

presents a numerical example.
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II. ATTITUDE KINEMATICS AND DYNAMICS

This section presents a brief review of the kinematics

and dynamics equations of motion for a three-axis stabilized

spacecraft using MRP.

A. Modified Rodriguez Parameters (MRP)

The MRP are a recent addition to the family of attitude

representations and are particularly well suited for describing

very large attitudes [10]. The MRP are able to describe an

orientation with only three parameters, instead of the four

parameters required by quaternions. Let Φ denote the prin-

cipal angle and let ê = (e1, e2, e3) denote the principal axis

associated with Euler’s theorem [10]. The Euler parameters

are then defined by

q1 = e1 sin (Φ/2)
q2 = e2 sin (Φ/2)
q3 = e3 sin (Φ/2)
q4 = cos (Φ/2)

(1)

where the first three elements, which indicate the direction

of the Euler axis, are usually grouped together and written

as q13 = ê sin (Φ/2). The fourth element, q4, is commonly

referred to as the scalar component of the quaternion vec-

tor and indicates the principal angle. The MRP vector σ

can be expressed in terms of the four quaternion elements

(q1, q2, q3, q4) as

σ =





q1/(1 + q4)
q2/(1 + q4)
q3/(1 + q4)



 . (2)

It can be seen from these equations that the MRP rep-

resentation has a geometric singularity at Φ = ±360◦,

which corresponds to q4 = −1 in (2). Thus, any rotation

less than a complete revolution can be expressed using

these parameters. Note however that complete revolutions

are generally not encountered in most attitude maneuvers as

the spacecraft would end in the same orientation as it started.

The kinematics differential equation can be written in terms

of the MRPs [15] as

σ̇ = Ω(σ)ω, (3)

where ω = [ωx ωy ωz]
T are the angular velocities of the

satellite about each of the principal body axes,

Ω(σ) =
1

4





1 − σ2 + 2σ2
1 2(σ1σ2 − σ3) 2(σ1σ3 − σ2)

2(σ2σ1 − σ3) 1 − σ2 + 2σ2
2 2(σ2σ3 − σ1)

2(σ3σ1 − σ2) 2(σ3σ2 − σ1) 1 − σ2 + 2σ2
3





and σ2 = σ2
1+σ2

2+σ2
3 . The MRP will be used throughout the

remainder of this paper for the attitude representation. The

next subsection describes the attitude dynamics equations.

B. Attitude Dynamics

The attitude dynamics are given by the Newton-Euler’s

moment equations [16] expressed in principal axes as

Ixω̇x + (Iz − Iy)ωyωz = Tx

Iyω̇y + (Ix − Iz)ωzωx = Ty (4)

Izω̇z + (Iy − Ix)ωxωy = Tz

where u = [Tx Ty Tz]
T are the control torques acting on the

satellite, and the principal moments of inertia Ix, Iy and Iz

are the components of the inertia tensor I given by

I =





Ix 0 0
0 Iy 0
0 0 Iz



 (5)

The state variable equations are obtained from combining

equations (3) and (4) and can be written in the form

ẋ = f(x) + Bu, (6)

where the state vector x = [ωx ωy ωz σ1 σ2 σ3]
T containing

the angular velocities and the MRP, and the inputs torque

vector u = [Tx Ty Tz]
T ,

















ω̇x

ω̇y

ω̇z

σ̇1

σ̇2

σ̇3

















=

















f1

f2

f3

f4

f5

f6

















+

















1/Ix 0 0
0 1/Iy 0
0 0 1/Iz

0 0 0
0 0 0
0 0 0





















Tx

Ty

Tz



 (7)

where f(x) is
f1 = [(Iy − Iz)/Ix]ωyωz, f2 = [(Iz − Ix)/Iy ]ωzωx

f3 = [(Ix − Iy)/Iz ]ωxωy

f4 =
1

4
[1 − σ2 + 2σ2

1 ]ωx +
1

4
[2(σ1σ2 − σ3)]ωy

+
1

4
[2(σ1σ3 − σ2)]ωz

f5 =
1

4
[2(σ2σ1 − σ3)]ωx +

1

4
[1 − σ2 + 2σ2

2 ]ωy

+
1

4
[2(σ2σ3 − σ1)]ωz

f6 =
1

4
[2(σ3σ1 − σ2)]ωx +

1

4
[2(σ3σ2 − σ1)]ωy

+
1

4
[1 − σ2 + 2σ2

3 ]ωz

C. Linearized Dynamics

Linearizing the nonlinear system (6) around an equilibrium

point yields a linear state space model

ẋ = Alx + Bu (8)

where

Al =

[

O O
O 1/4I

]

, I =





Ix 0 0
0 Iy 0
0 0 Iz



 , O =





0 0 0
0 0 0
0 0 0



 .

(9)

D. Problem statement:

Given attitude dynamics (6), the problem is to design

an attitude controller for large angle attitude maneuvers

of a satellite , a linear controller for local performance

and a stabilizing switching rule that switches between the

global nonlinear controller and the local linear controller.

The following steps are used in solving the problem.

1) Design a nonlinear controller for the nonlinear system

(6) using sum of squares.
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2) Design a linear controller for the linearized model (8)

using LQR.

3) Using the control Lyapunov function obtained in point

1, and the controller obtained in point 2, find the largest

region of attraction.

4) Propose a switching strategy between the nonlinear

controller and the linear controller that switches con-

trollers once this region of attraction is reached.

III. STABILIZING CONTROLLER DESIGN

The controller design approach is broken up into two

steps. The first part involves the design of a controller

that performs the large angle maneuver. The second part

involves the design of an optimal state feedback controller

for the linearized model that will stabilize the satellite around

the equilibrium position and guarantees that a performance

measure is achieved.

A. Nonlinear Controller Design

The nonlinear controller design will now be formulated

as an optimization program. The formulation consists of the

two steps described next.

1) Model Parameterization: The model parameterization

consists of rewriting the equations (7) in the form

ẋ = A(x)x + Bu, (10)

with

A(x) =

















0 a12 0 0 0 0
0 0 a23 0 0 0

a31 0 0 0 0 0
a41 a42 a43 0 0 0
a51 a52 a53 0 0 0
a61 a62 a63 0 0 0

































ωx

ωy

ωz

σ1

σ2

σ3

















where

a12 = [(Iy − Iz)/Ix]ωz , a23 = [(Iy − Iz)/Ix]ωz

a31 = [(Ix − Iy)/Iz ]ωy , a41 = 1
4 [1 − σ2 + 2σ2

1 ]

a42 = 1
4 [2(σ1σ2 − σ3)], a43 = 1

4 [2(σ1σ3 − σ2)]

a51 = 1
4 [2(σ1σ3 − σ2)], a52 = 1

4 [1 − σ2 + 2σ2
2 ]

a53 = 1
4 [1 − σ2 + 2σ2

2 ], a61 = 1
4 [2(σ3σ1 − σ2)]

a62 = 1
4 [2(σ3σ2 − σ1)], a63 = 1

4 [1 − σ2 + 2σ2
3 ].

For this model parameterization, a quadratic control Lya-

punov function is proposed to perform the controller synthe-

sis.

2) SOS Controller Design: This step involves designing

a Lyapunov-based controller using SOS. To design the con-

troller we consider a candidate control Lyapunov function

for Q > 0, of the form

V (x) = xT Qx, (11)

where Q = P−1. Since Q > 0, we have V (x) > 0.

Differentiating the Lyapunov function (11) yields

V̇ = (A(x)x + Bu)T Qx + xT Q(A(x)x + Bu) (12)

Assuming a control input u of the form

u(x) = K(x)z, (13)

with z = P−1x and substituting into equation (12) yields

V̇ = xT (A(x) + BK(x)P−1)T P−1x

+ xT P−1[A(x) + BK(x)P−1]x
(14)

Using x = P z, equation (14) can be rewritten as

V̇ = zT [PA(x)T + A(x)P + (BK(x))T + BK(x)]z (15)

Note that V̇ is a polynomial function and the condition that

must be imposed to this polynomial for asymptotic stability

is V̇ < 0. However, it is well known that verifying that a

given polynomial is non-negative is in general an NP hard

problem [17]. Therefore, a relaxation of the non-negativity

condition proposed by Parrilo [17] is to limit the use of

polynomials to a special form that is known to be positive

semi-definite: sums of squares (SOS). A brief summary of

sum of squares technique is discussed below. For x ∈ ℜn,

a multivariate polynomial p(x) is a sum of squares if there

exist some polynomials fi(x), i = 1, . . . , M , such that [18]

p(x) =
M
∑

i=1

f2
i (x). (16)

A polynomial p(x) of degree 2d is a sum of squares if and

only if there exists a positive semidefinite matrix Q and a

vector of monomials Z(x) containing monomials in x of

degree less than d such that [18]

p(x) = Z(x)T QZ(x). (17)

It should be noted that p(x) being a sum of squares implies

that p(x) ≥ 0, but the converse is generally not true. Using

this relaxation the condition V̇ (x) < 0 on the Lyapunov

function V (x) can be replaced by SOS constraints. A sim-

plified version of a Theorem from [19] is stated that will be

useful to prove the condition (15) is asymptotically stable.

Theorem 3.1: [19] For the system (10), suppose there

exists P > 0, a polynomial matrix K(x), and a sum of

squares ǫ(x), such that the following expression

−vT (PAT (x)+A(x)P+KT (x)BT (x)+B(x)K(x)+ǫ(x)I)v,
(18)

is SOS, where v ∈ ℜn. Then the state feedback stabilization

problem is solvable, and a controller that stabilizes the

system is given by

u(x) = K(x)P−1x. (19)

Furthermore, if equation (18) holds with ǫ(x) > 0 for x 6= 0,

then the zero equilibrium is globally asymptotically stable.

Proof: It follows from the proof of [19] with P (x̃) =
P, Z(x) = x and M = I .

Based on theorem 3.1, and the relaxations using sum of

squares technique the following control optimization prob-

lem is defined.
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Definition 3.1: The attitude control design optimization

problem is:

find P, K(x)
s.t. (P − ǫ1I) > 0, ǫ1 > 0, ǫ2(x) is SOS
− zT [PAT + AP + (BK)T + BK]z − ǫ2||x||

2 is SOS
where I is an identity matrix. The next section will present

the linear controller design.

B. Linear Controller Design

The state feedback controller responsible for maintaining

the satellite at a given position is based on a Linear Quadratic

Regulator (LQR) [20] design using the linearized system (8).

In a LQR design, the control input is found by minimizing

a quadratic cost function of the form

J =

∫

∞

0

x(t)T Qx(t) + u(t)T Ru(t)dt (20)

where Q and R are weighting parameters that penalize the

energy on the states and control inputs, respectively. The

solution to this problem is the control law

ul = klx (21)

that stabilizes the system around the linearized point and

guarantees the required performance is achieved. Since this

control law control law is based on the linearized system, the

state feedback optimal controller is only effective when the

system is close to the linearizing point, i.e, when the satellite

is in the pointing mode.

IV. SWITCHING LAW BETWEEN GLOBAL AND LOCAL

CONTROLLER

The objective of this section is to formulate a switching

strategy to switch from the globally stabilizing controller in

acquisition mode to the local performance controller in point-

ing mode. We propose here that the switching occurs when

the satellite approaches the maximum attractive region for

the linear controller that can be estimated using the quadratic

Lyapunov function (11). Given this Lyapunov function and

the linear controller (21), the objective is therefore to find

the largest invariant set

Ωα = {x ∈ ℜn|V (x) < α} (22)

for the nonlinear closed loop system which is obtained by

substituting the linear controller (21) into equation (10)

ẋ = A(x)x + Bklx, (23)

Based on Khalil ([21], pg. 122), if there is a Lyapunov

function that satisfies the conditions of asymptotic stability

over a bounded domain D and if Ωα is contained in D,

then every trajectory starting in Ωα remains in Ωα and

approaches the origin as t → ∞. Using the dynamics (23),

the derivative of the candidate Lyapunov function (11) along

the trajectories of the system is

V̇c = xT [AT (x)Q + QA(x) + (Bkl)
T + Bkl]x (24)

A sufficient condition for estimating the largest region of at-

traction can now be formulated as the following optimization

problem.

Definition 4.1: Given Q, kl

max α
s.t. ǫ3 > 0, s(x) is SOS

− s(x)(V (x) − α) is SOS

−V̇c − ǫ3||x||
2 + s(x)(V (x) − α) is SOS

The above optimization problem 4.1 is biconvex. With the

recent introduction of YALMIP [22] and PENBMI [23],

which allows to solve locally biconvex optimization problem,

we can solve the above optimization problem resulting in a

region

Ωα∗ = {x ∈ ℜn|V (x) < α∗} (25)

where Ω∗

α is the largest region of attraction that can be

found numerically.

Given a nonlinear controller (19) for the system (10), a

linear controller (21) designed for the linearized system

(8) , and the largest region of attraction (25) for the

nonlinear closed loop system (23) , the switching between

the controllers happens when the states enter the largest

region of attraction. The linear controller is used when the

states are inside the region of attraction and the nonlinear

controller is used when the states are outside the region of

attraction.

U =

{

klx, if x ∈ Ωα∗ ;

K(x)Qx, otherwise.
(26)

Theorem 4.1: For system (10), let there exist a global

control Lyapunov function of the form (11), a nonlinear

controller (19), and a linear controller (21) for the linearized

system (8), then the system (10) is asymptotically stable

when using the switching law (26).

Proof

The proof of this theorem is divided into three parts.

1) If the states start outside the region of attraction, the

states will reach this region for a finite time of T . To

prove that the trajectories of the closed loop system

(24) converge to a region Ωα∗ , we use the comparison

lemma [21]. From the conditions in Definition 3.1, we

have

−V̇ (x) − ǫ2||x||
2 is SOS

which implies

V̇ (x) ≤ −ǫ2||x||
2

Given that V (x) = xT Qx < λmax(Q)||x||2, we have

V̇ (x) < −βV (x)

where β = ǫ2
λmax(Q) is the decay rate and λmax(Q) is

the maximum eigen value of Q. Using the comparison

lemma , we have V (t) < V (0)e−βt. Let T be the first

time, possibly infinite, at which trajectories reach Ωα∗ .

Then, from

V (t) < V (0)e−βt
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T < −
1

β
ln

α∗

V (0)
(27)

Thus, from equation (27) we can conclude that the

system trajectories converge to the region no later than

time T .

2) If the states start inside the region of attraction, by the

definition of the region of attraction, they remain in

the region and asymptotically converge to the origin

since (̇V (x)) < −ǫ3||x||
2.

3) If the states start at the boundary of the region of

attraction, then the states will enter into the region

of attraction , because the closed loop vector fields

corresponding to either the nonlinear controller or the

linear controller in the loop point towards the region

because of, respectively, the inequalities,

∂V

∂x
ẋ = V̇ (x) < −ǫ2||x||

2 < 0 (28)

∂V

∂x
ẋ = V̇c(x) < −ǫ3||x||

2 < 0 (29)

There will be no sliding modes or chattering because

the vector fields point inwards and any convex com-

bination of two fields has to point inwards, i.e, for

0 ≤ l1 ≤ 1

V̇hull < −l1ǫ2||x||
2 − (1 − l1)ǫ3||x||

2 < 0 (30)

V. NUMERICAL EXAMPLE

The preceding theoretical results are now applied to a nu-

merical example. The objective is to bring a rigid spacecraft

with an initial nonzero attitude to rest at a zero attitude

vector. We consider a rigid spacecraft with inertia parameters

I = diag(140, 100, 80)(kg.m2). The initial angular veloci-

ties are zero and the initial Euler angles of the satellite are

Θ0 = (75◦,−175◦, 70◦). The desired Euler angles of the

satellite are Θd = (0◦; 0◦; 0◦). Using MRP, Θ0 corresponds

to σ(0) = (0.701,−0.9331, 0.7624)T and Θd to σ(d) =
(0, 0, 0)T . Substituting the inertial parameters in equation

(10), A(x) and B become

A(x) =

















0 0.14ωz 0 0 0 0
0 0 −0.6ωx 0 0 0

−0.5ωy 0 0 0 0 0
a41 a42 a43 0 0 0
a51 a52 a53 0 0 0
a61 a62 a63 0 0 0

















(31)

B =

















0.0070 0 0
0 −0.0100 0
0 0 −0.0125
0 0 0
0 0 0
0 0 0

















(32)

where a41, a42, a43, a51, a52, a53, a61, a62, a63 are defined in

equation (10). Given the matrices A(x), B and the values

ǫ1 = 1,
ǫ2 = 1,

(33)

the software package SOStools [18] is used to solve the fea-

sibility problem in Definition 3.1. The following controller

and the symmetric matrix P are obtained.

P =

















19.7 0.0 0 −39.1 0 0
0 34.9 0 0 −70.2 0
0 0 20.4 0 0 −28.4

−39.1 0 0 127.8 0 0
0 −70.2 0 0 187.1 0
0 0 −28.4 0 0 91.3

















Tx = −34.1x3
1 − 13.5x2

1x4 − 18.2x1x
2
2 − 6.8x1x2x5

− 10.7x1x
2
3 − 4.1x1x3x6 − 6.3x1x

2
4 − 4.1x1x

2
5

− 7.9x1x
2
6 − 41.1x1 − 4x2

2x4 − 1.5x2x3 − 1.3x2x4x5

− 6.3x2x6 − 2.1x2
3x4 − 0.1x3x4x6 + 0.6x3x5 − 1.6x3

4

− 1.1x4x
2
5 − 2.1x4x

2
6 − 1.9x5x6

Ty = −29.7x2
1x2 − 7.3x2

1x5 − 9.6x1x2x4 − 1.4x1x3

− 2.1x1x4x5 − 9.9x1x6 − 32.3x3
2 − 15.4x2

2x5

− 15.3x2x
2
3 − 5.8x2x3x6 − 7.4x2x

2
4 − 5.5x2x

2
5

− 9.0x2x
2
6 − 43.4x2 − 3.9x2

3x5 + 3.5x3x4 − 1x3x5x6

− 2.6x2
4x5 − 1.6x4x6 − 1.5x3

5 − 3.1x5x
2
6 − 16.4x5

Tz = 22.4x2
1x3 − 4.2x2

1x6 + 0.8x1x2 − 7.1x1x3x4

− 0.1x1x4x6 + 2.4x1x5 − 21x2
2x3 − 4.4x2

2x6

− 7.8x2x3x5 + 6.4x2x4 − 1x2x5x6 − 21.2x3
3

− 9.2x2
3x6 − 5.8x3x

2
4 − 3.9x3x

2
5 − 7x3x

2
6

− 23x3 + 3x4x5 − 0.9x2
5x6 − 2x3

6 − 7.6x6

Now, we simulate the results for linearized system 8

where Al and B are

Al =

[

O O
O 1/4I

]

, I =





140 0 0
0 100 0
0 0 80



 (34)

and O is defined in equation (8) For

Q =

















10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 10

















(35)

R =





10 0 0
0 10 0
0 0 10



 (36)

the linear controller gain kl is given as

kl =





10.5 0.0 −0.0 0.7 −0.05 0.7

0.0 8.9 0.0 −0.6 0.5 0.7

−0.0 0.0 8 −0.4 −0.9 0.3





Given the nonlinear controller gains and linear controller gains, we
plot the the comparison of linear controller and nonlinear controller
for nonlinear system in figure 1. From figure 1, it is observed that
the linear controller does not perform good when compared to the
nonlinear controller. However, the linear controller for a linearized
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system performs better for the same conditions. In figure 2, the time
response for attitude parameters is plotted using the switching law
(26), where α

∗

= 0.9. The value of α
∗ is obtained by solving the

optimization problem 4.1.It is observed that the switching happens
after 10 seconds and the attitude parameters converge to the desired
points.
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Time response of attitude parameters for a nonlinear system
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Linear Controller
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Fig. 1. Comparison of attitude σ using nonlinear and linear controller
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Time response of attitude parameters using switching law
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Fig. 2. Time response of attitude σ using switching law

VI. CONCLUSIONS

The main contribution of this paper was the development of
a two step switched approach for global stabilization and local
performance of large angle maneuvers of satellites. The first step
consists of parameterizing the attitude dynamics of the satellite
by modified Rodriguez parameters (MRP) and searching for a
Lyapunov-based stabilizing controller using Sum of Squares (SOS).
In the second step, when the rigid body is close to its desired
attitude set point, the control switches to a linear controller that

can guarantee local performance and that uses less computational
operations to be implemented in a microprocessor. This enables pos-
sible implementation in future satellite missions without processor
overload.
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