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Abstract— We address the shortage of available software
frameworks for distributed control systems/robotics and de-
scribe a novel agent-based software architecture simplifying the
development, testing, and deployment of distributed controllers.
Our Distributed Control Framework (DCF) provides extensive
support for robot team coordination and management, a plug-
gable architecture for sensing and estimation, robust simulation
capabilities with support for hardware in the loop, and a high-
level platform-independent programming language for hybrid
control called MDLe (Motion Description Language Extended).
We highlight two experiments that showcase the DCF and
MDLe using real robots, and we conclude the paper with the
derivation and discussion of an indoor robot navigation system
used in our experiments. The navigation system combines robot
odometry and range measurements from a network of Cricketr
sensors using an extended Kalman filter.

I. INTRODUCTION

Recent research efforts in robotics have increasingly fo-
cused on the use of multi-robot teams to perform challenging
tasks in dynamic and unpredictable environments. The bene-
fits of teams are many: individual team members, or agents,
can share sensory information and avoid potential threats [1],
cooperating agents can perform tasks more quickly and
efficiently [2], and redundancy of team members maximizes
team survivability and the probability of mission success in
hostile environments. Despite the many potential applications
for robot teams [3] [4] [5], there is a lack of comprehensive
standards-based software tools to facilitate the implemen-
tation, simulation, and deployment of multi-agent control
systems using real hardware. This dearth of software infras-
tructure solutions for robotics impedes progress and wastes
valuable time and money; often, resources are squandered
deciphering legacy code or unnecessarily developing new
software from scratch.

The need for robotics infrastructure tools has been astutely
perceived in both the academic and commercial sectors.
Under the DARPA MARS Program, Pennsylvania State
University developed an agent-based software framework
and a high-level control language called CHARON to fa-
cilitate the rapid development of multiple interacting hybrid
control systems [6]. At Carnegie Mellon University, MARS
program funds supported the development of a language
for distributed strategy/role assignments among RoboCup
soccer team players [7]. In the commercial sector, Microsoft

This work was supported in part by Army Research Contract W911NF-
04-C-0014.

Zachary Kulis, Dr. Vikram Manikonda, Dr. Babak Azimi-Sadjadi, and
Dr. Priya Ranjan are all with Intelligent Automation Incorporated, 15400
Calhoun Drive, Suite 400, Rockville MD 20855. (e-mails: {zkulis, vikram,
babak, pranjan}@i-a-i.com).

recently released version 1.5 of its Robotics Studio as a free
download. The software provides native support for a variety
of robot platforms, sensors, and manipulators, features a
lightweight concurrency model (CCR) and a service-based
architecture for distributed sensing and control (DSS), and
provides an integrated physics simulator and 3D viewer [8].

II. MOTIVATION

Our solution to the robotics infrastructure problem is the
creation of the Distributed Control Framework (DCF) –
a lightweight agent-based software architecture specifically
tailored to the control of interacting heterogeneous agents.
Unlike other robotics infrastructure tools, the DCF is written
entirely in the Java™ programming language, which offers
many advantages compared to C/C++; Java code is typically
cleaner and easier to maintain and debug, there is no need
to cross-compile the code for target platforms, and students
are learning Java in their university courses. In addition, the
speed advantage of C/C++ is rapidly diminishing, especially
with the introduction of hardware-enabled Java Virtual Ma-
chines (JVMs), such as the ARM Jazeller [9].

The DCF is a modular and extensible software archi-
tecture built on top of the CybelePro™ [10] agent frame-
work developed at IAI. DCF leverages the Activity Centric
Programming (ACP) model provided by CybelePro™ and
adds support for robot team coordination and management,
a pluggable architecture for sensing and estimation, sup-
port for heterogeneous robot platforms, robust simulation
capabilities with support for hardware in the loop, and a
high-level platform-independent programming language for
hybrid control called MDLe. Core functionalities such as
peer-to-peer communications, exchange of messages through
a publisher-subscriber model, and concurrency are provided
by CybelePro™. With the DCF, users can simulate multi-
agent systems comprised of thousands of interacting agents
with real hardware in the loop. Such capabilities enable re-
searchers to glean new insights (e.g. emergent behavior) and
identify possible failure modes prior to full-scale deployment
on real hardware.

This paper is organized as follows: In section III, we
discuss the DCF architecture. In section IV, we provide an
overview of MDLe (Motion Description Language Extended)
and describe the implementation of the MDLe module in
the DCF. Next, in section V, we highlight two experiments
performed with real robots using the DCF and MDLe.
Finally, in section VI, we provide technical discussion of
an indoor navigation system for robots that was used in our
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Fig. 1. Robot Agent architecture.

experiments; the navigation algorithm is implemented as a
State Estimator model for use with the DCF.

III. DCF ARCHITECTURE

The DCF architecture features two distinct agents: a Robot
Agent and a Remote Control Agent. The Robot Agent embod-
ies a real (or simulated) robot that is part of a multi-agent
system, while the Remote Control Agent (RCA) provides
the command and control GUI enabling a human operator to
interact with the robot team.

A. Robot Agent

Robot Agents process data from onboard hardware and
from other agents, and react to perceived stimuli by selecting
an appropriate behavior – a sequence of control laws with
embedded state transition logic – according to a mission
plan. While a behavior is active, its constituent control laws
are executed in sequence, and commands are sent to the
appropriate robot actuators. A schematic of the Robot Agent
architecture appears in Fig. 1.

The Robot Agent uses four classes of Activities1 to
perform its work: State Estimators, Robot Coordinators,
Robot Planners, and User Tasks. Multiple instances of each
Activity class are supported, and instances of the same class
can execute either concurrently or sequentially. The arrows
shown in Fig. 1 depict the flow of information through
the Robot Agent. State Estimators receive raw sensor data
from onboard sensors and possibly from other connected
agents via the Robot Coordinators. The Robot Coordinators
aggregate the available state data and update a world model
that includes the positions and status of each agent.

Robot Planners process the available state data and activate
high-level behaviors using rules defined in a Planner Model
– custom Java code that defines the task assignments for
a mission, allows complex task sequencing using event
triggers, manages team coordination, supports dynamic re-
planning, and provides many other high-level mission plan-
ning functionalities. In addition, the Robot Planner Activity
features an MDLe (Motion Description Language Extended)
compiler and execution engine. These tools allow motion
control plans/behaviors written in the MDLe language to
be executed seamlessly on heterogenous robot platforms

1Activities are lightweight software components that perform work on
behalf of the Agent.

Fig. 2. Remote Control Agent (RCA) architecture.

(see section IV). Finally, User Tasks perform application-
specific processing and can be executed periodically or in a
background process.

Observe in Fig. 1 that hardware devices are classified
according to the functionalities they provide. For example,
a GPS receiver can function either as a position device or
as a range device. In Java terminology, a robot “device”
is an interface – a contract specifying the methods that
must be provided by an implementing class. This device
interface architecture enables a loose coupling between the
control/estimation algorithms and the underlying hardware;
alternative hardware sensors supporting the required sensing
functionalities may be interchanged freely

System developers can augment the DCF functionality by
implementing new algorithms for execution by the Robot
Agent Activities. A new algorithm is added to the DCF by
writing a Java class that implements one of the DCF Activity
models. For example, we have developed an indoor navi-
gation system that fuses odometry and range measurements
using an extended Kalman filter (section VI). The navigation
algorithm is implemented within an Estimation Model, which
is executed by the State Estimator Activity whenever new
odometry or range data is available. Specific Activity models
are loaded by the Robot Agent at runtime according to an
XML configuration file that specifies the desired models, and
if applicable, the physical hardware sensors and devices to
be used. This model-based architecture enables libraries of
algorithms to be developed and shared with other DCF users.

B. Remote Control Agent (RCA)

The counterpart of the Robot Agent is the Remote Control
Agent (RCA), which provides the human operator command
and control GUI. A block diagram of the RCA is shown
in Fig. 2. The RCA centers around the GUI and the HRI
(Human Robot Interface) modules. Using the GUI, an oper-
ator can quickly task a Robot Agent or a group of agents
using simple drag and drop operations2. When the agent(s)
are in place, a popup menu appears prompting the operator
to select a task. Relevant tasks for a team mission are defined
in an XML configuration file which is loaded by the RCA
at startup. The XML file also specifies which tasks can be
performed by each agent. Fig. 3 shows a screenshot of the

2The HRI was designed for ease of use on a tablet PC, where the agent
tasking operations are performed with a stylus.
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Fig. 3. Human Robot Interface (HRI) screenshot showing robot tasking.

GUI and HRI tasking menu. The position of the actual robot
is depicted by a solid gray disc, and the robot being tasked
appears as a gray circle (in this case, the robot can either
provide video surveillance or perform bomb disposal).

The Remote Control Agent also hosts the DCF Robot
Simulator, which offers a flexible architecture for simulating
a robot’s kinematics/dynamics together with its actuators and
sensors. The Robot Simulator supports both behavioral and
equations-based models of sensors and actuators and can be
used to generate simulated low-level device data for process-
ing by applicable DCF hardware device drivers. The Robot
Simulator features a variable-step Runge-Kutta integrator
for solving systems of differential equations numerically,
supports automatic updating of sensors and actuators with
periodic updates rates, includes fast-time (discrete clock) and
real-time simulation modes, and allows simulations to be
distributed across multiple computing resources.

IV. MDLE (MOTION DESCRIPTION LANGUAGE
EXTENDED)

A key component of the DCF is its rich support for the
Motion Description Language Extended (MDLe) – a high-
level formal programming language for describing hybrid
control algorithms (i.e. algorithms with differential equations
and switching logic). MDLe has roots in the work of Brock-
ett [11] [12] [13] and has been developed and refined by [14]
and [15]. In the following sections, we briefly describe the
salient features of MDLe; a more detailed discussion of the
language may be found in [14]. We have released an open-
source implementation of MDLe and a user’s guide that may
be downloaded from [16].

A. Overview

As a language for hybrid control, MDLe has several
attractive features: it is platform-independent, supports code
modularity and reusability through encapsulation and pa-
rameterization, and has a rich hierarchical structure (for
algorithm decomposition) with intuitive control flow. MDLe
uses the concept of a kinetic state machine to model the

plant under control. The kinetic state machine (KSM) is a
finite state machine in which the individual states correspond
to control laws (open or closed-loop) that are applied to
the physical plant. A control law, Uk(t, x), is applied for
the duration of time in which the KSM remains in state k.
Transitions to other states occur in response to timer events
and the assertion of user-defined interrupts.

The MDLe language uses a hierarchical structure consist-
ing of plans, behaviors, and atoms to represent hybrid con-
trollers. Each component in the hierarchy may be expressed
by a triple of the form:

(·, T, ξ(x)), T > 0, (1)

where the first parameter depends on the type of MDLe
component (it is either a control law, atom group, or be-
havior group) the second parameter is a timer, and the third
parameter is an interrupt. A timer defines the maximum
duration for which a component is active, and an interrupt
is a Boolean-valued function that operates on the system
state, x; a component becomes inactive when either its timer
expires or its interrupt is asserted.

At the lowest level in the hierarchy, MDLe atoms encapsu-
late individual control laws. Once activated by the KSM, an
atom remains active (its control law is applied to the plant)
until either its interrupt fires or its timer expires. Similarly,
MDLe behaviors constitute the middle layer in the hierarchy
and operate on an atom group comprised of a single atom
or a sequence of atoms. At the highest level, MDLe plans
operate on behavior groups, which are analogous to atom
groups.

At any given point during plan execution, there is exactly
one plan, one behavior, and one atom active. The control
flow through the MDLe hierarchy is a function of the timers
and interrupts defined in the active components. A timer
or interrupt event causes the associated component to exit
and control to proceed with the next component in the
sequence (e.g. if an atom group contains two atoms, then
a timer event on the first atom causes the second atom
to become active). Timer and interrupt events are priority-
encoded, so an event at a higher level in the hierarchy takes
precedence over a lower-level event. This priority encoding
enables non-sequential transitions to occur throughout the
MDLe hierarchy (e.g. the next atom in an atom sequence
will be skipped if a behavior-level interrupt occurs).

B. Platform Independence and Code Reusability

The hierarchical structure of MDLe enables algorithms to
be decomposed into reusable functional units. Furthermore,
these functional units are platform-independent, enabling
MDLe plans to be deployed on diverse robot platforms.
Platform-independence is achieved by separating the decla-
ration of atoms, interrupts, and scale vectors (MDLe compo-
nents that allow runtime parameters to be passed to atoms) in
an MDLe script from their corresponding implementation for
a particular robot platform. This separation enables libraries
of MDLe plans and behaviors to be shared with other devel-
opers. During MDLe script compiling, the declared MDLe
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components are mapped to concrete implementations using
a robot-specific mappings file. Additional code reusability is
achieved through built-in support for parameterized MDLe
scripts, where parameter substitution occurs at compile time
using a provided bindings object.

C. MDLe Planner

The DCF provides a full implementation of MDLe as
described in [14] – the compiler supports compound interrupt
expressions using AND, OR, NOT, and XOR Boolean oper-
ators, features atom/behavior group looping, and supports
nested atom/behavior groups of arbitrary depth (with each
group having its own looping parameter). In addition, we
have augmented the original MDLe language with support
for MDLe Planners.

An MDLe Planner sits on top of the traditional MDLe
hierarchy of atoms, behaviors, and plans, and allows dynamic
MDLe plan selection at runtime. MDLe Planners are reusable
“black boxes” that provide high-level platform-independent
functionalities to heterogenous robot platforms. An MDLe
Planner may be written in either Java or the lightweight
JavaScript™ language. Regardless of the language used,
MDLe Planners provide maximum expressivity and flexibil-
ity, allowing developers to implement complex decision logic
(which is not directly supported by the MDLe language [15]),
direct plan/behavior switching in response to task outcomes
and other exogenous events, and manage agent coordination
when cooperation is necessary to complete a task. A core
set of helper functions and callback mechanisms is provided
to simplify MDLe plan creation, modification, and selection.
MDLe Planners can also register callback functions to handle
plan exits and message reception, and to perform custom
processing at the start of each MDLe execution cycle.

An MDLe Planner is executed by the Robot Planner
Activity inside the Robot Agent. Using the concurrency
model provided by the DCF, multiple Robot Planners (and
hence, MDLe Planners) can be executed in parallel. This
functionality enables multi-loop hybrid controllers to be
implemented with ease. For example, an outer control loop
may perform high-level mission planning while an inner
control loop executes low-level motion plans.

V. DCF EXPERIMENTS

A. Evolving Boundary Curves

We have performed two experiments using teams of
AmigoBot™ robots to demonstrate the capabilities of the
DCF and MDLe. In the first experiment, the robot team
tracked an evolving boundary curve (e.g. a chemical or oil
spill) autonomously. We developed a distributed algorithm to
perform dynamic boundary curve tracking based on the work
of [17] and implemented the control law as an MDLe atom.
Position and velocity estimates were provided by our indoor
robot navigation system (section VI). Using an 802.11b ad-
hoc network, the robot agents shared their position estimates
at regular intervals and were able to determine the topology
of the network, including their closest neighbors on either
side (left and right), as required by the algorithm.

Fig. 4. Demonstration of a mixed robot team tracking a simulated evolving
boundary curve. The image on the right is a screenshot of the Remote
Control Agent GUI – the virtual robots are shown as gray disks and the
real AmigoBot™ robots are depicted in yellow, green, red, and blue. A
video of the live demonstration may be downloaded from [18].

The dynamic boundary tracking algorithm is highly de-
pendent on team cooperation for formation stability, spatial
uniformity among team members, and collision avoidance,
especially as the number of participating agents increases.
We were able to test the robustness of our implementa-
tion by simulating twelve agents concurrently with four
AmigoBots™. Fig. 4 shows the four AmigoBots™ tracking
a simulated evolving boundary curve on the left and a
screenshot of the Remote Control Agent GUI on the right.
During the demonstration, the robots tracked the simulated
boundary curve as it transitioned smoothly from the single
red circle marked on the floor to the two separate circles
shown in yellow. When this photograph was taken, the curve
had just split into two pieces, causing the robots to split into
two similarly-sized teams. The evolving curve was simulated
by the RCA and broadcast to the team periodically. A video
of the demonstration may be downloaded from [18].

B. Human-Robot Interaction

In a second experiment, we used a heterogenous team
comprised of four AmigoBot™ robots and a human to
demonstrate mixed-initiative human-robot interaction. The
team was tasked with neutralizing a simulated IED (Im-
provised Explosive Device) in a hostile area with multiple
entrances, while minimizing risk to the human. Each robot
was equipped with a USB camera, and we assumed that each
robot could perform video surveillance of the entrances or
IED neutralization; the robots were not capable of elimi-
nating human threats. The human was the only member of
the team capable of identifying the IED, eliminating human
threats (e.g. intruders), and providing initial assignments to
the robots. The human did not participate directly in the
neutralization of the IED due to the substantial risk involved.

Using the Human Robot Interface module of the RCA, the
human tasked each of the robots graphically using simple
drag and drop operations (Fig. 3). Upon task assignment, a
custom Robot Planner model and supporting MDLe plans
were transmitted to the robot team, and the robots com-
menced their assigned tasks. At this point, the human was
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free to perform his/her own assigned task of securing the
area’s south entrance.

To evaluate the effectiveness of the mixed-initiative con-
troller (MIC), an intruder randomly approached one of the
entrances during the scenario. While each robot sentinel
could detect the presence of an intruder (using a Haar
detector trained on the oval shape of a human face), the
robot lacked the means necessary to identify the intruder
as “friend” or “foe”. To resolve the ambiguity, the robot
transmitted a live video feed to the human and awaited
clarification. If the human deemed the intruder a “friend”,
the robot dynamically changed its task assignment to assist
with the IED neutralization; otherwise the robot moved to
cover the human’s entrance while the human took action
against the intruder.

The demonstration clearly showed the ability of the DCF
and MDLe to execute a non-trivial hybrid control algorithm
with a real human in the loop. Future work in this area
includes developing a more robust multi-robot navigation
algorithm with obstacle avoidance and developing a cognitive
model for the human agent. This cognitive model could
allow the robots to infer the human’s intent and update
their tasking assignments automatically, thereby increasing
the overall effectiveness of the team. A video of the live
demonstration may be downloaded from [19].

VI. CRICKETr-AIDED ODOMETRIC NAVIGATION
SYSTEM

In this section, we present the derivation of a two-
dimensional robot navigation system. The navigation system
uses range measurements from stationary Cricketr beacons
to correct errors that accumulate in the robot odometry.
Following the work of [20], we use an extended Kalman
filter (EKF) to perform the sensor fusion. While the EKF is
a sub-optimal filter, it often provides good performance with
a low computational requirement.

A. Motivation
Despite many advances in machine vision, INS/GPS inte-

gration, and sensor fusion, robust indoor navigation remains a
challenging problem for robotics. Since GPS is generally not
available for indoor use, robust indoor positioning solutions
typically necessitate the establishment of sensor infrastruc-
tures. These infrastructure costs can be prohibitively expen-
sive, especially when many sensors are needed to provide
the required coverage or usage capacity.

The Cricketr system [21], developed jointly by MIT
CSAIL and Crossbow Technology, provides a low-cost so-
lution for indoor positioning. Cricketr motes feature a low-
power Atmel AVR microcontroller, an RF transceiver, and an
ultrasonic transducer for measuring ranges to other Cricketr

motes using time-difference-of-arrival (TDOA). By measur-
ing the time difference between the arrival of an RF pulse
and an ultrasonic chirp, a Cricketr receiver can compute its
range to a beacon to within a few centimeters.

While the Cricketr hardware is quite inexpensive, range
accuracy suffers from various sources of error. The most sig-
nificant sources of error are: variations in the vertical angle

between the receiver and the ceiling-mounted beacon (due to
the physical characteristics of the ultrasonic transducer), the
receiver’s distance from the beacon (due to ultrasonic energy
dispersion and multipath), and inaccuracies in the measured
ambient temperature/humidity. Despite these shortcomings,
the Cricketr system is an effective low-cost sensor network
that provides valuable aiding measurements to an INS or
odometry-based robot navigation system.

B. Robot Kinematics

We assume robot kinematics of the unicycle type; that is,
the kinematics are subject to a nonholonomic constraint that
precludes movement in the lateral direction. This nonholo-
nomic constraint, given by[

− sin(θ(t)) cos(θ(t))
] [ ẋ(t)

ẏ(t)

]
= 0, (2)

yields the familiar unicycle kinematics model for the robot:

ẋ(t) = V (t) cos(θ(t))
ẏ(t) = V (t) sin(θ(t))
θ̇(t) = ω(t), (3)

where V (t) is the translational velocity and ω(t) is the
rotational velocity. An update equation for this continuous
system is given by [22]: xk

yk
θk

 =

 xk−1

yk−1

θk−1

+

 δdk−1 cos(θk−1 + δθk−1
2 )

δdk−1 sin(θk−1 + δθk−1
2 )

δθk−1

 ,
(4)

where δd and δθ are the incremental translation and rotation.
For the differential drive robot shown in Fig. 5, the wheel

speeds are controlled independently, and the incremental
translational and rotational velocities (with z-axis pointing
up) are given by:

δd =
dr + dl

2
(5)

δθ =
dr − dl
b

, (6)

where dr and dl are the incremental distances traveled by
the right and left wheels (provided, for example, by optical
encoders attached to the wheels) and b is the wheelbase (i.e.
distance between the wheels).

C. Odometric Kalman Filter

In this section, we begin the derivation of an odometric
Kalman filter [23] that will form the basis of our Cricketr-
aided navigation system. In an odometric Kalman filter,
odometry measurements from the wheel encoders are the
inputs to the robot kinematics model (4). An alternative to
the odometric Kalman filter is the kinematic Kalman filter,
in which the translational and rotational velocities appear
as filter states and odometry measurements constitute the
observation process, zk. While an advantage of the kinematic
Kalman filter is its ability to provide velocity estimates
that are less noisy than finite-difference estimates [20], a
major shortcoming is its poor performance whenever the
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Fig. 5. Top-view of a robot with a differential drive system and dual
encoders; two Cricketr receivers are mounted along the robot’s lateral axis.

translational or rotational velocities are not constant (i.e. V̇ 6=
0 or ω̇ 6= 0). Since we will be fusing range measurements
with the odometry measurements and are interested primarily
in accurate position and heading estimates, the odometric
Kalman filter is the correct choice of our application.

Observe that the robot kinematics (4) may be cast into the
familiar form:

xk = f(xk−1,uk−1,wk−1),wk ∼ N(0, Qk) (7)
zk = h(xk,vk),vk ∼ N(0, Rk) (8)

by defining f(·) as in (4) and letting u(·) equal [δd δθ]T . The
measurement equation (8) will be discussed shortly in the
section on Cricketr range fusion. Equations (7)-(8) facilitate
the design of an extended Kalman filter (EKF) to estimate
the state x̂k. Considering the nonlinear robot kinematics (4)
and defining φk , θk + δθk

2 , the linearized kinematics take
the form:

Ak =

 1 0 −δdk sin(φk)
0 1 δdk cos(φk)
0 0 1

 . (9)

We must now identify an appropriate error model for the
odometry inputs in order to determine a suitable process
noise covariance matrix Qk in (7). Odometry errors may
be classified into two types: systematic and non-systematic
errors [24]. Systematic errors arise from uncertainties in the
measured wheel diameters and wheelbase and also from
misalignment of the wheels. Non-systematic errors result
from travel over rough surfaces and wheel slippage. In
general, the slowly-varying (deterministic) nature of the
systematic errors allows them to be estimated and removed
using traditional filtering techniques (i.e. Kalman filtering).
For an indoor navigation system, it is reasonable to assume
that the systematic errors predominate, since the robot will
be traveling over smooth surfaces.

For simplicity, we model the systematic odometry errors
using two Gaussian white noise processes superimposed on
the encoder outputs [22]. An alternative approach is to derive
expressions for the maximum uncertainty in uk resulting
from the various modeling uncertainties (wheel radii and

wheelbase) and then convert these hard uncertainty limits
to soft probability measures as in [20]. The advantage of
this latter approach is that the estimation error covariance
does not increase when the robot is stationary. In either case,
both approaches yield a process noise covariance matrix, Qk,
that accounts for the correlation between the noise processes
contaminating the state equations.

Using the encoder white noise model, the measured en-
coder outputs take the form:

d̃r = dr + εr, εr ∼ N(0, σ2
dr

) (10)

d̃l = dl + εl, εl ∼ N(0, σ2
dl

), (11)

where the variables marked by a tilde denote measured
quantities. Using (5) and (6) allows us to propagate the
encoder noises to the input vector, u = [δd δθ]T :

δ̃d =
d̃r + d̃l

2
= δd+ wd, wd ∼ N(0,

σ2
dr

+ σ2
dl

4
)(12)

δ̃θ =
d̃r − d̃l
b

= δθ + wθ, wθ ∼ N(0,
σ2
dr

+ σ2
dl

b2
)(13)

The covariance of the two noise processes, wd and wθ, is:

cov(wd, wθ) =
σ2
dr
− σ2

dl

2b
. (14)

Under the reasonable assumption that the encoder noise
variances are equal (i.e. σ2

dr
= σ2

dl
= σ2

d), the covariance
is 0. This results in the following noise model for u:

ũ = u + wu,wu ∼ N(0, Qw), (15)

where

Qw =

[
σ2

d

2 0
0 2σ2

d

b2

]
. (16)

From the EKF equations, the process noise covariance matrix
is given by:

Qk = WkQwW
T
k , (17)

where

Wk =
∂f

∂u

∂u

∂w

∣∣∣∣
(x̂−k ,uk,0)

=

 cos(φk) − 1
2 δ̃d sin(φk)

sin(φk) 1
2 δ̃d cos(φk)

0 1

 .

(18)

D. Augmented Kalman Filter

While the odometric Kalman filter provides an estimate
of the state uncertainty, position and heading errors will
accumulate during the period between observations from a
secondary aiding sensor. Since there are only three signifi-
cant sources of error in the odometric model (i.e. the right
and left wheel radii and the wheelbase), it is possible to
augment the odometric Kalman filter with additional states
to estimate and remove these errors (biases). Assuming
observability of the biases, the bias estimates will gradually
improve over time (after sensor fusion), leading to superior
position and heading estimates in between aiding sensor
updates.
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In our research, we have found that the three biases are not
always observable from the Cricketr range measurements.
Improved filter performance can be achieved by dropping the
wheelbase bias and estimating the right and left wheel radii
biases only. These biases scale the imprecisely measured
right wheel radius and left wheel radius respectively. Thus,
the “true” quantities are given by:

rr = δr r̃r (19)
rl = δlr̃l . (20)

Since we will be using range measurements to aid the
odometric Kalman filter, we must include an additional state
to track the robot’s height. This augmented state, z, is
estimated exclusively from the range measurements and is
not always observable (depending on the number of ranges
received and the geometry of the Cricketr beacons with
respect to the Cricketr receivers).

With the addition of the states δr, δl, and z, the augmented
state vector is given by:

xaug = [x y θ δr δl z]T . (21)

In addition, following (12)-(13), the inputs to the filter
become:

δ̃d =
δ̂r r̃rα̃r + δ̂lr̃lα̃l

2
(22)

δ̃θ =
δ̂r r̃rα̃r − δ̂lr̃lα̃l

b̃
, (23)

where r̃r and r̃l are the measured right and left wheel radii,
α̃r and α̃l are the incremental angle measurements from
the right and left wheel encoders, and b̃ is the measured
wheelbase. The new augmented state matrix, Aaug , and
process noise covariance matrix, Qaug , are 6 × 6 block
matrices:

Aaug =
[
A3×3 F3×3

03×3 I3×3

]
(24)

Qaug =
[
Q3×3 03×3

03×3 S3×3

]
, (25)

where A is given in (9), Q is given in (16)-(18), and F
is the matrix of partial derivatives of x with respect to the
augmented states, δr, δl, and z. The matrix S is a diagonal
synthetic noise matrix (with small eigenvalues) that prevents
the bias and height estimates from converging to erroneous
values.

E. Cricketr Range Fusion

In our setup, two Cricketr receivers are rigidly affixed
to the top of the robot body (Fig. 5). The receivers provide
range measurements to stationary ceiling-mounted Cricketr

beacons with known positions. These range measurements
are used to estimate the biases δr and δl and correct the
cumulative errors in the position and heading estimates.
For indoor navigation applications, we have obtained sig-
nificantly better performance using two Cricketr sensors
rather than a single Cricketr sensor and a magnetometer

(to estimate the robot’s heading)3. Using a second Cricketr

sensor allows the heading to be tracked quite accurately
and is therefore a good magnetometer alternative for indoor
applications. In addition, the extra range measurements help
the filter to converge more quickly.

Cricketr range measurements are a function of the re-
ceiver’s position with respect to the beacons’ positions as
measured in the navigation reference frame. The navigation
reference frame is an inertial frame defined by the coordi-
nates assigned to the ceiling-mounted Cricketr beacons. Let
q = [qix qiy qiz]

T denote the position of the ith Cricketr

beacon. Also, let R = [RX RY RZ ]T denote the position
of a Cricketr receiver in the robot’s reference frame (i.e.
the local reference frame attached to the robot’s body with
the X-axis aligned with the robot’s longitudinal axis). (For
clarity, we use capital letters to denote quantities measured in
the robot body frame.) Define ρ(i) to be the vector between
the receiver and ith beacon:

ρ(i) =
[
(rx − qix), (ry − qiy), (rz − qiz)

]T
, (26)

where r = [rx ry rz]T is the position of the Cricketr receiver
resolved in the navigation frame. Then ||ρ(i)|| is the range
between the receiver and ith beacon. Resolving the Cricketr

receiver’s position in the navigation frame is accomplished
using the following transformation:

r = [x y z]T +B(θ)R, (27)

where [x y z]T is the position of the robot and B(θ) is the
3 × 3 rotation matrix accounting for rotation between the
navigation and body frames:

B(θ) =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 . (28)

Using (26)-(28), the measurement equation, h(·) in (8) takes
the form of a column vector of Cricketr range measure-
ments, which are nonlinear functions of the augmented
system state:

h(xaug) =
[
‖ r(xaug)− qi ‖

]
+ vk (29)

=
[
‖ ρ(i) ‖

]
+ vk, i = 1 . . . p, (30)

where the index i denotes a simple renumbering of the p
active (transmitting) beacons. The linearized measurement
matrix, H , is a p× 6 matrix given by:

Hp×6 =
[
ρ
(i)
1

‖ρ(i)‖
ρ
(i)
2

‖ρ(i)‖
ρ(i)T

ΘR
‖ρ(i)‖ 0 0 ρ

(i)
3

‖ρ(i)‖

]
, (31)

where ρ
(i)
1 , ρ(i)

2 , and ρ
(i)
3 , denote the entries of ρ(i) and

Θ = ∂B
∂θ .

Each robot-mounted Cricketr sensor receives a set of
range measurements from the Cricketr network once per

3Magnetometers are extremely sensitive to local distortions of Earth’s
magnetic field caused by the proximity of ferrous materials (e.g. desks) and
devices that emit magnetic fields (e.g. computer monitors).
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second4. Since there is a 100 ms delay between measure-
ments from the two Cricketr receivers, the effective filter
update rate is 2 Hz.

We used 18 Cricketr beacons to cover approximately
81 m2 (870 ft2) of lab space. Comparing the results of Mat-
lab simulations with real data, we strongly suspect that fewer
Cricketr units may be used without significantly impacting
performance. Our initial layout aimed to provide coverage
from at least two Cricketr beacons throughout the usable
lab space. The coverage provided by a Cricketr beacon is
a function of the vertical height, h, between the Cricketr

receiver and the beacon. Since the ultrasonic chirp produced
by the transducers is constrained to a roughly ψ = ±40◦

cone, each beacon provides coverage over a circular region
of radius h tan(ψ).

An important aspect of our layout is the existence of areas
where there is coverage from at least three Cricketr beacons.
Range measurements from three beacons are required to
achieve an initial position fix for the robot, which is essential
for the proper operation of the EKF. In fact, without a good
initial position fix, the EKF can easily diverge. We have
located these areas of increased coverage at the entrances to
the lab, so that the robot can obtain a good position estimate
when entering and exiting.

F. Performance

We implemented the navigation EKF described above in
equations (9), (16)-(18), (21)-(25), and (31) as an Estimation
Model in our DCF framework. The navigation system is
generic in that it requires only angular displacement mea-
surements from the wheels and range measurements from a
secondary aiding sensor. This enables the robot to operate
in any environment where range measurements to known
landmarks are available (e.g. ultra-wideband ranging system
or GPS). The filter can also utilize a magnetometer for
heading corrections when used outdoors, thereby eliminating
the need for the second ranging sensor.

We simulated the navigation system in Simulinkr, where
we replicated the layout of Cricketr beacons in our lab
and created a sensor model for the Cricketr motes. The
Cricketr sensor model computes the true range and then
adds a small error that is composed of two components – an
error term that is dependent on the vertical angle between
the Cricketr receiver and beacon and a Gaussian white
noise component. Additionally, the Cricketr sensor model
accounts for packet collisions (lost range measurements) that
occur in the network when two beacons attempt to transmit
at the same time.

The Simulink results agreed quite nicely with the actual
results obtained in the lab. The simulation results also
provided us with important design insight. In the original
design, the Cricketr receivers were aligned with the robot’s
X-axis (longitudinal axis). Through simulation, we observed

4We have modified the original Cricketr firmware so that the network is
synchronized and each receiver is allocated 100 ms to utilize the network.
The original Cricketr system, in which beacons broadcast randomly to
receiver units, will work fine too.

that better performance was attained by aligning the Cricketr

units along the Y -axis (lateral axis). Since the robot is
constrained to move in the longitudinal direction (due to
the nonholonomic kinematics constraint), laterally mounted
Cricketr units create a richer geometry with the beacons,
thus yielding a richer set of range measurements.
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