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Abstract— This paper investigates the effectiveness of de-
signed random behavior in self-organization of swarm of robotic
agents. Inspired by the self-organization observed in biological
cells and the role played by random forces in providing
robustness in cell self-organization, we investigate the possibility
of designing a decentralized controller for a swarm of agents in
which the stochastic process is included. This paper considers
flocking as a self-organizing behavior example to validate
our findings. The controller is designed in the framework of
Lyapunov function, and it is based on the artificial potential
due to interactions among agents. Our analysis shows that the
flocking behavior of the swarm is improved and is more robust
when the stochastic process is included in the agent controller.

I. INTRODUCTION

A swarm of robotic agents performing coherent activities

while controlled in a decentralized manner is an example

of a self-organized system [12]. There are several examples

in nature where individual units carry out operations based

on local interaction and local information without a complete

knowledge of other units’ operation. Yet the overall emerging

behavior of the system appears to be highly organized,

coherent, and efficient in achievement of its objectives. The

best examples of such systems are populations of biological

cells that possess the ability to self-organize into specific

formations, form different types of organs and, ultimately,

develop into a living organism. Most importantly, their ability

to self-organize is extraordinarily robust.

The cell behavior is guided by biochemical signals and

the structure of the environment. Intracellular biochemical

signaling networks are involved in the detection of the

environment and they drive the cell behavior, their function

and motility. The role of signaling networks for cells is

similar to the one that the robot hardware plays for the

algorithms that guide the robot communication and sensory

systems, as well as the robot behavior [10]. Because of this,

the study of self-organized cellular systems is more relevant

for the design of robotic swarms as compared to the study

of biological multi-agent systems, such as flocks of birds or

schools of fish, in which the presence of natural intelligence

among biological entities cannot be ruled out. In this respect,

the design of agent swarms inspired by a self-organized

cellular system is a very promising direction of research.
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This paper investigates the role random forces can play

in attaining robust behaviors in swarm systems. The paper

draws inspiration from the role of randomness in several

search algorithms and in several biological systems. Ran-

domness has been widely used as a component in sev-

eral stochastic search algorithms. For example, evolutionary

search algorithms [5] have heavy stochastic components (e.g.

choice of chromosomes for reproduction, crossover, and

mutation are driven by probabilities based on their fitness

function). Reinforcement learning techniques [18] have two

components: exploitation and exploration. Exploration is a

random walk in the search space that makes the algorithm

investigate new regions. Apart from randomness being tradi-

tionally used in search and optimization algorithms, random

components have shown to play critical role in modeling

many biological systems. Bateson [3] calls the mind a

stochastic system and cognitive learning process a stochastic

process. Contemporary cognitive scientists consider mental

processes as stochastic processes such as evolutionary algo-

rithms where hypotheses or ideas are proposed, tested, and

either accepted or rejected by a population. Random or trial-

and-error learning techniques provide ways to create new

varieties of solutions for problems. Random behavior is ubiq-

uitous in biological systems. Chaotic behavior of a hooked

fish, random behavior among preys for predator avoidance,

and zig-zagging of a chased rabbit through a meadow are all

examples of existence and heavy use of random behaviors

among animals. Lorenz [9], in his intuitive chapter entitled

”Oscillation and Fluctuation as Cognitive Functions”, has

described the importance of a random behavior in organisms’

motion for search, as well as for escaping dangers. We use

this kind of random behavior as a component in the control

laws for swarm robotic systems.

In this paper, we consider flocking which is the most in-

vestigated example of swarm self-organization. Flocking is a

self-organized behavior in which agents, initially distributed

over the operating space, group together and organize into

a specific formation. An example of this kind of flocking

is the formation of germinal centers inside the lymph node

[16]. Flocking has been extensively studied in multi-agent

literature. Reynolds [15] has been able to reproduce, in his

computer models, behaviors representing flocking in birds

and schooling in fish using simple rules based on local inter-

actions among agents. Drawing inspiration from Reynolds’

approach, many researchers have focused on designing a

decentralized controller for achieving flocking behavior [2],

[4], [13], [19]. A control system based on the methods

presented in these references should be able to yield a single

flock of agents based on local information. However, if
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the local information can only be collected over a finite

range, it can lead to the formation of more than one flock.

This paper studies scenarios in which local interaction leads

to the fragmentation of groups and investigates how the

introduction of random processes in an agent controller helps

to eliminate or alleviate the problem of fragmentation.

In this paper, we consider flocking in the Lyapunov func-

tion framework. The Lyapunov function for the controller

design of a multi-agent system is based on the artificial

potential function of agent interactions [8], [14]. Being

inspired by the role played by the random fluctuation in

driving self-organizing processes in cells, we propose to

include a random process in the decentralized controller for

an agent swarm. Consequently, we analyze the swarm self-

organization using the stochastic Lyapunov function [7]. We

show that our proposed decentralized controller provides the

robust flocking of the swarm of agents.

This paper is organized as follows. We introduce a model

of swarming agents in section II. In section III, we describe

a deterministic decentralized design of controllers providing

flocking in a population of agents. Dealing with the problem

of local minima, we suggest including a stochastic process

into the controller in section IV. In section V, we derive

emergent behavior related to the center of the mass of the

flock. Section VI presents numerical simulations illustrating

the performance of the controller, and finally section VII

presents the conclusions derived from the present work.

II. MODELING OF SWARM SYSTEM AND LYAPUNOV

FUNCTION DEFINITION

The group of mobile agents consists of N fully actuated

agents, each of whose dynamics is given by the double

integrator:

q̇i = pi (1)

ṗi = ui(t) i = 1, 2, . . . , N

where qi, pi and ui are m-dimensional position, velocity

and control vectors of agent i, respectively. This double

integrator representing particle dynamics [14], [8], [20] is a

popular and realistic model to represent the motion of agents

in a multi-agent system. It facilitates the implementation of

decentralized control algorithms, and provides a mechanism

to include limitations due to sensing and communication as

compared to other models, such as continuum model [6],

[11], which represents the collective motion of agents in

the form of particle density functions. The model given in

equation (1) can be written as:

ẋ = Ax(t) + Bu(t) (2)

where vector x(t) = [q(t) p(t)]T and

q(t) =







q1

...

qN






, p(t) =







p1

...

pN






, u(t) =







u1

...

uN






(3)

and matrices A and B are

A(x, t) = [IN×N 0N×N ]T , B = [0N×N IN×N ]T . (4)

In order to carry out a stability analysis of the collective

motion of agents, a Lyapunov function can be chosen as the

total energy

φ(q,p) = V (q) +
1

2
pT p (5)

The Lyapunov function is composed of the total artificial

potential energy V (q) and the kinetic energy, the second

term of the sum given in equation (5). We define the potential

energy as a non-negative function

V (q) =
1

2

N
∑

i=1

Vi =
1

2

N
∑

i=1

∑

j∈Ni

Vij(‖qi − qj‖) (6)

Vij(‖qi − qj‖) ≥ 0 (7)

where Vi is the total artificial potential associated with an

agent i. This energy depends on the set Ni comprised of the

agents inside the communication range of the agent i. The

artificial potential function Vij depends upon the Eucledian

distance ‖qi − qj‖ between the agent i and j, and it is given

by:

Vij =

{

a(ln(‖qi − qj‖) + d0

‖qi−qj‖
), 0 ≤ ‖qi − qj‖ ≤ d1

a(ln(d1) + d0

d1

), ‖qi − qj‖ > d1

(8)

where, a is a scalar parameter. The parameters d0 and d1

respectively represent the inter-agent distance below which

the interaction force is repulsive (negative) and above which

the interaction force is zero. Figure 1 shows the interaction

potential plotted against the inter-agent distance. It can be

easily seen that the potential becomes minimal when the

inter-agent distance is d0. The interaction among agents

happens with the help of sensing or communication devices.

The parameter d1, then, can be regarded as a sensing or a

communication range.
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Fig. 1. Interaction potential versus inter-agent distance

III. CONTROLLER DESIGN FOR FLOCKING

Flocking is a form of self-organized behavior of agent

swarms in which agents meet or come together. The col-

lective dynamics of the system can be analyzed using a
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Lyapunov function. We can differentiate φ(q,p) with respect

to time, and using expression (5) and model (1), one gets:

φ̇(q,p) = pT∇V (q) + pT ṗ

= pT∇V (q) + pT u(t)

Using arguments based on the Lyapunov function stability

analysis, the state configuration p, q will be stable if

φ̇(q,p) = pT∇V (q) + pT u(t) ≤ 0 (9)

The control law ensuring this type of stability is described by

the following lemma of which a detailed proof is provided

in references [14] and [8].

Lemma 3.1: Consider a system of N mobile agents. Each

of the agents follows dynamics given by model (1) and with

the feedback control law given by

ui = −∇qi
Vi + fv

i (10)

where ∇qi
represents the gradient with respect to position qi

of agent i, c > 0 is a scalar gain and fv
i is given by:

fv
i = c

∑

j∈Ni

(pj − pi) (11)

For any initial condition belonging to the level set of φ(q,p)
given by ΩC = {(q,p) : φ(q,p) ≤ C)} with C > 0, and

when the underlying graph of the system is connected and

cohesive, the system asymptotically converges to an invariant

set ΩI ⊂ ΩC such that the points in ΩI have a velocity that

is bounded and the velocities of all agents match.

To illustrate this lemma, it is worth mentioning that

the control law (10) results from the fact that it can be

equivalently described in the vector form as

u(t) = −∇V (q) − L̂(q)p (12)

where L̂(q) ∈ RmN×mN is m-dimensional graph Laplacian

(see reference [14]), which is a positive semi-definite matrix.

Obviously, this control satisfies condition (9). Also, from

Lasalle’s Invariance Principle, all solutions of the system

starting in ΩC will converge to the largest invariant set

ΩI =
{

(q,p) ∈ ΩC : φ̇(q,p) = 0)
}

, and this occurs when

the velocities of all agents match.

IV. CONTROLLER DESIGN BASED ON THE STOCHASTIC

LYAPUNOV FUNCTION

Using the deterministic Lyapunov function controller de-

sign, agents always move in such a way that the covered

distances and their directions do not increase the Lyapunov

function. It is ultimately expected that the agents reach a

stable formation (flock) in which the Lyapunov function

attains its extremum value. If the agents that we are dealing

with have a limited communication range, it is possible that

robots reach stable formations with more than one cluster.

In this configuration, agents from one cluster are out of the

communication range of any agent from the other clusters.

The graph Laplacian L̂(q) is no longer positive semi-definite

in this case, and a local minimum of the Lyapunov function

is reached.

Here, we introduce a controller which includes the random

process term, providing means to an escape from local

minima. Using the notation of section II, the model of a

robot population can be written in the matrix form as

ẋ = Ax(t) + Bu(t) + Σξ(t) (13)

where

Σ =

[

0 0
0 diag(σ1, σ2, . . . σN )

]

2N×2N

(14)

and the controller effect is composed of the part which is

assumed to be computed based on the local agent information

Bu(t) and the stochastic part Σξ(t).
Using the Lyapunov function as before and using the Îto

formula, we can find the time derivative of the Lyapunov

function

φ̇ =
∑

i

pi

∂φ

∂qi

+ ui(t)
∂φ

∂pi

+
1

2

∑

i

σ2
i

∂2φ

∂p2
i

+
∑

i

σi

∂φ

∂pi

ξi(t)

(15)

that results in

φ̇ =
∑

i pi
∂Vi(q1,q2,...qN )

∂qi
+

∑

i ui(t)pi + (16)

1
2

∑

i σ2
i +

∑

i σipiξi(t)

The latter expression means that in this case the Lyapunov

function φ of the robotic population is a stochastic process.

Similar to the deterministic case, if we would like to

design a controller which aligns the robot velocities, i.e.,

provides flocking, we can define ui as

ui = −
∂Vi(q1, q2, . . . qN )

∂qi

− [L̂(q)p]i (17)

Under this condition

φ̇ = −pT L̂(q)p +
1

2

∑

i

σ2
i +

∑

i

σipiξi(t) (18)

which means that the total Lyapunov function value is a

stochastic process. The stochasticity provides escape from

the local minima. We assume, without losing generality, that

σi = σ. The intensity of this stochastic process is governed

by the parameter σ which needs to be determined by taking

appropriate considerations of factors explained below.

There is a stochastic steady-state (see reference [7], page

50, Theorem 6) for the value of φ in which the following

condition is satisfied:

E
{

pT L̂(q)p
}

=
1

2

∑

i

σ2
i =

Nσ2

2
(19)

There are two limits for σ that should be avoided. One is

σ < σL that results in the deterministic controller. In this

case the swarm does not flock robustly. The second limit

is σ > σH , when σ is large and leads to a large expected

value of pT L̂(q)p. This means that the robot velocities are

poorly aligned. For reasons of the robust flocking, σ should

be in the range of σL and σH . Out of this range, the flocking

does not happen robustly due to the small (σ < σL) or large
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(σ > σH ) intensity of the random process, respectively. The

value of σ has to be tuned taking into account the constraints

of the actuator that drives the robots and it is a part of the

controller design. Introduced controller does not guarantee

the attainment of global minimum of the Lyapunov function,

but it can guarantee that the formation of the system is, most

of the time, around this minimum.

V. EMERGENT BEHAVIOR OF A STOCHASTIC CONTROL

FOR FLOCKING

The cluster is a group of robots in which each robot is

in the communication range of at least one robot. Motion

of each agent i obeys the following stochastic differential

equation

q̇i = pi (20)

ṗi = ui(t) + σiξi(t) . (21)

This expression includes two parts: the first part based on

the local information and the second part based on the

stochastic process of intensity σi. We assume again that ξ is

the Gaussian white noise of the unit intensity. For reasons

of simplicity, but without losing generality, we will consider

that σi = σ.

Since each robot has a unique label i, the cluster Cj can

be defined as the set of labels i of the robots being in the

cluster j. Assuming that the cluster exists within the time

interval τ = [t1 t2], the motion of the Cj cluster’s center of

the mass is described by

q̇CM
j = pCM

j (22)

ṗCM
j =

1

|Cj |

∑

i∈Cj

σiξi(t) =
σ

√

|Cj |
ξ(t) (23)

where the number of the robots in the cluster is denoted

by |Cj |. The terms dependent on ui are cancelled due to

the symmetry in the interaction between any two robots in

the cluster. The sum of white Gaussian noises is also the

white Gaussian noise and the last term in (23) includes this

properly scaled unit intensity Gaussian noise.

From (23), we can conclude that the center of the cluster

mass moves randomly through the operating space. The

smaller the cluster, the faster it ”explores” the operating

space before it meets other robots to form a larger cluster.

We quote the word ”explore”, because it is a behavior that

emerges from the inclusion of the random process in the

robot controller.

Obviously, while exploring, the cluster may decompose

into two smaller clusters. The probability of cluster decom-

position can be made very small by appropriately choosing

the intensity σ to be small in comparison to the intensity

of ui. Regardless of this, the cluster decomposition does not

influence our further analysis, because we analyze the steady-

state property of the robot formation independently of how

it is reached. In the limit when |Cj | is large, the center of

the cluster mass will move with qCM
j ≈ 0.

VI. SIMULATION RESULTS

Before we present the simulation results, let us explain

social and hierarchical social entropy metrics we use to

quantify the degree of the self-organization of agent pop-

ulations. Social entropy, inspired by Shannon’s information

entropy [17], has been used in multi-agent systems [1] as

a metric for diversity in behavior or properties of agents,

including diversity in their spatial locations. This metric

captures an important feature of diversity, which is the

number of differentiable groups, i.e., clusters, in a system

and the size of these clusters.

We define the cluster as a group of agents in which the

distance between the agent and its closest neighbor from the

same cluster is smaller than some threshold value h, which

is the communication range distance. If an agent does not

have the neighbor within a distance smaller that h, then this

agent is alone in the cluster.

If a group of n agents, represented by the set R, can be

divided into m clusters C1, C2 . . . Cm, such that there is no

agent which is simultaneously in two clusters, then the social

entropy H of the system R is given by

H(R) = −
m

∑

i=1

|Ci|

|R|
log

|Ci|

|R|
(24)

with |.| representing the number of agents in the cluster and
∑

i |Ci| = |R|, where |R| = n is the number of robots in

the group.

The social entropy H obviously depends on the threshold

h. In order to develop a measure that can accurately represent

the diversity in a population of agents regardless of the scale

or the value h, hierarchical social entropy has been used in

literature [1], which is given by:

E(R) =

∫ ∞

h=0

H(R, h)dh (25)

where H(R, h) is the social entropy given by equation (24).

To illustrate flocking in the absence and the presence of the

random force, we simulate a group of 20 agents during a 500

sec. time span. In our simulations, the agents have a limited

communication range, which is modeled with the artificial

potential function parameter d1 = 20m (see equation (8)).

The other parameter of this function is d0 = 6m, and the

intensity of the random process σ = 0.25. In the simulation

scenario, the agents are allowed to move only in the 100×100
rectangular area (see Fig. 2). To define this area inside the

simulation, we introduce an additional artificial potential

function resulting in short-range repulsive forces making

agents move away from the area border.

Figure 2 shows the agent configurations at different points

of time of the simulation when random force in the controller

is not applied. The agents start from an initial randomly

chosen position. By the terminal time of the simulation

T = 500 sec, the agents form three separate clusters, which

are the consequence of the limited communication range.

In the next figure, Fig. 3, we illustrate the simulation in

which the agents start from the same configuration as in
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the previous example, but now the random force inside the

controller is applied. We note that by the terminal simulation

time the agents form a single cluster.
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Fig. 2. Configurations of agents at times T=0 (top left), T=167 sec (top
right), T=333 sec (bottom left) and T=500 sec (bottom right) when no
random motion is applied
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Fig. 3. Configurations of agents at times T=0 (top left), T=167 sec (top
right), T=333 sec (bottom left) and T=500 sec (bottom right) when random
motion is applied

The hierarchical social entropy, given by equation (25), for

these two examples is plotted against the simulation time in

Fig. 4. From this figure, it is evident that the application

of random force results in lower entropy values, meaning

that agents aggregate closer to one another forming bigger

clusters.

In order to verify that the introduction of random motion

does lead to better flocking behavior of agents, we carried

out two sets of 100 simulation runs. Each run was carried out

under the same conditions as in the two presented examples.

In one simulation set, the random force term of the controller

is applied and in the other, it is not. For each simulation

run we computed the social entropy at the terminal time

T = 500 sec. The distribution of the computed social

entropy values, for each set of simulations, is presented in

the form of the cumulative distribution function shown in

Fig. 5. It can be seen that the increase in the number of
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Fig. 4. Hierarchical social entropy of the population of agents for the case
when no random motion is applied (left), and the case when random motion
is applied (right)

simulation occurrences for the case when random motion

is not applied is slower than that of the case when random

motion is applied. This is because of the fact that most of the

simulations with random motion have an entropy which is

smaller as compared to simulations with no random motion.

A smaller entropy indicates a smaller (spatial) diversity, i.e.,

better flocking behavior.

The ultimate evidence that the application of the random

force term leads to a better flocking behavior is the histogram

of number of simulations with specific number of clusters

in the final configuration for the two cases, as shown in

Fig. 6. As can be seen from the figure, a lesser number

of clusters are formed for that case when random motion

is applied as compared to the case when random motion

is not applied. The average number of clusters for the case

when no random motion is applied is 3.02, while the average

number of clusters when random motion is applied is 1.51.

This shows a marked improvement in flocking behavior and

the formation of one giant cluster as compared to the case

when no random motion is applied. It may be noted that the

separate clusters formed in the second case move randomly

in a confined space. This random motion within a confined

space results into the probability of clusters finding each

other approaching unity when the time approaches infinity.
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Fig. 5. Simple social entropy at final configuration of agents for 100
simulation runs
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VII. CONCLUSION

Inspired by the role of random forces in robustness of

self-organization of cells and other biological systems, we

investigated the possibility of designing a decentralized

controller for a swarm of agents in which a stochastic

process is included. We considered the flocking behavior of a

swarm and described the previously considered deterministic

Lyapunov function controller design based on the artificial

potential of interactions among agents. The deterministic

design may not lead to desired swarm behaviors because

of the existence of agent configurations in which the total

potential of swarm interactions has local minima.

The design we considered is an extension of the determin-

istic one. We used the same Lyapunov function. However,

due to the introduced stochastic process, the Lyapunov func-

tion is also a stochastic process. Consequently, this controller

provides a means of escaping from the local minima of the

total potential of the swarm interactions.

The intensity of the included stochastic process is of great

significance. If its intensity is small, then the swarm behavior

is the same as if controlled by the deterministic controller.

If the intensity is high, then the flocking behavior cannot

be established because the swarm can even escape from the

region around the global minimum. Only if the intensity of

the stochastic process lies within some intermediate range,

does the swarm escape the local minima and randomly

explores configurations, which can ultimately lead the swarm

towards configurations close to the global minimum of the

total potential of interactions. The drawback of this design is

that even in the global minimum configuration, the stochastic

process forces the swarm to search for a better configuration.

Tuning the intensity of the stochastic process of the controller

is identical to consideration that appears in the design of

the realistic model of cell behavior, or to the problem of

providing physiological conditions for self-organization in

biological cells.

The performance of the proposed controller was illus-

trated by the derivation of the emergent swarm behavior

and an extensive simulation study.The performance of the

controller with the random process term was compared to the

performance of the deterministic controller. The simulation

results suggest that the inclusion of the random process in

the controller can certainly improve the performance of the

robotic swarm in achieving the flocking behavior.
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