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Abstract—Near-optimal control of batch processes can often 
be obtained using simple feedback structures. The maximum 
gain rule for selection of good outputs for feedback control is 
extended to nonlinear tracking problems, such as found in con-
trol of batch processes. 

I. INTRODUCTION 
PTIMAL operation of chemical processes has been ex-
tensively studied in the last decades, but with focus on 

on-line optimization and continuous processes. For continu-
ous processes, the notion of self-optimizing control has been 
established, and efficient methods for identification of self-
optimizing variables exist [1]. 

Although batch processes are important in many aspects 
of industry, little attention has been devoted to implementa-
tion of optimal operating policies for such processes. Nu-
merical methods for solving the open-loop optimization 
problem are available. 

In later years it has been recognized that implementation 
schemes with low computational load are needed, yet guar-
anteeing near-optimal behavior also under disturbances. One 
approach that has been investigated is NCO tracking [2], but 
no systematic procedure to determine the appropriate out-
puts to control is known to the authors.  

In this paper we present some results on identification of 
good variables to use for output feedback control in uncon-
strained regions for batch processes. 

II. MAXIMUM GAIN RULE 
Let the process be described by the following nonlinear 

state-space model; 

  (1) ( , ),=x f x u
 ( ),=y h x  (2) 

where  is the state vector, is the input vector 
and  is the output vector. Let the cost functional be 
written on Mayer form such that it only depends on the last 
state; 

n∈x m∈u
p∈y

  (3) ( ).fJ J= x

In a typical batch operation there are path constraints on 
certain outputs (states) and also on the inputs. The quality of 
operation is determined by the final state, and this is 
naturally posed as an end-point constraint. Optimal 
operation can then be determined by solving the following 

constrained optimal control problem: 
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 ( , ),=x f x u  (5) 
  (6) ( , ) ,≤S x u 0
  (7) ( ) ,f ≤E x 0

where (6) describes algebraic constraints which must be sat-
isfied for all times and (7) is the final-time constraints. For 
the rest of the discussion we assume that the solution to the 
optimization problem defined by (4)-(7) is known; the fol-
lowing analysis is local to the neighborhood of the optimal 
trajectories. A disturbance term was not included in the 
above model; for the following analysis it is assumed that 
the disturbance is fixed throughout the batch. 

Assume that the active constraints are implemented. The 
Hamiltonian for the reduced space problem is 

 ( ) ( ) (( ,T )) ,H t tλ= f x u t  (8) 

where λ is a time-varying vector of Lagrange multipliers. 
For problems where time does not explicitly occur in the 
Hamiltonian, it takes a constant value *H along the optimal 
path. By a second-order Taylor polynomial in the input 
variation ( ) *( ) ( )t tδ = −u u u t , we obtain 

 * 1 ,
2

TH H δ δ δ= + +uH u u H uuu  (9) 

where =uH 0 . We define the loss as  and re-
write 

*:L H H= −
(9) as  

 1 .
2

TL δ δ= uuu H u  (10) 

In order to use (10) for selecting controlled outputs, it is nec-
essary to pose the loss as a function of output variations in-
stead of input variations. Equation (2) gives 

 .T Tδ δ∂ ∂
=

∂ ∂
G

h xy
x u

u  (11) 

To obtain maximum information in the measured output, the 
measurements should be linearly independent. That means 
that the matrix G given by  

 T T

∂ ∂
=

∂ ∂
h xG
x u

 

should be nonsingular for all st t≤ , where st denotes the 
switching time to the next arc. G can be seen as a time-
varying gain measure corresponding to the gain matrix in 
steady-state problems. The loss may then be expressed as 
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 1 .T TL δ δ− −= uuy G H G y  (12) 

Assume that the model has been scaled such that for the ex-
pected disturbances, the maximum output deviation at any 
time is one. Our selection problem can then be posed as the 
minimization of  

 1

2
( ) T

s stθ − −= uuG H G  (13) 

for all st t≤ , where the subscript s in sG  indicates that the 
matrix has been scaled. To find the best structure on aver-
age, the L2-norm of ( )tθ  should be minimized. 

Gain Estimation from Neighboring Optimal Control 
In order to use minimization of θ  to select good output 

variables, it is necessary to know the matrix G. We here pre-
sent one method based on neighboring optimal control [4]. 
The time-varying Lagrange multipliers λ  are found by solv-
ing the co-state equations 

 .Hλ = − x  (14) 

backwards in time given the final condition 

  ( ) ( ) ( ) ,T T
f ft J t tλ ν= +x xE f

where ν  is the Lagrange multiplier vector for the end-point 
constraint. Under the assumption that the end-point con-
straint and the objective functional do not depend explicitly 
on time, optimal control under sufficiently small perturba-
tions in the state can be written as a linear time-varying 
feedback law that updates the originally optimal input path,  

 ( )(* *,old *,old( ) ,t t− = − −u u K x x )

))T

R

J ν= +S E T
f =R E

 (15) 

where  

  (16) ((-1 1 .T −= + −uu ux uK H H f S RQ R

The matrices S, R and Q are found from the Riccati equa-
tions and

with and
. The final conditions for the Riccati 

equations are , and 

,T= − − + −S SA A S SBS C ( )T= − −R A SB
T=Q R BR 1 ,−= −x u uu uxA f f H H 1 T−= u uu uB f H f

1−= −xx xu uu uxC H H H H
( )T

f xx x x f =Q 0 . 

The derivative  may now be approximated as the 
negative pseudo-inverse of K, and the gain measure G can 
then be computed as 

/ T∂ ∂x u

 †.T

∂
= −

∂
hG
x

K  (17) 

III. EXAMPLE 
The following example is taken from [5]. A product with 

concentration P is produced in a fed-batch bioreactor, and its 
growth rate depends on the biomass concentration X, the 
substrate concentration S as well as the reactor holdup V. 
The system is described by the following model: 

 ( ) ,uX S X X
V

μ= −  (18) 

 ( ) ( ,in
X P

S X X uS
Y Y V

μ ν
= − − + − )S S  (19) 

 ,uP X P
V

ν= −  (20) 

  (21) .V u=

Parameter values and initial conditions are taken from [5]. 
The goal is to maximize P after 150 hours of operation. The 
open-loop solution has three arcs, whereof the first one is 
singular. From physical insight, [5] shows that S should be 
controlled in the singular arc. 

To use the maximum gain rule, we need the Hessian from 
the Hamiltonian. We therefore introduce the transforma-
tion uξ = , and computations are made in terms ofξ .  

The maximum gain rule tells us to maximize the scaled 
gain. We assume a maximum variation in the optimal path of 
10% in each variable. The gain matrix G is scaled by the 
expected optimal variation.  The comparison is shown in 
Table 1, and strongly suggests that S should be controlled in 
the singular arc, in agreement with [5]. 

 
State Scaled 

gain 
X 48055 
S 62099000 
P 952 
V 694 

 
TABLE 1 

GAIN COMPARISON FOR STATES IN FED-BATCH REACTOR EXAMPLE 

IV. CONCLUSIONS 
The maximum gain rule has been extended to nonlinear 

systems, and the input-output map for variations has been 
interpreted as a notion of gain along the trajectory of the 
nonlinear system. The maximum gain rule correctly identi-
fies the best output to control in a fed-batch reactor example. 

The method may provide a useful approach to eliminating 
variables which would lead to poor control; a small scaled 
gain implies small gain, large optimal variation or both. 
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