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Abstract—The design problem of two-dimensional recursive 
digital filters is generally reduced to a constraint minimization 
problem. Based on our previously proposed Quantum-Behaved 
Particle Swarm Optimization (QPSO) algorithm, inspired by 
quantum physics, we proposed an improved QPSO, called 
Diversity-Guided QPSO (DGQPSO) to obtain the solution of the 
design problem. The DGQPSO is implemented by controlling the 
diversity measure of the swarm to enhance global search ability of 
the QPSO. The results yield by DGQPSO in design problem show its 
superiority compared to other competitive optimization algorithm. 

I  INTRODUCTION 
wo-dimensional (2-D) IIR filters play an important role 
in multidimensional digital signal processing (MDSP), 

since the mayor problems in MDSP can be comprehended by 
comparing 1-D signal with 2-D signal. They find extensive 
applications in the domain of denoizing of digital images, 
biomedical imaging and digital mammography, X-rays image 
enhancement, seismic data processing, etc. [1]-[3]. During 
last three decades, two-dimensional (2-D) filter design has 
received growing attention by researchers and practitioners. 
The most popular design methods for 2-D IIR filters are 
based either on an appropriate transformation of 1-D filter [2], 
[3], or on appropriate optimization techniques such as linear 
programming, Remex Exchange Algorithm, Non-linear 
Programming: Gradient Methods, Direct Search methods, 
Newton and Gauss-Newton Methods, Fletcher-Powell, and 
Conjugate Gradient [2]-[10]. However, most of the existing 
methods may result in an unstable filter [1], [3]-[10]. Thus 
many techniques have been adopted to resolve these 
instability problems, but the outcome is likely to be a system 
that has a very small stability margin and hence, not of much 
practical importance [11], [12]. 

Just as for 1-D IIR filter design, many modern heuristic 
methods have also been employed for 2-D IIR design 
problem, such as GA [11], [38], neural network (NN) [12] 
and particle swarm optimization (PSO) [13]. These 
techniques are able to find out better solution than those 
mentioned in the afore-paragraph. Our present research 
concentrates on the optimization approach for 2-D IIR filter 
design based on our previously proposed quantum-behaved 
particle swarm Optimization (QPSO) algorithm.  

The QPSO algorithm, inspired by the principles of 

quantum mechanics, is a novel variant of the Particle Swarm 
Optimization (PSO) [14]-[16]. It has fewer parameters and 
stronger search capability than the PSO, as well as is easy to 
implement. In our previous work, QPSO has been shown to 
be more efficient in the design of FIR filters and adaptive IIR 
filters than the other heuristic techniques, such as PSO, GA. 
The contribution of this paper is to propose an improved 
QPSO (called Diversity-Guided QPSO) and use it for 2-D IIR 
filter design. 
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The rest of the paper is organized as follows. Section II 
describes the problem formulation of IIR filter design. The 
description of QPSO is given in Section III. In Section IV, a 
diversity-guided QPSO (DGQPSO) is proposed. Section V 
presents how to apply DGQPSO to the design problem. 
Section VI provides the experiment results generated by 
various optimization algorithms on 2-D IIR filter design. 
Section VII offers some conclusion. 

II. PROBLEM FORMULATION 
The design task of 2-D recursive filters amounts to finding a 
transfer function  as in (1) such that the function 

 approximates the desired 
amplitude response, where the frequencies  
and . 
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For design purpose, the function  is equivalent to 
a class of nonsymmetrical half-plane (NSHP) filters, whose 
2-D transfer function  is given by 
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The variables and  can be interpreted as complex 
indeterminants in the discrete Laplace transform 
(z-transformation). 

1z 2z

It is a general practice to take  (by normalizing ’s 

with respect to the value of ). The design task for 2-D filter 
at hand can be reduced to finding a transfer function  
in (1) such that the frequency response ) 
approximates the desired amplitude response  as 
closely as possible. The approximation can be achieved by 
minimizing [11]-[13]: 
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and p is an positive even integer (usually p= 2 or 4, 8). 
Equation (2) can be rewritten as 
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Here the prime object is to reduce the difference between the 
desired and actual amplitude responses of the filter at 21 NN ×  
points. For bounded input bounded output (BIBO) stability, 
the prime requirement is that the z-plane poles of the filter 
transfer function should lie within the unit circle. Since the 
denominator contains only first-degree factors, we can assert 
the stability conditions, following as [11]-[13]: 
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Thus, the design of 2-D recursive filters is equivalent to the 

following constrained minimization problem 
p
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where p=1 or 2, 4, 8 and K1 and K2 are positive integers. 
In [11], Mladenov and Mastorakis tackle the design 

problem with neural networks, and Mastorakis attempts to 
solve it using a binary coded GA in [12]. Das et al. applied a 
Particle Swarm Optimization method to the design problem 
[13]. 

III.THE QPSO ALGORITHM 
The PSO algorithm is a population-based optimization 
technique originally introduced by Kennedy and Eberhart in 
1995 [16] and [17]. A PSO system simulates the knowledge 
evolvement of a social organism, in which individuals 
(particles) representing the candidate solutions to the problem 
at hand fly through a multidimensional search space to find 
out the optima or sub-optima. The particle evaluates its 
position to a goal (objective function) at every iteration, and 
particles in a local neighborhood share memories of their 
“best” positions, and then use those memories to adjust their 
own velocities, and thus subsequent positions.  

In the original PSO with m individuals, each individual is 
treated as a volume-less particle in the n-dimensional space, 
with the position vector and velocity vector of particle i at tth 
iteration represented as  and 

. The particle moves according 

to the following equations 
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For i=1, 2…m, j=1, 2,…n, where c1 and c2 are called 
acceleration coefficients. Vector  

is the best previous position (the position giving the best 
objective function value) of particle i called personal best 

(pbest) position, and vector  is the 
position of the best particle among all the particles in the 
population and called global best (gbest) position. The 
parameters  and  are two sequences of random 

numbers distributed uniformly in (0, 1). Parameter w is called 
inertia weight. Generally, the value of  is restricted in 

the interval
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]v,v[ maxmax− . This inertia-weight PSO was 
introduced by Shi and Eberhart and is called Standard PSO 
[16].  

B. The QPSO Algorithm 
The main disadvantage is that the PSO algorithm is not 
guaranteed to be global convergent. The QPSO algorithm 
was developed and presented in conference papers such as 
[14], [15]. This section will present a complete concept and 
the parameter control method of the QPSO.  

Trajectory analyses in [18] demonstrated the fact that 
convergence of the PSO algorithm may be achieved if each 
particle converges to its local attractor,  
defined at the coordinates 
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In PSO, the acceleration coefficients  and  are generally 
set to be equal, i.e. , and thus  will be a sequence 

of uniformly distributed random number within [0,1]. 
Consequently, equation (12) can be restated as 
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equation (9). In PSO, the acceleration coefficients  and  
are generally set to be equal, i.e. , and thus 

1c 2c
21 cc = )t(jϕ  will 

be a sequence of uniformly distributed random number within 
[0,1]. Consequently, equation (12) can be restated as 
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It can be seen that  is a stochastic attractor of particle i 
that lies in a hyper-rectangle with  and  being two ends 

of its diagonal and moves following  and . In fact, when 
the particles are converging to their own local attractors, their 
personal best positions, local attractors and the global best 
positions will all converge to one point, leading the PSO 
algorithm to converge.  

ip
iy ŷ
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We hypothesize that the PSO system is a quantum system, 
with each particle in a quantum state formulated by 
wavefunction ψ . 2ψ is the probability density function of the 

position of the particle.  Inspired by analysis of convergence 
of the traditional PSO in [19], we assume that, at iteration t, 
particle i moves in n-dimensional space with a δ potential 
well at  on j)t(p j,i

th dimension for . Correspondingly, 

the wavefunction at iteration t+1 is 
nj1 ≤≤
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and thus the conditional probability distribution function F is 
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where  is the standard deviation of the double 

exponential distribution. Using Monte Carlo method, we can 
obtain the j

)t(L j,i

th component of position  at iteration t+1 as ix
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where  is a random number uniformly distributed in (0, 

1). The value of 
)t(u j,i

)t(Lij  is evaluated by 
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where C called Mean Best Position, is defined as the mean of 
the pbest positions of all particles. That is 
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where M is the population size and is the personal best 
position of particle i. Hence, the position of the particle 
updates according to the following equation: 

iy
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The parameter  in equation (17) and (19) is called 
Contraction-Expansion (CE) Coefficient, which can be tuned 
to control the convergence speed of the particle. 

α

Thus the equation (19) is the fundamental iterative 
equation of the particle’s position for the QPSO. Moreover, 
unlike the PSO, the QPSO needs no velocity vectors for 
particles at all, and also has fewer parameters to control (only 
one parameter α  except population size and maximum 
iteration number), making it easier to implement. The 
experiment results on some well-known benchmark functions 
show that the QPSO described by the following procedure 
has better performance than the PSO [14]-[16]. 

In the QPSO, the parameter α  must be set as 782.1<α  to 
guarantee convergence of the particle [16]. In most cases, it 
can result in good performance to make α  decrease linearly 
from  to  ( < ) over the running of the QPSO. That 
is α  can be adjusted according to 

0α 1α 0α 1α

1
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where MAXITER is the maximum number of iterations and 
MAXITER is the number of current iteration. 

IV.THE PROPOSED DIVERSITY-GUIDED QPSO 
In a PSO system, with the fast information flow between 
particles due to its collectiveness, diversity of the particle 
swarm declines rapidly, leaving the PSO algorithm with great 
difficulties of escaping local optima. In the QPSO, although 
the search scope of an individual particle at each iteration is 
the whole feasible solution space of the problem, diversity 
loss of the whole population is also inevitable.  In this paper, 
we propose a Diversity-Guided QPSO (DGQPSO) in this 
paper. 

The diversity in DGQPSO is measured by average 
Euclidean distance from the particle’s current position to their 
centroid swarms, namely 
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In (21), |A| is the length of longest the diagonal in the search 
space, and n is the dimensionality of the problem. Hence, we 
may guide the search of the particles with the diversity 
measures when the algorithm is running. 

At the beginning of the search, the diversity of the particle 
swarm in QPSO is high after initialization. With the 
development of evolution, the convergence of the particle 
makes the diversity be declining, which, in turn, is enhancing 
the local search ability (exploitation) but weakening the 
global search ability (exploration) of the algorithm. At early 
or middle stage of the evolution, the declination of the 
diversity is necessary for the particle swarm to search 
effectively. However, after middle or at later stage, the 
particles may converge into such a small region that the 
diversity of the swarm is very low and further search is 
impossible. At that time, if the particle with global best 
position is at local optima or sub-optima, premature 
convergence occurs.  

To avoid the premature convergence and improve the 
performance of the QPSO, we propose a DGQPSO, in which 
a low bound for is set to prevent the diversity 
from constantly declining. The procedure of the algorithm is 
as follows. After initialization, the algorithm is running in 
convergence mode that is realized by varying from 1.0 to 0.5 
on the course of running. This control method of the 
parameter is also adopted in the original QPSO and can result 
in good performance of QPSO generally.  On the course of 
evolution, if the diversity measure of the swarm declines to 
below the low bound d

)]t(X[diversity

low, the particles will explode to 
increase the diversity until it is larger than dlow.  

We propose a method of exerting the following mutation 
operation on the particle with global best position if the once 
diversity measure is smaller than dlow. 
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where ε is a random number with standard normal 
distribution N(0,1), γ  is a user-specified parameter. When 
the mutation operation is exerted, the displacement of the 
global best particle will make increase value of )t(y)t(ŷ j,ij − . 

Thus, the position C will be pulled away from its original 
position by the displaced global best particle, which, in turn, 
enlarges the gaps between particles’ current position and the 
position C, consequently making particles’ search scope 
extended and resulting in the gain of . The 
DGQPSO is outlined as follows. 

)]t(X[diversity

 
DGQPSO Algorithm: 
Step 0: Initialize particles with random position; set the 
personal position of each particle as ;(0)x(0)y ii =
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Step 1: For t=1 to MAXITER, execute the following steps; 
Step 2: Calculate the objective function value of each 
particle’s current position and pbest position and determine 
the gbest position ; (t)ŷ
Step 3: Calculate the mean best position C among the 
particles and the value of α  as 

110 MAXITER/)tMAXITER()( α+−×α−α=α ; 
Step 4: Measure the diversity according to formula (24). If 

, the population will be in explosion 
mode and execute from step through 5 to 6. Or else go to step 
7; 

lowdX(t)]diversity[ <

Step 5: For each component of gbest position , 

implement the mutation operation described in (24). 
(t)ŷ j

Step 6: Update the objective function value (fitness value) 
and return to step 4; 
Step 7: Update the position of each particle according to 
equation (19); 

Step 8: Execute the steps 1 through 7. 

V.APPLICATIONS TO 2-D FILTER DESIGN 
A. A Design Example 
 
Without loss of generality, we assume N=2 and then the 
transfer function (1) can be rewritten as 
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Now if we substitute  and  in (3), then  can 
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The actual magnitude is 
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Now we adopted the same example of the design problem as 
that considered in [11] and [12], where the user-specification 

for the desired circular symmetric low-pass filter response is 
given as 
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A continuous differentiable form of the constraints can be 
obtained from (6) in the form 
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Choosing the values p=2, and and , the 
corresponding constrained optimization problem (7) becomes 
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subject to the constraints imposed by (33) with k=1,2. 
 

B. Representation of the Particle 
In order to apply the QPSO and DGQPSO algorithms to the 
design problem formulated in equation (35), we must need to 
represent each trial solution as a in a multi-dimensional space. 
Since  is always set to 1 in (1), the dimensionality of the 
present problems is 15 and each particle has 15 positional 
coordinates represented by the vector 

00a

T
02121212221201211100201 )H,r,r,s,s,q,q,a,a,a,a,a,a,a,a(X =    (35) 

In QPSO, the solution of the problem to be resolved is 
expressed by the particle’s position. Then the vector X 
represents the position of particles in the algorithm. Each 
coordinate of the vector is real number encoding. In handling 
the constraints, we select the same method used in [11]. 

IV.EXPERIMENTS AND RESULTS 
We run four population-based optimization algorithms, 
namely QPSO, DGQPSO, PSO in [13] and [19], and the 
binary encoded GA suggested by Mastorakis et al. [11] on the 
design of circular symmetric zero-phase low pass filter 
according to the user specification summarized in equation 
(40). All the algorithm discussed here have been developed in 
MATLAB 7.0 platform on a Pentium IV, 1.9 GHz PC, with 1 
MB cache and 512 MB of main memory in Windows 
Professional 2000 environment. The graphs and figures have 
been obtained using MATLAB 7.0. 
 

A. Parameter Configurations 
As suggested in [11] and [12], we selected the initial value 

of the parameters of the vector in equation (34) randomly 
from the interval (-3, 3). In cases of QPSO and DGQPSO, we 
vary the CE coefficient linearly from 1.0 to 0.5. The inertia 
weight in the cases of PSO is decreased linearly from 0.9 to 
0.4. We employ 20 particles respectively for either of PSO, 
QPSO and DGQPSO. Other parameter configurations, used 
in all experiments, have been shown in Table 1. 
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B. Simulation Results 

To judge the accuracy of the algorithms, we firstly run all 
of them (except the neural network based on reported in [12]) 
for 40,000 FEs (Function Evaluations). Each algorithm is run 
independently for 30 times. The best values of the parameters 
obtained and mean best values of J2 over 30 runs (along with 
standard deviations) have been reported in Table 2.  

A closer look at Fig. 2-7 reveals that the QPSO and 
DGQPSO algorithm proposed by us, particularly the latter, 
yield better approximations of desired response as compared 
to PSO and GA and NN methods in [12]. The ripples in the 
stopband of Fig. 7 are much lesser as compared to Fig.2-6. 
 
Table 1. Parameter configurations for the competitor algorithms 

 Parameter Value 
GA Popsize m 250 

 No. of bits 32 
 Mutation probability 0.05 

 
Part of genetic material interchanged 
during cross-over 

12 

 
Maximum number of children from 
each pair of parents 

10 

PSO Popsize m 20 
 inertia weight w 0.9 to 0.4 
 c1, c2 2 
 Vmax 3 

QPSO Popsize 20 
 CE coefficient α  1.0 to 0.5 

DGQPSO Popsize m 20 
 CE coefficient α  1.0 to 0.5 
 dlow 0.0005 

 
Table 2. The parameters of 2D filter obtained by different algorithms 

 NN GA PSO QPSO DGQPSO
a01 1.8922 1.8162 1.3357 -0.83657 -0.5993 
a02 -1.2154 -1.1060 -2.7052 -1.862 -1.9587 
a10 0.0387 0.0712 -2.656 -1.6195 -0.0447 
a11 -2.5298 -2.5132 0.93592 2.994 1.6032 
a12 0.3879 0.4279 0.36258 0.07868 -0.6160 
a20 0.6115 0.5926 -1.0322 -1.7383 -2.4065 
a21 -1.4619 -1.3690 1.0865 0.54907 -0.3271 
a22 2.5206 2.4326 -0.81088 -0.67628 0.8995 
q1 -0.8707 -0.8662 -0.06855 -0.53496 -0.2269 
q2 -0.8729 -0.8907 -0.8659 -0.82565 -0.9187 
r1 -0.8705 -0.8531 -0.55581 -0.34733 -0.4113 
r2 -0.8732 -0.8388 -0.08978 -0.87021 -0.8874 
s1 0.7756 0.7346 -0.27798 -0.01655 -0.2572 
s2 0.7799 0.8025 0.06095 0.72768 0.8304 
H0 0.0010 0.0009 -0.0061 0.002146 -0.0015 

J2         -- 
18.9614 
± 4.7974 

16.9224 
± 2.4654 

13.9032 
± 1.9924

12.8112 
± 1.8260

 

IIV.CONCLUSIONS 

In the paper, the design of 2-D recursive filters is attempted 
by the proposed GDQPSO, which is a novel population based 

search technique using a diversity control method. It has 
stronger global search ability and more robust than QPSO and 
other methods. For the same example, our proposed 
DGQPSO outperforms those methods presented in [11]-[13] 
and QPSO because it can find a better approximation of the 
filter’s system function. 
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Fig. 2. Desired amplitude response )ω,(ωM 21d

 of 2D filter 

 
 

 
  Fig. 3. Amplitude response )ω,M(ω 21

 of 2D filter using NN in [12] 

 

 
Fig. 4. Amplitude response )ω,M(ω 21

 of 2D filter using GA in [11] 

 

 
Fig. 5. Amplitude response )ω,M(ω 21

 of 2D filter using PSO 

 

 
Fig. 6. Amplitude response ),(M 21 ωω  of 2D filter using QPSO 

 
 

 
Fig. 7. Amplitude response  of 2D filter using DGQPSO )ω,M(ω 21
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