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Abstract— In this paper, we study fault detection and isola-
tion in non-uniformly sampled systems. In these systems the
control input is generated and the process output is sampled
at non-uniformly distributed time instants. A parity space
residual generator is constructed and optimized to minimize
the sensitivity of the residual to disturbances. The residual gen-
erator is developed assuming that fault and disturbance signals
are constant during the sampling intervals. This assumption
is practically acceptable if sampling intervals are small. For
larger sampling intervals, a method is proposed to improve
the performance. No periodicity assumption is made for the
sampling instants (i.e., irregularly sampled data is considered).

I. INTRODUCTION

Industrial control systems consist of many components,

including sensors, actuators, controllers, communication net-

works and computer hardware/software. Any abnormality,

deficiency or malfunction in one of these components can

disrupt the normal operation of the system and lead to

performance degradation, instability, failure (total break-

down of the system) and even dangerous situations. To

maintain an acceptable level of quality, cost efficiency, re-

liability and safety, it is important that abnormal behavior

of a system component, usually referred to as a fault, be

promptly detected and appropriate remedies be applied. Fault

detection has been a very active area of research both in

industry and academia in the past decades. A wide variety

of fault detection and isolation (FDI) methods are available

in the literature based on various control, mathematical and

statistical concepts [1], [2].

A control system in which the control and FDI algo-

rithms are digitally implemented on a computer is known

as a sampled-data control system. In such systems, the

actual process under control which is often a continuous-

time process, is connected to the computer network through

analog-to-digital (A/D) and digital-to-analog (D/A) convert-

ers. Conventionally, it is assumed that each process variable

is sampled at a constant rate and each control signal is also

generated at a constant rate. The sampling rates of different

A/D and D/A converters may be equal and synchronous

(i.e., single-rate systems) or different and/or asynchronous

(i.e., multirate systems). However, this is not the case in

many practical situations, for instance in chemical processes.
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Frequently, the process inputs and outputs are generated and

sampled at non-uniformly spaced time instants. This could

happen due to a number of reasons, including unpredictable

delays in sensors, communication network and laboratory

analysis. Also in task-sharing applications, where the control

algorithm is implemented on the same distributed computer

system that monitors the process and manages other aspects

of the plant, it is more reasonable and cost-effective to allow

non-uniform sampling. Moreover, it has been shown that

non-uniformly sampled systems can have some advantages

over uniformly sampled ones [3], [4].

In this paper, we develop an optimal residual generator for

non-uniformly sampled systems based on the parity space

approach. The development consists of three main steps:

obtaining the relationship between the input and output of the

process in a certain time frame; construction of the residual

generator which utilizes some design parameter; and optimal

selection of the design parameter. In previous works on non-

uniformly sampled systems, it is assumed that sampling,

although non-uniform, follows a periodic pattern. In other

words, the sampling and updating instants are non-uniformly

distributed in a window of time, and this window is period-

ically repeated. This allows the use of lifting technique to

obtain a linear time-invariant model of the process. But the

periodicity assumption is too restrictive as not many non-

uniformly sampled systems follow this pattern. In this paper,

we don’t make any periodicity assumptions and the sampling

and updating instants can be arbitrarily distributed over time.

Therefore, the proposed residual generator is applicable to

general non-uniformly sampled systems. Due to this non-

periodicity assumption, the lifting technique can not be used.

Instead, we use a time-varying formulation to approach non-

uniformly sampled systems, which is basically different from

the lifting approach used in previous works.

In the proposed method, we also assume that the fault and

disturbance inputs are constant over the sampling interval

(i.e., indirect design [5], [6]). This assumption is practically

acceptable only if the sampling intervals are sufficiently

small. If not, a technique is introduced to improve the

performance. Another approach is to use the so called-direct

design [7], [6]. In direct design no assumption is made on the

fault and disturbance signals and they can vary freely over

time. As a result, operators should be used to capture the

effect of continuous-time fault and disturbance on discrete-

time residual. A direct approach for fault detection in non-

uniformly sampled systems has also been developed by the

authors [8].

A number of research results is available on control [9],
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[4], and fault detection of non-uniformly sampled systems

[10], [11]. In [10], a subspace approach was proposed to

identify residual models which were used for fault detection.

In [11] a Kalman filter based FDI was developed. As

mentioned before, in all of these works, it was assumed

that the sampling/updating is non-uniform but periodic, and

then the lifted model was derived. In this paper no such

assumption is made.

II. PRELIMINARIES

A. Parity Space Approach [12]

Consider the following discrete-time system
{

x(k + 1) = Ax(k) + Bu(k) + Ed(k) + Ff(k)
y(k) = Cx(k)

where x(k) ∈ R
nx is the state vector, u(k) ∈ R

nu the vector

of control input, y(k) ∈ R
ny the vector of process output,

d(k) ∈ R
nd the vector of unknown inputs (e.g., disturbance,

noise, model mismatch, etc.) and f(k) ∈ R
nf the vector

of faults to be detected. A, B, C, E, and F are known

matrices of appropriate dimensions. The objective of residual

generation is to use the known variables of the process (i.e.,

current and past values of y(k) and u(k)) to generate a fault-

indicating signal known as residual. The fault is then detected

by evaluating the residual, which usually is a simple check

to see if the threshold is exceeded.

For a fixed number s, known as the order of parity relation,

define

ys(k) =











y(k − s)
y(k − s + 1)

...

y(k)











(s+1)ny×1

.

us(k), ds(k) and fs(k) are also defined similarly. It is

straight forward to show that ys(k), us(k), ds(k) and fs(k)
are related through the following expression

ys(k) = Hox(k−s)+Huus(k)+Hdds(k)+Hffs(k), (1)

where

Ho =











C

CA
...

CAs











,Hu =











0 · · · 0 0
CB · · · 0 0

...
...

...

CAs−1B · · · CB 0











.

Hd and Hf are similar to Hu with B replaced by E and

F respectively. Based on (1), a parity space based residual

generator is formulated as

r(k) = vs

(

ys(k) − Huus(k)
)

,

where r(k) ∈ R is the residual. The design parameter vs ∈
R

1×(s+1)ny , known as the parity vector, is chosen from the

parity space Ps defined by

Ps = {vs|vsHo = 0} .

Substituting ys(k) from (1), the dynamics of the residual

generator is expressed by

r(k) = vs

(

Hdds(k) + Hffs(k)
)

, vs ∈ Ps.

If the residual r(k) can not be perfectly decoupled from

the unknown input d(k), the effect of d(k) on r(k) can be

minimized by optimizing the residual generator. A common

choice of performance index for optimization is

J =
‖vsHd‖

2

‖vsHf‖
2 =

vsHdH
T
d vT

s

vsHfHT
f vT

s

.

The numerator of J reflects the effect of unknown input

d(k) on the residual while the denominator reflects the effect

of fault f(k). By minimizing J a compromise is made

between sensitivity to fault and robustness to disturbances.

For the solution of the optimization problem, assume that

NB is the basis vector for parity space Ps. Also assume

that λmin is the minimum generalized eigenvalue of the

pair
(

NBHdH
T
d NT

B , NBHfHT
f NT

B

)

and ps,min is the cor-

responding generalized eigenvector, i.e.,

ps,minNBHdH
T
d NT

B = λminps,minNBHfHT
f NT

B .

Then v∗

s = ps,minNB is the optimal solution and J∗ = λmin

is the optimal performance.

B. Process Description

Consider an LTI, strictly proper, continuous-time system

controlled by a discrete-time controller in a sampled-data

framework. The process under control is driven by three sets

of inputs: a computer generated control input; an unknown

input to represent disturbance, noise, model mismatch and

other uncertainties; and fault input. The state-space repre-

sentation of the continuous-time process is given by
{

ẋ(t) = Ax(t) + Bu(t) + Ed(t) + Ff(t)
y(t) = Cx(t)

(2)

where x(t) ∈ R
nx is the state vector, u(t) ∈ R

nu the known

vector of control input, y(t) ∈ R
ny the vector of process

output, d(t) ∈ R
nd the vector of unknown input and f(t) ∈

R
nf the vector of fault to be detected. A, B, C, E and F are

known matrices of appropriate dimensions. The assumption

of strict properness is standard in the sampled-data literature

and necessary for boundedness of the sampling operator. In

practice, because of antialiasing filters that are used before

sampling, the systems are always strictly proper. Also notice

that due to antialiasing filters, f(t) can represent sensor as

well as actuator and process faults.

The control signal u(t) is generated by the computer at

non-uniformly spaced time instants and the output is also

sampled at non-uniformly spaced time instants (hence the

term non-uniformly sampled system). For simplicity, here

we assume that the inputs/outputs are generated/sampled

synchronously at the same times. Without this assumption,

the derivation of the residual generator is more complex but

quite straight forward.

Let T = {t0, t1, t2, · · · } be the set of time instants

when the output is sampled (or the input is updated). Let

ℓT (Z) denote the vector space of all discrete-time signals

corresponding to the time instants in T . Notice that the

discrete-time signals in ℓT (Z) has no practical meaning

unless the corresponding time instants, given by T , are
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known. Let L(R) denote the vector space of all continuous-

time signals.

The non-uniform D/A converter is modeled by non-

uniform (zero-order) hold operator HT : ℓT (Z) → L(R)
defined as

u(t) = HT υT (k) = υT (k), tk ≤ t < tk+1.

Here υT (k) represent the discrete-time input. Notice that

since u(t) is the output of a hold operator, it is piecewise

constant.

The non-uniform A/D converter is also modeled by non-

uniform sampling operator ST : L(R) → ℓT (Z) defined as

ψT (k) = ST y(t) = y(tk),

where ψT (k) denotes the discrete-time output.

In general, disturbance and fault signals, d(t) and f(t), can

have arbitrary values at any time. However, for the method

discussed in this paper (known as the indirect design [5],

[6]), we assume that d(t) and f(t) are piecewise constant

according to T . In other words

d(t) = HT ST d(t),

f(t) = HT ST f(t).

This assumption is obviously restrictive, but can be prac-

tically acceptable if the sampling intervals are small. A

technique will be introduced later in Section IV to improve

the performance if the sampling intervals are large. Define

δT (k) = ST d(t),

φT (k) = ST f(t).

III. INDIRECT METHOD OF RESIDUAL GENERATION

The core of the parity space approach, presented in Sec-

tion II for discrete-time systems, is eqn. (1). This equation

shows how the output of the system within an interval of

time ((s + 1)h sec here, where h is the sampling period) is

affected by the state of the system at the beginning of the

interval and the inputs of the system (including controlled

input, disturbance and fault) during the interval. The first

step in constructing a residual generator for non-uniformly

sampled systems is to derive an expressions similar to (1). To

do that, at each sampling instant tk, we select a time frame

that contains s + 1 samples of the output
(

ψT (k − s) to

ψT (k)
)

. Therefore, the time frame is [tk−s, tk]. Notice that

due to the non-uniform sampling pattern, the actual length

of the time frame is different at each time instant. Define

ψT,s(k) =











ψT (k − s)
ψT (k − s + 1)

...

ψT (k)











(s+1)ny×1

.

υT,s(k), δT,s(k) and φT,s(k) are defined similarly. Here the

objective is to express ψT,s(k) in terms of the state of the

system at the beginning of the time frame
(

x(tk−s)
)

and

υT,s(k), δT,s(k) and φT,s(k).

For now assume that d(t) = 0 and f(t) = 0. It is well

known that, for any two times τ1 ≤ τ2,

x(τ2) = e(τ2−τ1)Ax(τ1) +

∫ τ2

τ1

e(τ2−τ)ABu(τ)dτ.

By substituting τ1 = tk−s and τ2 = tk−s+i, i = 0, 1, · · · s
in this equation we get

x(tk−s+i) = e(tk−s+i−tk−s)Ax(tk−s)

+

∫ tk−s+i

tk−s

e(tk−s+i−τ)ABu(τ)dτ

= e(tk−s+i−tk−s)Ax(tk−s)

+
i

∑

m=1

∫ tk−s+m

tk−s+m−1

e(tk−s+i−τ)ABu(τ)dτ.

(3)

But in the interval [tk−s+m−1, tk−s+m), the input is con-

stant: u(t) = υT (k − s + m− 1). Therefore, we can rewrite

the last term of the above equation as

∫ tk−s+m

tk−s+m−1

e(tk−s+i−τ)ABu(τ)dτ

=

∫ tk−s+m

tk−s+m−1

e(tk−s+i−τ)AdτBυT (k − s + m − 1)

= e(tk−s+i−tk−s+m)A

∫ tk−s+m

tk−s+m−1

e(tk−s+m−τ)AdτB

× υT (k − s + m − 1).

Now for τ1 ≤ τ2 define

Ad(τ1, τ2) = e(τ2−τ1)A,

Bd(τ1, τ2) =

∫ τ2

τ1

e(τ2−τ)AdτB =

∫ τ2−τ1

0

eτAdτB.

Then (3) can be simplified as

x(tk−s+i) = Ad(tk−s, tk−s+i)x(tk−s)

+
i

∑

m=1

Ad(tk−s+m, tk−s+i)Bd(tk−s+m−1, tk−s+m)

× υT (k − s + m − 1)

The output equation in (2) implies that ψT (k) = y(tk) =
Cx(tk) and then

ψT (k − s + i) = CAd(tk−s, tk−s+i)x(tk−s)

+
i

∑

m=1

CAd(tk−s+m, tk−s+i)Bd(tk−s+m−1, tk−s+m)

× υT (k − s + m − 1)

By changing i from 0 to s, and stacking all the equations

we get

ψT,s(k) = Ho,T (k)x(tk−s) + HT (k)HBd,T (k)υT,s(k),
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where Ho,T (k) : (s+1)ny×nx, HT (k) : (s+1)ny×(s+1)nx

and HBd,T (k) : (s + 1)nx × (s + 1)nu are given by

Ho,T (k) =















C

CAd(tk−s, tk−s+1)
CAd(tk−s, tk−s+2)

...

CAd(tk−s, tk)















,

HT (k) =















0 0
C 0

CAd(tk−s+1, tk−s+2) C
...

...

CAd(tk−s+1, tk) CAd(tk−s+2, tk)

· · · 0 0
· · · 0 0
· · · 0 0

...
...

· · · C 0















,

HBd,T (k) =






Bd(tk−s, tk−s+1) · · · 0
...

...

0 · · · Bd(tk, tk+1)






. (4)

Now for the general case when d(t) 6= 0 and f(t) 6= 0,

we have

ψT,s(k) = Ho,T (k)x(tk−s) + HT (k)HBd,T (k)υT,s(k)

+ HT (k)HEd,T (k)δT,s(k)

+ HT (k)HFd,T (k)φT,s(k).

(5)

Here HEd,T (k) and HFd,T (k) have the same structure as

HBd,T (k) in (4) with B replaced by E and F respectively.

This equation shows the relationship between the non-

uniformly sampled output of the system within the interval

[tk−s, tk] with the state of the system at the beginning of the

interval and the known and unknown inputs of the system

within the interval.

Based on (5), a parity space based residual generator for

the non-uniformly sampled system is formulated as

r(k) = vs(k)
(

ψT,s(k) − HT (k)HBd,T (k)υT,s(k)
)

. (6)

Here, r(k) ∈ R is the residual and s is the order of

parity relation. The parity vector vs(k) ∈ R
1×(s+1)ny is the

design parameter. Since the non-uniformly sampled system

described above is inherently time-varying, the residual gen-

erator should also be time-varying. This is why the parity

vector is a function of k and should be calculated at each

iteration. The parity vector vs(k) belongs to the parity space

Ps(k) given by

Ps(k) = {vs(k)|vs(k)Ho,T (k) = 0} .

Dynamics of the residual generator with respect to the

discrete-time inputs δT (k) and φT (k) is then expressed by

r(k) = vs(k)HT (k)
(

HEd,T (k)δT,s(k)

+ HFd,T (k)φT,s(k)
)

.

If the parity vector vs(k) can be found such that

vs(k)HT (k)HEd,T (k) ≡ 0,

vs(k)HT (k)HFd,T (k) 6= 0,

then the unknown input δT (k) has no effect on the residual

and perfect disturbance decoupling is achieved. However, the

conditions for perfect disturbance decoupling are very hard to

satisfy and therefore an optimization procedure is considered.

Similar to the discrete-time LTI case, vs(k) is obtained by

optimizing the following performance index

Jd(k) =
‖vs(k)HT (k)HEd,T (k)‖

2

‖vs(k)HT (k)HFd,T (k)‖
2

IV. INDIRECT DESIGN WITH INTERVAL DIVISION

In the previous section, we assumed that the unknown

input and fault signals are piecewise constant according to T ,

i.e., d(t) and f(t) are constant in the interval [tk, tk+1), k =
0, 1, · · · . If the sampling intervals are relatively large, this

assumption may result in performance degradation. In that

case, we assume that d(t) and f(t) are constant over smaller

intervals. Divide [tk, tk+1), k = 0, 1, · · · into l equal sub-

intervals. Let Tl denote the set of all time instants obtained

by this division, i.e.,

Tl =
{

t0,
(l−1)t0+t1

l
, · · · ,

t0+(l−1)t1
l

, t1,
(l−1)t1+t2

l
, · · ·

}

=
{

t0,0, t0,1, · · · , t0,l−1, t1,0, t1,1, · · ·
}

Notice that tk,0 = tk and define tk,l = tk+1. Assume

that d(t) and f(t) are piecewise constant functions of time

according to Tl, i.e.,

d(t) = HTl
STl

d(t),

f(t) = HTl
STl

f(t).

Then define

δTl
(k) = STl

d(t),

φTl
(k) = STl

f(t).

Also define

δTl,s(k) =









































δTl
(l(k − s))

...

δTl
(l(k − s) + l − 1)

δTl
(l(k − s + 1))

...

δTl
(l(k − s + 1) + l − 1)

...

δTl
(lk)
...

δTl
(lk + l − 1)









































(s+1)lnd×1

,
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and φTl,s(k) similarly. The number of subintervals l, can be

selected based on the length of the sampling intervals and

the expected behavior of the disturbance and fault inputs.

Similar to the discussion in Section III, it can be shown

that the relation between the input
(

υT,s(k), δTl,s(k),
φTl,s(k)

)

and output
(

ψT,s(k)
)

in time frame [tk−s, tk] is

given by

ψT,s(k) = Ho,T (k)x(tk−s)

+ HT (k)HBd,T (k)υT,s(k)

+ HT (k)HEγ ,T (k)δTl,s(k)

+ HT (k)HFγ ,T (k)φTl,s(k).

(7)

Here HEγ ,T (k) : (s + 1)nx × (s + 1)lnd is defined as

HEγ ,T (k) =






Eγ(tk−s, tk−s+1) · · · 0
...

...

0 · · · Eγ(tk, tk+1)






,

where Eγ(τ1, τ2) : nx × lnd is

Eγ(τ1, τ2) =
[

∫ τ1,1

τ1,0

∫ τ1,2

τ1,1
· · ·

∫ τ1,l

τ1,l−1

]

e(τ2−τ)AdτE,

and τ1,j = τ1 + j τ2−τ1

l
, j = 0, · · · , l. Notice the sim-

ilarity between HEγ ,T (k) and HEd,T (k). Similarly define

Fγ(τ1, τ2) and HFγ ,T (k).
Based on the input-output relation in (7), a residual

generator can be constructed which is the same residual

generator given in (6). Consequently, the dynamics of the

residual generator with respect to the discrete-time inputs

δTl,s(k) and φTl,s(k) is given by

r(k) = vs(k)HT (k)
(

HEγ ,T (k)δTl,s(k)

+ HFγ ,T (k)φTl,s(k)
)

.

If perfect decoupling of the residual from disturbance is

not possible, the parity vector vs(k) ∈ Ps(k) is designed by

minimizing the following performance index

Jγ(k) =

∥

∥vs(k)HT (k)HEγ ,T (k)
∥

∥

2

∥

∥vs(k)HT (k)HFγ ,T (k)
∥

∥

2

V. OPTIMAL PARITY VECTOR

The indirect method of residual generation and its modi-

fication with interval division (presented in Sections III and

IV), both resulted in the following performance index

Jx(k) =
‖vs(k)HT (k)HEx,T (k)‖

2

‖vs(k)HT (k)HFx,T (k)‖
2 , (8)

where x ≡ d for the indirect design and x ≡ γ for the

indirect design with interval division. It is important to keep

in mind that regardless of the design method, we always

use the residual generator in (6) for implementation. The

techniques proposed in Sections III and IV are different

approaches to design the parity vector vs(k), not different

methods of implementation.

The parity vector vs(k) is now designed by solving the

following optimization problem for k = s, s + 1, · · · ,

min
vs(k)∈Ps(k)

Jx(k).

Assume that NB(k) is the basis vector for parity space

Ps(k), and λmin(k) and ps,min(k) are the minimum gener-

alized eigenvalue and the corresponding generalized eigen-

vector satisfying

ps,min(k)NB(k)HT (k)
(

HEx,T (k)HT
Ex,T (k)

− λmin(k)HFx,T (k)HT
Fx,T (k)

)

HT
T (k)NT

B (k) = 0.

Then v∗s (k) = ps,min(k)NB(k) is the optimal parity vector

and J∗(k) = λmin(k) is the optimal performance. Once

the optimal parity vector v∗s (k) is designed, the residual in

(6) can be implemented. Notice that this residual generator,

updates the residual at time instants tk, k = s, s + 1, · · · .

These are the instants of time that the output is sampled and

are in fact the best times to generate the residual. The reason

is that at these times, new information from the process is

available through measurements and therefore the fault can

be detected at the earliest time possible.

After the residual is generated, it has to be evaluated

(usually by comparing to a threshold) before a decision

about fault occurrence can be made. It has been shown

that the threshold depends on the optimal parity vector [1].

Therefore, since the optimal parity vector v∗s (k) is time-

varying, the threshold will also be time-varying which can be

unsatisfactory for implementation and visualization. Notice,

on the other hand, that the parity vector v∗s (k) appears both

in numerator and denominator of the performance index in

(8). So, multiplying v∗

s (k) by a scalar does not change the

optimal performance J∗(k). This scalar multiplication, how-

ever, affects the threshold. Therefore, the scalar multiplier

can be used to normalize the threshold at each sampling

instant resulting in a threshold that remains constant during

the course of implementation.

As mentioned before, the residual generator designed

for the non-uniformly sampled system is time-varying.

Therefore, the related matrices Ho,T (k), HT (k), HBd,T (k),
HEx,T (k) and HFx,T (k) should be recalculated and the op-

timization problem re-solved every time (the calculations at

each step, mainly simple matrix computations and an eigen-

vector problem, are not numerically complex). In fact, any

residual generator designed for the general non-uniformly

sampled system is intuitively time-varying. This is because

the non-uniformly sampled system is inherently time-varying

and unpredictable (i.e., we do not know when to expect the

next sample). However, if the non-uniform sampling follows

a certain pattern that makes it predictable, then the matrices

can be calculated before hand and the parity vector computed

off-line. This is the case in other results for non-uniformly

sampled systems in which a periodic sampling pattern is

considered [9], [10], [11], [4].
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VI. EXAMPLE

Consider the LTI continuous-time process in (2) with

A =

[

−1 5
0 −2

]

, B =

[

0
1

]

, C =

[

1 0
0 1

]

,

E =

[

0.1
1

]

, F =

[

0
1

]

.

The outputs are non-uniformly sampled at the time instants

given by (in seconds)

T =
{

0, 1.2, 1.6, 2.1, 3.0, 4.2, 4.9, 5.8, 7, 7.7, 8.5, 9.4,

10.4, 11.1, 11.9, 13.0, 14.5, 15.4, 16.5, 17.1, 17.9
}

.

The control input is also updated according to T with random

numbers between -6 and 6. The disturbance d(t) is white

noise with variance 1 and is updated every 0.1 sec. The fault

f(t) is a step function, changing from 0 to 1 at 9.7 sec. The

input and outputs of the system are shown in Fig. 1.

1.2 2.1 3 4.24.9 5.8 7 7.7 8.5 9.4 10.4 11.9 13 14.515.4 16.5 17.9
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Control input

Outputs

Fig. 1. System input and outputs

At 10.4 sec, the outputs are sampled for the first time

after the fault occurrence, and this is the first time that fault

information is available to the detection algorithm. Therefore,

we expect to see the effect of the fault on the residual at

10.4 sec. For the order of parity relations we chose s = 3.

Two optimal residual generators were designed for this non-

uniformly sampled system. The first residual generator was

designed using the indirect method. For the second one each

sampling interval was divided into 3 sub-intervals (i.e., l =
3), and the residual generator was designed using the indirect

design with interval division. For both designs, the threshold

is set to be at 1. The results of simulation are shown in Fig. 2.
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Fig. 2. Residual signal for fault detection

As it can be seen, the residual generated by the indirect

design was not able to reflect the fault. But with performance

improvement using interval division, the residual generator

was able to detect the fault at the earliest possible time

(10.4 sec).

VII. CONCLUSIONS

In this paper, we presented an indirect method to de-

sign optimal residual generator for non-uniformly sampled

systems. The proposed parity based residual generator uses

process input-output data in a certain frame of time to

generate the residual. A key point in developing the residual

generator is not to fix the length of the time frame, but to

fix the number of data samples in that frame. The residual is

then evaluated and a decision is made on fault occurrence.

To design the optimal parity vector, it was assumed that the

fault and disturbance inputs are constant during the sampling

period (hence the indirect design). If the sampling intervals

are small, we expect this assumption to be acceptable. For

larger sampling intervals, to improve the performance of

indirect design, each interval is divided into a selectable

number of subinterval. Then it is assumed that the fault and

disturbance inputs are constant over the subintervals.

Throughout the paper no assumption is made on the

sampling and hold operators. Particularly, there is no need for

the sampling and hold operators to follow a periodic pattern.

In fact no a priori information is required regarding the sam-

pling/updating times. Whenever a new measurement from

the process becomes available, the residual can be updated.

This makes the method applicable to general non-uniformly

sampled systems and also eliminates any unnecessary delay

in fault detection. Also, since multirate sampled-data systems

are a special case of general non-uniformly sampled systems,

the design techniques proposed in this paper can be readily

used for multirate systems.
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