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Abstract— To determine the position of a mobile robot
continues being a complex and interesting challenge in
localization algorithms, whose solution requires the use of
estimation techniques of nonlinear systems, a well selection
of sensors that fulfill the restrictions imposed by the
characteristics of the system, and the selection of the suitable
algorithm of navigation. In this article, the performance of
three variants of Sigma Point Kalman Filter (SPKF) are
analyzed and compared, where the selection strategy of
spherical simplex sigma points is used in order to improve its
performance for real time execution. The analyzed filters are
applied to an inertial navigation system that is used for the
localization of a terrestrial mobile vehicle. The obtained results
of the comparative analysis are illustrated by some simulations.
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I. INTRODUCTION

Localization represents one of the more critic abilities for

an autonomous mobile robot [9]. An autonomous mobile

robot must use the relative and absolute measurements pro-

vided by its sensors in order to estimate its own position.

However, the natural uncertainty of the sensor measurements

and the possible errors in the navigation model, make neces-

sary the use of all available information in order to obtain an

optimal data fusion. Lamentably, the theories and techniques

that make reality this objective still follow in development,

existing a great amount of challenges in the theoretical and

technological fields. In the first field, an optimal solution that

can be implemented to estimate nonlinear systems does not

exist, then this leads to research on approximate solutions

[14]. In the second field, in spite of the continuous im-

provements in miniaturization and performance of the useful

sensors in the localization problem, its cost/performance–size

relation remains much smaller than desirable [12].

Some of the solutions more recently proposed, about non-

linear system estimation, are the Sigma Point Kalman Filters

(SPKF), which have been developed in order to surpass the

limitations displayed by the widely used Extended Kalman

Filter (EKF) [3]. Nevertheless, in spite of the undeniable

advantages over the EKF, the SPKF have a relatively poor

performance concerning the run time execution, due to the
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high computational cost that entails to propagate each sigma

point by the nonlinear transformation. This has motivated

the search of other solutions like the use of SPKF additive

versions, which have the disadvantage of loss of exactitude

and a greater difficulty of tuning. Since the reduction of the

number of sigma points represents a main aspect, in order

to decrease the run time execution, an alternate criterion of

point selection has been developed recently [7], it is called

as Spherical Simplex Sigma Points. This criterion allows for

a system of dimension n, to make a selection of n+2 sigma

points, instead of the well-known amount of 2n + 1. We

use this criterion in order to analyse their behaviors in a

navigation task.

In the present article, the performance of three variants of

the SPKF, applied to the inertial navigation of a terrestrial

vehicle is analyzed in simulation. These variants use the

selection criterion of spherical simplex sigma points. In

section II, the theoretical methodology of the SPKF, as well

as the reason for their different variants, is reviewed. In

Section III, the model of inertial navigation aided with DGPS

measurements, used in the terrestrial vehicle is presented.

Later, in section IV, the kinematic model used in simulation

is introduced. In section V, the results obtained by simula-

tions are showed. Finally, the conclusions are given in section

VI.

II. SIGMA POINT KALMAN FILTERS

The Unscented Kalman Filter (UKF) is the more known

member of a family of Kalman filters, known as Sigma Point

Kalman Filters [2], [4]. The variants that have been devel-

oped for this filter are intended to improve its performance

in several areas. The additive UKF was set out in order to

reduce the number of mathematical calculations performed

in each iteration, without using the augmented states of the

traditional UKF. This reduces significantly the computational

load of the filter that is mainly used in the calculation

and propagation of the sigma points, and makes it more

appropriate to be executed in real-time systems. The square

root UKF was developed to prevent numerical instabilities to

which the algorithm is exposed, being necessary to conserve

the covariance matrix of the state errors as semidefined

positive [13]. In addition to the numerical robustness reached,

a reduction in computational cost is obtained. These three

filters are described below in their spherical simplex form.

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThC18.2

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 3536



A. Standard UKF Algorithm

The standard UKF algorithm is applied to nonlinear discret

time systems described by the equations [5]:

xk = f (xk−1,wk−1) (1)

yk = h(xk,vk) (2)

where xk ∈ R
n is the state vector, yk ∈ R

m is the

measurement vector, f (·) is a nonlinear function of the state

propagation, h(·) is a nonlinear function of measurements,

wk ∈ R
n and vk ∈ R

m are the process and measurement

noise whose covariances are given by Qk ∈ R
n×n and

Rk ∈ R
m×m respectively.

The UKF uses a vector of augmented states defined by

xa
k =





xk

wk

vk



 ∈ R
2n+m (3)

whose augmented matrix of covariance, is given by

P a =





Pxk
0 0

0 Qk 0

0 0 Rk



 ∈ R
(2n+m)×(2n+m) (4)

where Px is the covariance matrix of the estimation error.

First, a set of sigma points is calculated applying the

equation:

X a
k−1 =

[

x̂
a
k−1 x̂

a
k−1 + γ

√

P a
k−1 x̂

a
k−1 − γ

√

P a
k−1

]

(5)

where X a
k−1 ∈ R

L×(2L+1) is the sigma points matrix, being

L = 2n+m. The parameter γ =
√
L+ ρ being ρ = α2(L+

κ) − L. The constant α determines the sigma points spread

and it is often a positive small value (1 × 10−4 ≤ α ≤ 1).

The scalar κ ≥ 0 is a parameter that guarantees positive

semidefiniteness of the covariance matrix, a good value for

this parameter is κ = 0.

Next, a transformed set of sigma points is evaluated for

each i-th column of the matrix X , by means of the nonlinear

function of the system:

Xk|i = f(X x
k−1|i,Xw

k−1|i), i = 0, . . . , 2L (6)

At the prediction stage, the means and error covariances

of the states and measurements are calculated as

x̂
−
k =

2L
∑

i=0

wm
i Xk|i (7)

P−
xk

=
2L
∑

i=0

wc
i [Xk|i − x̂

−
k ][Xk|i − x̂

−
k ]T (8)

Yk|i = h(Xk|i,X v
k−1|i), i = 0, . . . , 2L (9)

ŷ
−
k =

2L
∑

i=0

wm
i Yk|i (10)

Pyk
=

2L
∑

i=0

wc
i [Yk|i − ŷ

−
k ][Yk|i − ŷ

−
k ]T (11)

Pxyk
=

2L
∑

i=0

wc
i [Xk|i − x̂

−
k ][Yk|i − ŷ

−
k ]T (12)

For the correction stage, the following equations are used:

Kk = Pxyk
P−1

yk
(13)

x̂k = x̂
−
k +Kk(yk − ŷ

−
k ) (14)

Pxk
= P−

xk
−KkPyk

KT
k (15)

B. Spherical Simplex Sigma Point Approach

The selection criterion of spherical simplex sigma points is

a new and better selection strategy for the Unscented Trans-

formation (UT) [7], which significantly allows to reduce the

number of sigma points propagated, and by this fact, the

implementation of filters becomes more suitable for real-

time systems, where the limitations of computational cost

are extremely restrictive. This selection strategy defines a

minimum set of points located in a hyper-sphere. For a n-

dimensional space, only n+2 points are required. The points

are in a radius that is proportional to
√
n, and the weight

applied to each point is proportional to 1/n.

Consider a random variable x ∈ R
n that is propagated

through an arbitrary nonlinear function y = g(x), being

y ∈ R
m and n, m ∈ N+. Assume that x has mean x̂

and covariance Px. In order to calculate the statistics of y

(mean and covariance), a set of n+2 sigma points is formed

{Xi; i = 0, . . . , n + 1}, where Xi ∈ R
n. The sigma points

are calculated using the following criterion

Xi = x̄ +
√

PxZi i = 0, . . . , n+ 1 (16)

where
√
Px indicates the square root of the covariance

matrix Px, and Zi is i-th column of the spherical simplex

sigma point matrix, previously calculated by the following

algorithm

1) Choose the value 0 ≤W0 ≤ 1
2) The sequence of weights is chosen as

Wi = (1 −W0)/(n+ 1) (17)

3) In order to use the advantages of the scaled transfor-

mation, the previous weights are transformed by the

following way [6]:

wi =

{

1 + (W0 − 1)/α2 i = 0
Wi/α

2 i 6= 0
(18)

where α is the sigma points scalar factor (0 ≤ α ≤ 1),

which allows to minimize the higher order errors.

4) The vector sequence is initialized as

Z1
0 = [0], Z1

1 =

[

− 1√
2w1

]

y Z1
2 =

[

1√
2w1

]

(19)

5) The vector sequence is expanded for j = 2, . . . , n
according to

Zj
i =























































[

Zj−1
0

0

]

for i = 0

[

Zj−1
i

− 1√
j(j+1)w1

]

for i = 1, . . . , j

[

0j−1
j√

j(j+1)w1

]

for i = j + 1

(20)
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6) Finally, in order to incorporate information of higher

order, define [8]:

wm
0 = w0 i = 0

wc
0 = w0 + (1 − α2 + β) i = 0

wm
i = wc

i = wi i = 1 . . . , n+ 2
(21)

where β denotes a parameter that affects the weight

of the zeroth sigma point for the calculation of the

covariance, allowing to minimize higher order errors

if a previous knowledge of the distribution is provided

for x. For a Gaussian distribution, the optimal selection

is β = 2.

Once the sigma points have been calculated in the previous

form, it is necessary to propagate them through the next

nonlinear function

Yi = g(Xi) i = 0, . . . , n+ 1 (22)

The mean and covariance of y are approximated using a

mean and covariance of weighted samples of the transformed

sigma points in the following way

ȳ ≈
n+1
∑

i=0

wm
i Yi (23)

Py ≈
n+1
∑

i=0

n+1
∑

j=0

wc
iYiYT

j (24)

Pxy ≈
n+1
∑

i=0

n+1
∑

j=0

wc
iXiYT

j (25)

where wm
i , wc

i are the mean and covariance scalar weights,

defined previously.

C. SS-UKF Algorithm

The SS-UKF algorithm is applied to nonlinear systems

described by (1) and (2).

First, a set of sigma points is calculated applying the

equation

X a
k−1|i = x̂

a
k−1 +

√

P a
k−1Zi i = 0, . . . , L+ 1 (26)

where X a
k−1 ∈ R

L×(L+2) is the sigma points matrix, being

L = 2n+m.

Now, a transformed set of sigma points is evaluated for

each i-th column of the X a
k matrix, by means of the nonlinear

function system

Xk|i = f(X x
k−1|i,Xw

k−1|i), i = 0, . . . , L+ 1 (27)

At the prediction stage, the mean of the states is calculated

as

x̂
−
k =

L+1
∑

i=0

wm
i Xk|i (28)

and the covariance prediction of the estimation error as

P−
xk

=

L+1
∑

i=0

wc
i [Xk|i − x̂

−
k ][Xk|i − x̂

−
k ]T (29)

Next, the observation model is applied to each sigma

points as follows

Yk|i = h(Xk|i,X v
k−1|i), i = 0, . . . , L+ 1 (30)

The prediction of the observation is calculated by means

of the following equation

ŷ
−
k =

L+1
∑

i=0

wm
i Yk|i (31)

in addition, the output covariance is given by

Pyk
=

L+1
∑

i=0

wc
i [Yk|i − ŷ

−
k ][Yk|i − ŷ

−
k ]T (32)

The prediction stage finalizes with the calculation of the

crossed correlation matrix, determined by

Pxyk
=

L+1
∑

i=0

wc
i [Xk|i − x̂

−
k ][Yk|i − ŷ

−
k ]T (33)

For the correction stage, the Kalman gain is calculated by

Kk = Pxyk
P−1

yk
(34)

Next, the corrected estimation of the state vector, is

determined by means of

x̂k = x̂
−
k +Kk(yk − ŷ

−
k ) (35)

Finally, the covariance matrix correction of the estimation

error, is calculated by the following equation

Pxk
= P−

xk
−KkPyk

KT
k (36)

D. Additive SS-UKF Algorithm

The additive SS-UKF algorithm is applied to nonlinear

systems described by the equations [2]:

xk = f(xk−1) + wk−1 (37)

yk = h(xk) + vk (38)

where it is assumed that the process and measurement noises

are additives. Next, we show the differences between the

resulting algorithm with respect to the augmented SS-UKF.

The set of sigma points is calculated from the non-

augmented states

Xk−1|i = x̂k−1 +
√

Pxk−1
Zi, i = 0, . . . , n+ 1 (39)

where Xk−1 ∈ R
n×(n+2), x̂k−1 ∈ R

n and Pxk−1
∈ R

n×n.
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The prediction equations are defined as

X ∗
k|i = f(Xk−1|i), i = 0, . . . , n+ 1 (40)

x̂
−
k =

n+1
∑

i=0

wm
i X ∗

k|i (41)

P−
xk

=

n+1
∑

i=0

wc
i [X ∗

k|i − x̂
−
k ][X ∗

k|i − x̂
−
k ]T +Qk (42)

Xk = [X ∗
k X ∗

k|0 +
√

QkZ], n→ 2n (43)

Yk|i = h(Xk|i), i = 0, . . . , n+ 1 (44)

ŷ
−
k =

n+1
∑

i=0

wm
i Yk|i (45)

Pyk
=

n+1
∑

i=0

wc
i [Yk|i − ŷ

−
k ][Yk|i − ŷ

−
k ]T (46)

Since the observation noise is independent and additive,

now the covariance of innovation is given by

Pvk
= Pyk

+Rk (47)

Pxyk
=

n+1
∑

i=0

wc
i [Xk|i − x̂

−
k ][Yk|i − ŷ

−
k ]T (48)

Finally, the correction stage is defined as follows

Kk = Pxyk
P−1

vk
(49)

x̂k = x̂
−
k +Kk(yk − ŷ

−
k ) (50)

Pxk
= P−

xk
−KkPvk

KT
k (51)

E. Square Root SS-UKF Algorithm

This algorithm propagates and updates the square root of

the covariance of the states directly in the form of Cholesky

factor, using the sigma points approach and following three

techniques of linear algebra for its theoretical develop-

ment and implementation, which are: QR decomposition,

Cholesky factor updating and efficient least squares based

on pivoting.

The resulting algorithm can be resumed as

1) Calculate sigma points

X a
k−1|i = x̂

a
k−1 + Sa

k−1Zi, i = 0, . . . , L+ 1
(52)

where

Sa
k−1 =





Sxk−1
0 0

0 Sw 0

0 0 Sv



 (53)

and Sx = chol{Px}, where chol(·) is a matrix function

that performs the Cholesky factorization, Sw =
√
Q

and Sv =
√
R.

2) Time-update equations

Xk|i = f (X x
k−1|i,Xw

k−1|i), (54)

i = 0, . . . , L+ 1

x̂
−
k =

L+1
∑

i=0

wm
i Xk|i (55)

S−
xk

= qr
{[

√

wc
1

(

Xk|1:L+1 − x̂
−
k

)

]}

(56)

S−
xk

= cholupdate
(

S−
xk
,Xk|0 − x̂

−
k , w

c
0

)

(57)

Yk|i = h(Xk|i,X v
k−1|i), i = 0, . . . , L+ 1 (58)

ŷ
−
k =

L+1
∑

i=0

wm
i Yk|i (59)

where qr(·) is a function that carries out the QR

decomposition, and cholupdate(·) is a function that

performs the Cholesky factor updating.

3) Measurement-update equations

Syk
= qr

{[

√

wc
1

(

Yk|1:L+1 − ŷ
−
k

)

]}

(60)

Syk
= cholupdate

{

Syk
,Yk|0 − ŷ

−
k , w

c
0

}

(61)

Pxyk
=

L+1
∑

i=0

wc
i [Xk|i − x̂

−
k ][Yk|i − ŷ

−
k ]T (62)

Kk = (Pxyk
ST

yk
)/Syk

(63)

x̂k = x̂
−
k +Kk(yk − ŷ

−
k ) (64)

U = KkSyk
(65)

Sxk
= cholupdate

(

S−
xk
, U,−1

)

(66)

III. TERRESTRIAL INERTIAL NAVIGATION

In order to obtain the navigation state vector related to

a terrestrial vehicle, we take the next assumptions: consider

that the vehicle moves only in the x–y plane, in a nonaccel-

erated and nonrotational frame (due to the relatively small

displacement and the small time duration of the experiment),

then we only require one gyroscope, which measure the

angular rate in z, that is, the angular velocity of the yaw angle

ψ, and also 2 accelerometers [10]. Previous assumptions

result in the following equation

























v̇x

v̇y

ṗx

ṗy

ψ̇
ȧxb

ȧyb

ω̇zb

























=

























f b
x cosψ + f b

y sinψ
−f b

x sinψ + f b
y cosψ

vx

vy

ωb
z

0
0
0

























(67)

where vx, vy denote the x, y velocities in navigation co-

ordinates; px, py represent the x, y positions. ψ is the

Euler’s angle in the z-axis; axb, ayb and ωzb represent the

acceleration and gyro rate biases respectively. The gravity

term has been omitted since the acceleration in the z-axis is

not sensed.
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The following IMU sensor model was used for both

accelerometers and gyros [1]:

ã(t) = a(t) + b(t) + ηv(t) (68)

ḃ = ηu(t) (69)

where p(ηv) ∼= N(0, σv) and p(ηu) ∼= N(0, σu) are zero-

mean Gaussian random variables.

IV. KINEMATIC MODEL OF A TERRESTRIAL VEHICLE

Fig. 1. Model of a car-like vehicle

The navigation algorithm is applied to a terrestrial mobile

robot, for example a radio-controlled electrical car. The

kinematics of this robot (Fig. 1) can be described by [11]:




ẋc

ẏc

ψ̇c



 =





vc cosψc

vc sinψc

ωc



 (70)

where xc, yc are the coordinates in the horizontal plane,

and ψc is the angular displacement in z-axis (see Fig. 1).

The control inputs vc, and ωc correspond respectively to the

linear and angular rate of the vehicle.

V. SIMULATIONS

Using the kinematic model equations (70), the vehicle

displacement has been simulated at a constant speed vc = 1
m/s and a constant angular rate ωc = 0.1 rad/s, during a

time of 25s. Both the DGPS and the inertial measurements

were simulated. The noise implied in the inertial measure-

ments has been modeled by additive Gaussian noise, as a

random walk process. Additionally, the IMU quality has been

degraded by increasing the additive noise variance and the

measurement bias, and by reducing the IMU update rate.

We consider that all the sensors measurements have been

obtained at 10Hz. All the IMU variances (σu and σv) were

artificially set to 3 × 10−1 for simplicity. In order to obtain

the performance of each filter, 200 Monte Carlo simulations

have been made. The results obtained are summarized in the

table I, in which the square mean error (SME) of the states

estimation x and y, and its variance are shown.

The trajectory executed by the vehicle is illustrated in Fig.

2, starting off from the origin (0, 0), for t0 = 0 s, and

arriving at coordinates (6, 18), for tn = 25 s. In Fig. 3,

TABLE I

COMPARISON OF SME OF THE MEAN AND VARIANCE OF THE

DIFFERENT FILTERS

Algorithm x (mean) y (mean) x (variance) y (variance)

SSUKF 0.009748 0.012351 0.009170 0.006944

SRSSUKF 0.008070 0.010072 0.007442 0.004432

ASSUKF 0.010659 0.012770 0.010071 0.007406

the simulated DGPS measurements are represented. In Fig.

4 and 5, the position estimates of the coordinates x and y are

showed separately in order to compare the different filters.

Additional experiments, with a greater runtime (6 minutes),

were simulated in order to validate the performance of these

filters.

A comparative analysis of the three filters was done, form

which the following remarks can be concluded:

1) As the theory indicates, the augmented and square root

Kalman filters show a better performance since they

minimize the estimation error.

2) The additive SS-UKF provides a greater estimation

error and it is more difficult to tune, this although

the system is doubtlessly contaminated with additive

Gaussian noise.

3) In spite of the previous results, the difference between

the augmented and additive versions is not relatively

so great, and on the other hand, the additive version

is more suitable for systems that are executed in real-

time, due to lower computational cost. Thus, the se-

lection of the Kalman filter version, for the navigation

algorithm, depends on the priorities that the platform

require.

−5 0 5 10 15
−5

0

5

10

15

20

x (m)

y
 (

m
)

Vehicle trajectory

Fig. 2. Trajectory executed by the vehicle

VI. CONCLUSIONS

A comparative analysis of the standard, square root, and

additive SS-UKF filters, which are part of the Sigma Point
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−5 0 5 10 15
−5

0

5

10

15

20

x (m)

y
 (

m
)

GPS measurements

Fig. 3. Noised DGPS measurements obtained in simulation

0 5 10 15 20 25

−0.5

0

0.5

x
 (

m
)

SSUKF

0 5 10 15 20 25

−0.5

0

0.5

x
 (

m
)

Square root SSUKF

0 5 10 15 20 25

−0.5

0

0.5

x
 (

m
)

Time (s)

Additive SSUKF

Fig. 4. Errors in x-position and 3σ bounds for each filter

Kalman Filters, was made. The analysis was based on the

simulation of an inertial navigation system, in two dimen-

sions, in order to estimate the position of a terrestrial vehicle,

referred to the performance (in mean and variance) of the

filters by means of Monte Carlo simulations. The obtained

results showed that the additive SS-UKF is most advisable

for real-time systems, due to its low computational cost,

whereas if we desire a greater precision of the position

estimation, then we will have to resort to the square root

SS-UKF.
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