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Abstract— This paper presents a novel adaptive control
methodology for a class of uncertain nonlinear systems in
the presence of unmodelled dynamics. The adaptive controller
ensures uniformly bounded transient response for system’s
both input and output signals simultaneously. The performance
bounds can be systematically improved by increasing the
adaptation gain.

I. INTRODUCTION

Reference [1] considers a class of uncertain systems in

the presence of time and state dependent unknown nonlin-

earities and develops an adaptive control methodology that

ensures uniformly bounded transient response for system’s

input/output signals simultaneously. This paper extends the

results of [1] to a class of uncertain nonlinear systems in

the presence of unmodeled dynamics. The L∞ norm bounds

for the error signals between the closed-loop adaptive system

and the closed-loop reference system can be systematically

reduced by increasing the adaptation gain.

The paper is organized as follows. Section II gives the

problem formulation. In Section III, the novel L1 adaptive

control architecture is presented. Stability and uniform per-

formance bounds are presented in Section IV. In Section V,

simulation results are presented, while Section VI concludes

the paper.

II. PROBLEM FORMULATION

Consider the following system dynamics:

ẋ(t) = Amx(t) + b (ωu(t) + f(x(t), z(t), t))

z(t) = go(xz, t) , ẋz(t) = g(xz(t), x(t), t) , (1)

y(t) = c⊤x(t), x(0) = x0 ,

where x ∈ R
n is the system state vector (measurable), u ∈ R

is the control signal, y ∈ R is the regulated output, b, c ∈ R
n

are known constant vectors, Am is a known n × n Hurwitz

matrix, ω ∈ R is the unknown control effectiveness, z and

xz are the output and the state vector of the unmodelled

dynamics, while f , go, g are unknown nonlinear functions.

Assumption 1: [Known sign for control effectiveness]
There exist ωu > ωl > 0 such that ωl ≤ ω ≤ ωu.

Assumption 2: [Stability of internal dynamics] The z-

dynamics are bounded–input–bounded–output (BIBO) sta-

ble, i.e. there exist L1 > 0 and L2 > 0 such that

‖zt‖L∞
≤ L1‖xt‖L∞

+ L2 . (2)
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Further, let

X , [x⊤ z⊤]⊤ .

Assumption 3: [Semiglobal Lipschitz condition] For any

δ > 0, there exist positive Kδ and B such that

|f(X1, t) − f(X2, t)| ≤ Kδ‖X1 − X2‖∞ , (3)

|f(0, t)| ≤ B (4)

for all ‖Xi‖∞ ≤ δ, i = 1, 2, uniformly in t.
Assumption 4: [Semiglobal uniform boundedness of par-

tial derivatives] For any δ > 0, there exist dfx
(δ) > 0,

and dft
(δ) > 0 such that for any ‖x‖∞ ≤ δ, the partial

derivatives of f(X, t) are piece-wise continuous and bounded

∥

∥

∥

∂f(X, t)

∂X

∥

∥

∥
≤ dfx

(δ) ,
∣

∣

∣

∂f(X, t)

∂t

∣

∣

∣
≤ dft

(δ) . (5)

The control objective is to design a full-state feedback

adaptive controller to ensure that y(t) tracks a given bounded

reference signal r(t) both in transient and steady state, while

all other error signals remain bounded.

III. L1 ADAPTIVE CONTROLLER

The design of L1 adaptive controller involves a strictly

proper transfer function D(s) and a gain k ∈ R
+, which

leads to a strictly proper stable

C(s) =
ωkD(s)

1 + ωkD(s)
(6)

with DC gain C(0) = 1. The simplest choice of D(s) is

D(s) =
1

s
, (7)

which yields a first order strictly proper C(s) in the following

form:

C(s) =
ωk

s + ωk
. (8)

Let

H(s) = (sI − Am)−1b , (9)

and r0(t) be the signal with its Laplace transformation (sI−
Am)−1x0. Since Am is Hurwitz and x0 is finite, ‖r0‖L∞

is

finite. Further, for every δ > 0 let

Lδ ,
δ̄

δ
Kδ̄ , (10)

where

δ̄ , max{δ + γ1, L1(δ + γ1) + L2}, (11)

and γ1 is an arbitrary positive constant.
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For the proofs of stability and performance bounds, the

choice of D(s) and k further needs to ensure that there exists

ρr such that:

‖G(s)‖L1
<

(

ρr − ‖kgC(s)H(s)‖L1
‖r‖L∞

−‖r0‖L∞

)

/(ρrLρr
+ B) , (12)

where

G(s) = H(s)(1 − C(s)) ,

and

kg = −
1

c⊤A−1
m b

. (13)

We consider the following state predictor (or passive

identifier) for generation of the adaptive laws:

˙̂x(t) = Amx̂(t) + b
(

ω̂(t)u(t) + θ̂(t)‖xt‖L∞
+ σ̂(t)

)

ŷ(t) = c⊤x̂(t) , x̂(0) = x0 . (14)

The adaptive estimates ω̂(t), θ̂(t), σ̂(t) are defined as:

˙̂
θ(t) = ΓProj(θ̂(t),−‖xt‖L∞

x̃⊤(t)Pb), θ̂(0) = θ̂0

˙̂σ(t) = ΓProj(σ̂(t),−x̃⊤(t)Pb), σ̂(0) = σ̂0 (15)

˙̂ω(t) = ΓProj(ω̂(t),−x̃⊤(t)Pbu(t)), ω̂(0) = ω̂0 ,

where x̃(t) = x̂(t)−x(t), Γ ∈ R
+ is the adaptation gain, P

is the solution of the algebraic equation A⊤
mP +PAm = −Q,

Q > 0, and the projection operator ensures that the adaptive

estimates ω̂(t), θ̂(t), σ̂(t) remain inside the compact sets

[ωl, ωu], [−θb, θb], [−σb, σb], respectively, with θb, σb

defined as follows:

θb = Lρ, σb = B + ǫ , (16)

where ǫ is arbitrary positive constant, and

ρ = ρr + β , (17)

with arbitrary β > γ1.

Remark 1: In the following analysis, we demonstrate that

ρr and ρ characterize the domain of attraction of the closed

loop reference system (yet to be defined) and the system in

(1) respectively. Since γ1 and β can be set arbitrarily small,

ρ can approximate ρr arbitrarily closely.

The control signal is generated through gain feedback of the

following system:

χ(s) = D(s)r̄(s) , u(s) = −kχ(s) , (18)

where k ∈ R
+ was introduced in (6), while r̄(s) is the

Laplace transformation of the signal

r̄(t) = ω̂(t)u(t) + θ̂(t)‖xt‖L∞
+ σ̂(t) − kgr(t). (19)

The complete L1 adaptive controller consists of (14), (15)

and (18), subject to the L1-gain upper bound in (12). As

compared to the corresponding L1 adaptive control archi-

tecture for systems without unmodeled dynamics in [1], the

only difference is that here we use ‖xt‖L∞
in (14) and (15)

instead of ‖x(t)‖∞. Consequently, the subsequent analysis

is also principally different from the one in [1].

IV. ANALYSIS OF L1 ADAPTIVE CONTROLLER

A. Reference System

We now consider the following closed-loop reference

system with its control signal and system response being

defined as follows:

ẋref (t) = Amxref (t) + b
(

f(xref (t), z(t), t)

+ωuref (t)
)

, xref (0) = x0 , (20)

uref (s) = (C(s)/ω)(kgr(s) − r̄ref (s)) , (21)

yref (t) = c⊤xref (t) , (22)

where r̄ref (s) is the Laplace transformation of the signal

r̄ref (t) = f(xref (t), z(t), t), and kg is introduced in (13).

The next Lemma establishes the stability of the closed-loop

system in (20)-(22).

Lemma 1: For the closed-loop reference system in (20)-

(22), subject to the L1-gain upper bound in (12), if ‖x0‖∞ <
ρr and

‖zt‖L∞
≤ L1(‖xreft

‖L∞
+ γ1) + L2 , (23)

then

‖xreft
‖L∞

< ρr , (24)

‖ureft
‖L∞

< ρur
, (25)

where ρr is introduced in (12) and

ρur
= ‖C(s)/ω‖L1

(ρrLρr
+ B + kg‖r‖L∞

).
Proof. It follows from (20)-(22) that

xref (s) = G(s)r̄ref (s)+H(s)C(s)kgr(s)+(sI−Am)−1x0 .
(26)

Example 5.2 in [2] (page 199) implies that

‖xrefτ
‖L∞

≤ ‖G(s)‖L1
‖r̄refτ

‖L∞
+

‖kgC(s)H(s)‖L1
‖rτ‖L∞

+ ‖r0‖L∞
. (27)

If (24) is not true, since ‖xref (0)‖∞ = ‖x0‖∞ < ρr and

xref (t) is continuous, there exists τ ∈ [0, t] such that

‖xrefτ
‖L∞

≤ ρr , (28)

xref (τ) = ρr . (29)

It follows from (23) and (28) that

‖zτ‖L∞
≤ L1(ρr + γ1) + L2 ,

and hence

‖Xτ‖L∞
≤ ρ̄r , max{ρr + γ1, L1(ρr + γ1) + L2} . (30)

Further, it follows from Assumption 3 that

‖r̄refτ
‖L∞

≤ Kρ̄r
ρ̄r + B ,

and the redefinition in (10) leads to the following upper

bound

‖r̄refτ
‖L∞

≤ Lρr
ρr + B . (31)

Since ‖rτ‖L∞
≤ ‖r‖L∞

, it follows from (27) that

‖xrefτ
‖L∞

≤ ‖G(s)‖L1
Lρr

ρr + ‖r0‖L∞

+‖kgC(s)H(s)‖L1
‖r‖L∞

+ ‖G(s)‖L1
B . (32)
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The condition in (12) can be solved for ρr to obtain the

following upper bound

‖G(s)‖L1
Lρr

ρr + ‖kgC(s)H(s)‖L1
‖r‖L∞

+‖r0‖L∞
+ ‖G(s)‖L1

B < ρr , (33)

leading to

‖xrefτ
‖L∞

< ρr , (34)

which contradicts (29) and proves the upper bound in (24).

This further implies that the upper bound in (31) holds for

any τ , i.e.

‖r̄ref‖L∞
< ρrLρr

+ B . (35)

Example 5.2 in [2] (page 199) leads to the following bound

‖uref‖L∞
< ‖C(s)/ω‖L1

(ρrLρr
+ B + kg‖r‖L∞

) , (36)

which proves (25). �

B. Equivalent Linear Time-Varying System

In this section we demonstrate that the system with un-

modelled dynamics in (1) can be transformed into a linear

system with unknown time-varying parameters.

To streamline the subsequent analysis, we need to intro-

duce several notations. Let γ0 be the desired performance

bound for ||x̃||L∞
, and β1 be an arbitrary positive constant

verifying the following equality

‖C(s)‖L1

1 − ‖G(s)‖L1
Kρ̄r

γ0 + β1 = γ1 , (37)

where ρ̄r was defined in (30), and γ1 was introduced in (11).

It follows from (12) that ‖G(s)‖L1
Lρr

< 1. Since Kρ̄r
<

Lρr
, we have

1 − ‖G(s)‖L1
Kρ̄r

> 0 ,

which implies that the condition in (37) can be always

satisfied by selecting γ0 and β1 sufficiently small.

Further, let

ρu = ρur
+ γ2 , (38)

γ2 = Kρ̄r
γ1

∥

∥

∥

∥

C(s)

ω

∥

∥

∥

∥

L1

+ γ0

∥

∥

∥

∥

C(s)

ω

1

c⊤o Ho(s)
c⊤o

∥

∥

∥

∥

L1

(39)

It follows from Lemma 4 in [3] that there exists co ∈ R
n

such that

c⊤o H(s) =
Nn(s)

Nd(s)
, (40)

where the order of Nd(s) is one more than the order of

Nn(s), and both Nn(s) and Nd(s) are stable polynomials.

Lemma 2: For the system in (1), if

‖xt‖L∞
≤ ρ , ‖ut‖L∞

≤ ρu , (41)

there exist differentiable θ(τ) and σ(τ) with bounded θ̇(τ)
and σ̇(τ) over τ ∈ [0, t] such that

|θ(τ)| < θb , (42)

|σ(τ)| < σb , (43)

f(x(τ), z(τ), τ) = θ(τ)‖xτ‖L∞
+ σ(τ) . (44)

The proof is similar to the proof of Lemma 2 in [1] and is

therefore omitted.

If (41) holds, Lemma 2 implies that the system in (1) can

be rewritten over τ ∈ [0, t] as:

ẋ(τ) = Amx(τ) + b (θ(τ)‖xτ‖L∞
+ ωu(τ) + σ(τ)) ,

y(τ) = c⊤x(τ), x(0) = x0 , (45)

where θ(τ), σ(τ) are unknown time-varying signals subject

to (42)-(43) for all ∀ τ ∈ [0, t], and their derivatives are also

uniformly bounded for all τ ∈ [0, t]:

|θ̇(τ)| ≤ dθ(ρ, ρu) < ∞ , |σ̇(τ)| ≤ dσ(ρ, ρu) < ∞. (46)

Let

θ̃(τ) , θ̂(τ)−θ(τ), ω̃(τ) , ω̂(τ)−ω, σ̃(τ) , σ̂(τ)−σ(τ) .
(47)

It follows from (14) and (45) that for all τ ∈ [0, t]

˙̃x(τ) = Amx̃(τ) + b
(

ω̃(τ)u(τ) + θ̃(τ)‖xτ‖L∞
+ σ̃(τ)

)

(48)

and x̃(0) = 0.

C. Tracking error signal

Lemma 3: For the system in (1) and the L1 adaptive

controller in (14), (15) and (18), if

‖xt‖L∞
≤ ρ , ‖ut‖∞ ≤ ρu , (49)

then

‖x̃t‖L∞
≤

√

θm(ρ, ρu)

λmin(P )Γ
, (50)

where

θm(ρ, ρu) , 4θ2
b + 4σ2

b + (ωu − ωl)
2

+4
λmax(P )

λmin(Q)
(θbdθ(ρ, ρu) + σbdσ(ρ, ρu)) . (51)

The proof is similar to Lemma 3 in [1].

D. Transient and Steady-State Performance

The block diagram of the closed-loop system with L1

adaptive controller and the reference system is illustrated

in Figure 1. We note that the reference system is not

implementable since it uses the unknown signal z(t) and the

unknown function f . This closed-loop system is only used

for analysis purposes and does not affect the implementation

of L1 adaptive controller. In the following Theorem, we

prove the stability and the transient performance of the

closed-loop system with L1 adaptive controller.

Theorem 1: Consider the closed-loop system with L1

adaptive controller defined via (14), (15), (18), subject to

(12), and the reference system in (20)-(22). If

‖x0‖∞ ≤ ρr , (52)

and the adaptive gain verifies the lower bound

Γ >
θm(ρ, ρu)

λmin(P )γ2
0

, (53)
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Fig. 1. Closed-loop system with L1 adaptive controller and reference
system.

we have:

‖xref‖L∞
≤ ρr , (54)

‖uref‖L∞
≤ ρur

, (55)

‖x̃‖L∞
≤ γ0 , (56)

‖x − xref‖L∞
< γ1 , (57)

‖u − uref‖L∞
< γ2 , (58)

where γ2 is defined in (39).

Proof. The proof will be done by contradiction. Assume

that (57)-(58) are not true. Then, since ‖x(0)−xref (0)‖∞ =
0 ≤ γ1, u(0) − uref (0) = 0, and x(τ), xref (τ), u(τ),
uref (τ) are continuous, there exists t ≥ 0 such that

‖x(t) − xref (t)‖∞ = γ1 , or

‖u(t) − uref (t)‖∞ = γ2 , (59)

while

‖(x − xref )t‖L∞
≤ γ1, ‖(u − uref )t‖L∞

≤ γ2 . (60)

On the other hand, it follows from Assumption 2 that

‖zt‖L∞
≤ L1(‖xreft

‖L∞
+ γ1) + L2 . (61)

Consequently, Lemma 1 implies that

‖xreft
‖L∞

≤ ρr , ‖ureft
‖L∞

≤ ρur
. (62)

Taking into consideration the definitions from (17) and (38),

it follows from (60) that

‖xt‖L∞
≤ ρr + γ1 ≤ ρ , ‖ut‖L∞

≤ ρur
+ γ2 = ρu . (63)

Choosing the adaptive gain according to (53), Lemma 3

implies that

‖x̃t‖L∞
≤ γ0 . (64)

Let r̃(τ) = ω̃(τ)u(τ) + θ̃(τ)‖xτ‖L∞
+ σ̃(τ) , r1(τ) =

θ(τ)‖xτ‖L∞
+ σ(τ) . It follows from (18) that χ(s) =

D(s)(ωu(s)+ r1(s)−kgr(s)+ r̃(s)) , where r̃(s) and r1(s)
are the Laplace transformations of signals r̃(τ) and r1(τ).
Consequently

χ(s) =
D(s)

1 + kωD(s)
(r1(s) − kgr(s) + r̃(s)) ,

u(s) = −
kD(s)

1 + kωD(s)
(r1(s) − kgr(s) + r̃(s)) . (65)

Using the definition of C(s) from (6), we can write

ωu(s) = −C(s)(r1(s) − kgr(s) + r̃(s)) , (66)

and the system in (1) consequently takes the form:

x(s) = H(s)
(

(1 − C(s))r1(s) + C(s)kgr(s) −

C(s)r̃(s)
)

+ (sI − Am)−1x0. (67)

Let e(τ) = x(τ) − xref (τ). Then from (26) we have

e(s) = H(s) ((1 − C(s))r2(s) − C(s)r̃(s)) , e(0) = 0 ,
(68)

where r2(s) is the Laplace transformation of the signal

r2(τ) = θ(τ)(‖xτ‖L∞
− ‖xrefτ

‖L∞
) . (69)

Since (44) implies that

f(x(τ), z(τ), τ) = θ(τ)‖xτ‖L∞
+ σ(τ) ,

f(xref (τ), z(τ), τ) = θ(τ)‖xrefτ
‖L∞

+ σ(τ) ,

it follows from (69) that

r2(τ) = f(x(τ), z(τ), τ) − f(xref (τ), z(τ), τ) . (70)

Example 5.2 in [2] (page 199) gives the following upper

bound:

‖et‖L∞
≤ ‖G(s)‖L1

‖r2t
‖L∞

+ ‖r3t
‖L∞

, (71)

where r3(τ) is the signal with its Laplace transformation

being r3(s) = C(s)H(s)r̃(s). From the error dynamics in

(48) we have x̃(s) = H(s)r̃(s) , which leads to r3(s) =
C(s)x̃(s) , and hence ‖r3t

‖L∞
≤ ‖C(s)‖L1

‖x̃t‖L∞
. Sub-

stituting (62) into (61), we obtain

‖zt‖L∞
≤ L1(ρr + γ1) + L2 ,

and hence

‖Xt‖L∞
≤ max{ρr + γ1, L1(ρr + γ1) + L2} . (72)

Similarly, we have

‖Xreft
‖L∞

≤ ‖Xt‖L∞
≤ max{ρr +γ1, L1(ρr +γ1)+L2} ,

(73)

where Xref = [x⊤

ref z⊤]⊤. It follows from (72), (73) that

‖X(τ)‖
∞

≤ ρ̄r, ‖Xref (τ)‖
∞

≤ ρ̄r, over τ ∈ [0, t], and

hence Assumption 3 implies that |r2(τ)| ≤ Kρ̄r
‖e(τ)‖∞

over τ ∈ [0, t], which implies that

‖r2t
‖L∞

≤ Kρ̄r
‖et‖L∞

. (74)

From (71) we have ‖et‖L∞
≤ ‖G(s)‖L1

Kρ̄r
‖et‖L∞

+
‖C(s)‖L1

‖x̃t‖L∞
. The upper bound in (64) and the L1-

gain upper bound in (12) lead to the following upper bound
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‖et‖L∞
≤ γ0‖C(s)‖L1

/(1 − ‖G(s)‖L1
Kρ̄r

), which along

with (37) leads to

‖et‖L∞
≤ γ1 − β1 < γ1 . (75)

We notice that from (21) and (66) that one can derive

u(s) − uref (s) = −C(s)
ω

r2(s) − r4(s) , where r4(s) =
C(s)

ω
r̃(s). Therefore, it follows from Example 5.2 in [2]

(page 199) that

‖(u − uref )t‖L∞
≤ ‖C(s)/ω‖L1

‖r2t
‖L∞

+ ‖r4t
‖L∞

,

and hence

‖(u − uref )t‖L∞
≤ ‖C(s)/ω‖L1

Kρ̄r
‖et‖L∞

+ ‖r4t
‖L∞

.
(76)

We have r4(s) = C(s)
ω

1
c⊤

o
H(s)

c⊤o H(s)r̃(s) =
C(s)

ω
1

c⊤
o

H(s)
c⊤o x̃(s) , where co is introduced in (40).

Using the polynomials from (40), we can write that
C(s)

ω
1

c⊤
o

H(s)
= C(s)

ω

Nd(s)
Nn(s) . Since C(s) is stable and strictly

proper, the complete system C(s) 1
c⊤

o
H(s)

is proper and

stable, which implies that its L1 gain exists and is finite.

Hence, we have ‖r4t
‖L∞

≤
∥

∥

∥

C(s)
ω

1
c⊤

o
H(s)

c⊤o

∥

∥

∥

L1

‖x̃t‖L∞
.

The upper bound in (63) leads to

‖r4t
‖L∞

≤
∥

∥

∥

C(s)

ω

1

c⊤o H(s)
c⊤o

∥

∥

∥

L1

γ0 . (77)

It follows from (75), (76) and (77) and the definition of γ2

in (39) that

‖(u − uref )t‖L∞
≤ Kρ̄r

‖C(s)/ω‖L1
(γ1 − β1) +

∥

∥

∥

C(s)

ω

1

c⊤o H(s)
c⊤o

∥

∥

∥

L1

γ0 < γ2 . (78)

We note that the upper bounds in (75) and (78) contradict

the equality in (59), which proves (57)-(58). Since (57)-(58)

are uniform bounds for all t ≥ 0, the upper bound in (56)

follows from (64) directly, while the upper bounds in (54)-

(55) follow from (62) correspondingly. �

It follows from (53) that we can achieve arbitrarily small

γ0 by increasing the adaptive gain.

V. SIMULATIONS

Consider the dynamics of a single-link robot arm rotating

on a vertical plane:

Iq̈(t) + F (q(t), q̇(t), z(t), t) = u(t) , (79)

where q(t) and q̇(t) are measured angular position and

velocity, respectively, u(t) is the input torque, I is the

unknown moment of inertia, z(t) represents the output of

unmodelled dynamics, F (q(t), q̇(t), z(t), t) is an unknown

nonlinearity that lumps the forces and torques due to gravity,

friction, disturbance, other external sources and unmodelled

dynamics. The control objective is to design u(t) to achieve

tracking of bounded reference input r(t) by q(t), where

‖r‖L∞
≤ 1. Let x = [x1 x2]

⊤ = [q q̇]⊤ . The system in

(79) can be presented in the canonical form:

ẋ(t) = Amx(t) + b(ωu(t) + f(x(t), t)) , y(t) = c⊤x(t),

where b = [0 1]⊤, c = [1 0]⊤, Am =

[

0 1
−1 −1.4

]

, ω =

1/I is the unknown control effectiveness, and the unknown

function f is given by:

f(x(t), t) = [1 1.4]x(t) − F (x2(t), x1(t), z(t), t) .

Let the unknown control effectiveness, the unknown
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0

5

10

15

20

25

Fig. 2. ‖G(s)‖L1
Lρ with respect to ωk.

nonlinearity be given by ω = 1/I = 1 and

F (x1(t), x2(t), z(t), t) = x2
2(t) + x2

1(t) + z2(t) , while z(t)
is the output of the unmodelled dynamics, given by:

z(s) =
s − 1

s2 + 3s + 2
σ̄(s) ,

σ̄(t) = sin(0.2t)x1(t) + x2(t) ,

so that the compact sets can be conservatively chosen accord-

ing to the following upper and lower bounds ωl = 0.5, ωu =
2, θb = 20, σb = 10 .
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Time t

(a) x1(t) (solid), x̂1(t) (dashed), and r(t)(dotted)
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time t

(b) Time-history of u(t)

Fig. 3. Performance of L1 adaptive controller for σ̄(t) = sin(0.2t)x1(t)+
x2(t).

In the implementation of the L1 adaptive controller, we

set Q = 2I and hence P =

[

1.4143 0.5000
0.5000 0.71430

]

.

First, we need to verify the condition in (12). Letting

D(s) = 1/s , we have G(s) = s
s+ωk

H(s), H(s) =

[ 1
s2+1.4s+1

s
s2+1.4s+1 ]⊤ . We choose conservative Lρ = 20.

In Fig. 2, we plot ‖G(s)‖L1
Lρ as a function of ωk and

compare it to 1. We notice that for ωk > 30, we have

4103



0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

Time t

(a) x1(t) (solid), x̂1(t) (dashed), and r(t)(dotted)

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

time t

(b) Time-history of u(t)

Fig. 4. Performance of L1 adaptive controller for σ̄(t) = sin(5t)x1(t)+
x2(t).
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Fig. 5. Performance of L1 adaptive controller for σ̄(t) = sin(5t)x1(t)+
x2(t) + 5 sin(5t).

‖G(s)‖L1
Lρ < 1. Since ω > 0.5, we set k = 60. We set the

adaptive gain Γc = 10000.

The simulation results of the L1 adaptive controller are

shown in Figures 3(a)-3(b) for the reference input r =
cos(0.5t). Next, we consider the same system in the presence

of σ̄(t) = sin(5t)x1(t) + x2(t). The simulation results,

without any retuning of the controller, are shown in 4(a)-4(b).

Finally, we change σ̄(t) = sin(5t)x1(t) + x2(t) + 5 sin(5t).
The simulation results are shown in 5(a)-5(b). We note that

the L1 adaptive controller guarantees smooth and uniform

transient performance in the presence of different unknown

nonlinearities and does not require any retuning. We also

notice that x1(t) and x̂1(t) are almost the same in Figs.

3(a), 4(a) and 5(a).

VI. CONCLUSION

A novel L1 adaptive control architecture is presented

that has guaranteed transient response in addition to stable

tracking for uncertain nonlinear systems in the presence of

unmodelled dynamics. The control signal and the system

response approximate the same signals of a closed-loop

reference system, which can be designed to achieve desired

specifications.
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