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Abstract— We study a coordination problem where the objec-
tive is to steer a group of agents to a formation that translates
with a prescribed reference velocity. In [1] we considered the
situation where the information of reference velocity is available
only to a leader, and developed a decentralized adaptive design
with which the other agents reconstruct the reference velocity.
Although [1] guaranteed that the desired formation is achieved,
it did not ensure parameter convergence. We now propose
a new adaptive redesign, which incorporates relative velocity
feedback in addition to relative position feedback, to guarantee
parameter convergence.

I. I

Growing research in motion coordination has lead to

significant results in formation control, consensus, deep-

space flying, swarming, etc. [2]–[6]. The main challenge in

cooperative control is designing decentralized control laws

that depend on relative information, to achieve designed

group behaviors. The design techniques developed so far

employ Lyapunov analysis and potential function method [7],

[8], matrix analysis [5], graph theoretic results [9], etc.

Recent study in [10] introduced passivity as a unifying

design tool for cooperative control problems, such as consen-

sus and formation control. Reference [10], as well as earlier

results such as [2], assumed that the reference velocity is

available to each agent. This assumption is further relaxed

in [1] to the situation where only the leader possesses the

reference velocity while the other agents reconstruct this

information by employing a decentralized adaptive design.

Although this basic adaptive design guaranteed the conver-

gence to the desired formation, it did not ensure parameter

convergence. Lack of parameter convergence means that the

reference velocity information is not fully recovered even if

the desired formation is achieved.

In this paper, we propose a modified adaptive redesign

to guarantee parameter convergence. The main idea in our

modified design is to ensure that the relative velocities

between agents converge to zero, thereby guaranteeing that

all agents converge to the reference velocity. To this end, we

include the relative velocity information in our redesign and

recover all the convergence results in [10] while achieving

parameter convergence in addition. The measurements of

relative velocity can be obtained by vision-based techniques

or by autonomous formation flying sensors (AFF) [11], [12].

The subsequent sections are organized as follows: Section

II reviews the passivity-based nonadaptive and adaptive

design in [10] [1]. In Section III, we present a motivating

example to show that parameter convergence may fail with
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the design of [1]. Our modified adaptive redesign is proposed

and analyzed in Section IV and the motivating example is

revisited in Section V.

II. R  P- F  A

D

A. Passivity Framework

In [10], a group of agents is considered, where each agent

i = 1, · · ·N is represented by a vector xi ∈ Rp. If the ith and

jth agents have access to the relative information xi − x j,

then the nodes i and j in the graph representation G are

connected by a link. To simplify our notation, we assign an

orientation to the graph by denoting one of the nodes of

each link to be the positive end. The choice of orientation

does not change the results because the information flow

is assumed to be bidirectional. We further assume that the

information topology is a connected graph. Suppose M is the

total number of links, and recall that the N ×M incidence

matrix D is defined as

dik :=



















+1 if the ith node is the positive end of the kth link

−1 if the ith node is the negative end of the kth link

0 otherwise.
(1)

Reference [10] develops coordination laws that guarantee

the following group behaviors:

B1) Each member achieves in the limit a common velocity

vector v(t) ∈Rp prescribed for the group; that is limt→∞ |ẋi−
v(t)| = 0, i = 1, · · · ,N.

B2) If ith and jth members are connected by link k, then

the difference variable zk

zk :=

N
∑

l=1

dlk xl =

{

xi− x j if i is the positive end

x j− xi if j is the positive end
(2)

converges to a prescribed compact set Ak ⊂Rp, k = 1, · · · ,M,

where dik is defined in (1).

Examples of such target sets Ak include the origin if xi’s

must reach an agreement within the group, or a sphere in

R
p if xi’s are positions of vehicles that must maintain a

prescribed distance.

Reference [10] assumes that, upon a change of variables

and a preliminary feedback design, the agent dynamics can

be brought to the form

ẋi = yi+ v(t) i = 1, · · · ,N (3)

Hi :

{

ξ̇i = fi(ξi,ui)

yi = hi(ξi)
(4)

where yi is the velocity error, ξi ∈ Rni is the state variable

of subsystem Hi, fi(·, ·) and hi(·) are C1 functions such that

hi(0) = 0 and

fi(0,ui) = 0⇒ ui = 0. (5)
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The main restriction in [10] is that the Hi subsystems in

(4) be strictly passive with C1, positive definite, radially

unbounded storage functions S i(ξi) satisfying

Ṡ i ≤ −Wi(ξi)+uT
i yi i = 1, · · · ,N (6)

for some positive definite C1 functions Wi(·).
To achieve objectives B1 and B2, [10] employs the feed-

back law

ui = −
M
∑

k=1

dikψk(zk) (7)

in which the nonlinearities ψk(zk) are of the form

ψk(zk) = ∇Pk(zk) (8)

where Pk(zk) is a nonnegative C2 function

Pk : Gk→ R≥0 (9)

defined on an open set Gk ⊆ Rp. As an illustration, if xi’s

are positions of vehicles that must maintain a prescribed

distance, then the choice Gk = {xi|xi ∈ Rp \0} disallows the

possibility of collisions.

To steer zk’s into the target sets Ak, we let Pk(zk) and

its gradient ∇Pk(zk) vanish on Ak, and let Pk(zk) grow

unbounded as zk goes to the boundary of Gk:

Pk(zk)→∞ as zk→ ∂Gk (10)

Pk(zk) = 0 ⇔ zk ∈ Ak (11)

∇Pk(zk) = 0 ⇔ zk ∈ Ak. (12)

We introduce the concatenated vectors

x := [xT
1 , · · · , xT

N]T ∈ Rp·N z := [zT
1 , · · · ,zT

M]T ∈ Rp·M (13)

u := [uT
1 , · · · ,uT

N]T ∈ Rp·N ψ := [ψT
1 , · · · ,ψT

M]T ∈ Rp·M (14)

y = [yT
1 , · · · ,yT

N]T ∈ Rp·N

and note from (2) and (7) that

z = (DT ⊗ Ip)x (15)

u = −(D⊗ Ip)ψ(z) (16)

where Ip denotes the p× p identity matrix. For the objective

B2 to be feasible, the target sets Ak must be such that

{A1× · · ·×AM}∩R(DT ⊗ Ip) , ∅ (17)

since, from (15), z is restricted to be in the range space

R(DT ⊗ Ip).

Theorem 1 in [10], proved that the objectives B1 and

B2 are achieved with the design (3), (4) and (7). It further

showed that the region of attraction is the set

G =
{

(z, ξ)|ξ ∈ Rn1 × · · ·×RnN ,z ∈ G1× · · ·×GM ∩R(DT ⊗ Ip)
}

.

(18)

when the following additional property holds:

Property 1 (D⊗ Ip)ψ(z) = 0 and z ∈ R(DT ⊗ Ip) imply z ∈
A1× · · ·×AM . �

B. Basic Adaptive Design for Reference Velocity Recovery

The design (3), (4) and (7) assumes that the reference ve-

locity v(t) is available to each agent. Reference [1] considered

the situation where only the leader, say, the first agent i = 1,

possesses the v(t) information, and developed an adaptive

design with which the remaining agents estimate v(t). In [1],

v(t) ∈ Rp is assumed to be uniformly bounded and piecewise

continuous, and parameterized as

v(t) =

r
∑

j=1

φ j(t)θ j (19)

where φ j(t) are scalar base functions available to each agent

and θ j are column vectors available only to the leader i = 1.

The other agents estimate the unknown θ j by θ̂
j

i
, and

construct v̂i(t) from

v̂i(t) =

r
∑

j=1

φ j(t)θ̂
j

i
= (Φ(t)T ⊗ Ip)θ̂i i = 2, · · · ,N (20)

where

Φ(t) := [φ1(t), · · · ,φr(t)]T (21)

and

θ̂i := [(θ̂1
i )T , · · · , (θ̂r

i )T ]T . (22)

The adaptive design in [1] employed the feedback law (7)

in Section II-A, and modified (3) as

ẋ1 = y1+ v(t) (23)

ẋi = yi+ v̂i(t) i = 2, · · · ,N (24)

where v̂i is now obtained from (20). The update law for the

parameter θ̂i is

˙̂θi = Λi(Φ(t)⊗ Ip)ui (25)

in which Λi = Λ
T
i
> 0 and ui is as in (7).

Given the coordination laws in (23), (24) and (25), the

main results in [1, Theorem 1] showed that the trajectories

of (z(t), ξ(t)) starting in G (18) are bounded and converge to

the set E, where

E =
{

(z, ξ)| ξ = 0, (D⊗ Ip)ψ(z) = 0 and z ∈ R(DT ⊗ Ip)
}

.

(26)

Moreover, when Property 1 holds, all trajectories

(z(t), ξ(t), θ̂(t)) starting in G×Rp·r·(N−1) converge to the set

A×Rp·r·(N−1), where

A =
{

(z, ξ)|ξ = 0,z ∈ A1× · · ·×AM ∩R(DT ⊗ Ip)
}

(27)

Convergence to the set A×Rp·r·(N−1) means that the differ-

ence variable zk tends to the target set Ak. Whether objective

B1 is achieved or not depends on the convergence of θ̂i to θ.

When θ̂i converges to θ, v(t) is recovered with the adaptive

design and, thus, B1 is also achieved.
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III. M  M D

To illustrate the lack of parameter convergence for the

basic adaptive design, we consider the coordination of three

vehicles, modeled as fully-actuated point masses

ẍi = fi i = 1,2,3 (28)

where xi ∈ R2 is the position of each mass and fi ∈ R2 is the

input force.

1) Nonadaptive design of [10]: The nonadaptive design

assumes the reference velocity v(t) is available to each agent.

Indeed, the following internal feedback law

fi = −Ki(ẋi(t)− v(t))+ v̇(t)+ui, Ki > 0 (29)

and the change of variables ξi = ẋi − v(t) bring (28) into the

form

ẋi = ξi+ v(t) (30)

ξ̇i = −Kiξi+ui

which is as in (3) and (4). The ξi dynamics act as the

subsystem Hi, which is strictly passive from ui to ξi with

the storage function S i(ξi) =
1
2
ξT

i
ξi.

To stabilize a formation where the relative distances |zi|,
i = 1,2,3 are equal to 1, we design Ak to be the unit circle,

Gk to be R2 \ {0}, and let the potential functions be of the

form

Pk(zk) =

∫ |zk |

1

σk(s)ds k = 1,2,3 (31)

where σk : R>0→R is a C1, strictly increasing function such

that

σk(1) = 0 lim
s→∞

σk(s) =∞ lim
s→0

σk(s) = −∞ (32)

and such that, as |zk | → ∞, Pk(zk) → ∞ in (31). Then

Pk(zk) satisfies (8)-(12), and the feedback law (7) with the

interaction forces

ψk(zk) = ∇Pk(zk) = σk(|zk |)
1

|zk |
zk zk , 0 (33)

guarantees asymptotic stability of the desired formation from

[10, Theorem 1].

2) Basic adaptive design of [1]: We now assume that v(t)

is available only to the leader x1. In the design of [10], fi
is as in (29) for i = 1 and thus the x1 dynamics remain the

same as in (30) while for the agents i = 2,3, fi is replaced

with

fi = −Ki(ẋi(t)− v̂i(t))+ ˙̂vi(t)+ui Ki > 0. (34)

This feedback together with the change of variables ξ̂i = ẋi−
v̂i, brings the dynamics of the agents, i = 2,3 to the form

ẋi = ξ̂i+ v̂i (35)

˙̂ξi = −Kiξ̂i+ui. (36)

The signal v̂i is available for implementation in (35) once

the parametrization in (20) and the update law in (25) are

setup.

To show the lack of parameter convergence, we suppose

that v(t) in the x1-dynamics (30) is time-varying, and is

parameterized as

v(t) = ([sin(t) cos(t)]⊗ I2)

[

θ1

θ2

]

(37)

where θ1, θ2 ∈ R2. Initially the three agents form an equilat-

eral triangle where x1(0) = [
√

3
3

0]T , x2(0) = [−
√

3
6

1
2
]T and

x3(0) = [−
√

3
6
− 1

2
]T , thus satisfying the desired formation

with |zk | = 1, k = 1,2,3. We then pick θ1
= [−

√
3

3
0]T and

θ2
= [0

√
3

3
]T in (37), which means that the leader x1 will

rotate about the origin with a radius of
√

3
3

. The graph G

is complete, which means that each agent has the relative

information with respect to the other two, and σk(·) in (31)

is chosen as the natural logarithm.
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Fig. 1. Two group behaviors: (a) The group exhibits a translational motion with x1

spinning around the origin. (b) The agents x2 and x3 exhibit a rotational motion about

the leader x1.

Figure 1(a) shows that in the nonadaptive design where

the reference velocity v(t) in (37) is available to each agent,
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the group exhibits a translational motion with x1 spinning

around the origin. The adaptive case in Figure 1(b) where the

initial conditions are set to ξ1(0) = ξ̂2(0) = ξ̂3(0) = 0, θ̂2(0) =

[
√

3
6
− 1

2
− 1

2
−
√

3
6

]T and θ̂3(0) = [
√

3
6

1
2

1
2
−
√

3
6

]T , shows

that the agents i = 2,3 exhibit a rotational motion about the

leader, which means that parameter convergence fails and

that the v(t) information is not fully recovered.

IV. M A D

Note that in the update law (25), θ̂i update stops when ui

in (7) approaches zero. The external feedback ui, however,

only contains the relative distance information and ui → 0

does not guarantee that all the agents converge to the same

reference velocity v(t). In contrast, ż→ 0 would imply that

all the agents converge to the reference velocity. Thus, it is

plausible that a modified adaptive design that employs ż can

guarantee parameter convergence.

To present our modified design, we introduce another

graph Gv representing the information topology for the

relative velocity: if the ith and jth agents have access to

the relative velocity information ẋi − ẋ j, then the nodes i

and j in the graph Gv are connected by a link. This graph

may be different from G because the set of agents capable

of relative velocity sensing may be different from those

that measure relative distance. We further assume that the

graph Gv is bidirectional. Suppose there are Mv links in Gv.

The corresponding N ×Mv incidence matrix Dv is defined

similarly as in (1):

dv
ik :=



















+1 if the ith node is the positive end of the kth link

−1 if the ith node is the negative end of the kth link

0 otherwise.
(38)

Instead of using the external feedback in (7), we now

consider a new external feedback design

ui = −
M
∑

k=1

dikψk(zk)−
Mv
∑

k=1

dv
ikγk(żk) (39)

with the update law

˙̂θi = Λi(Φ(t)⊗ Ip)ui, (40)

where γ(·) is a C1 function satisfying

γk(x)T x > 0 ∀x , 0. (41)

We note that the decentralized design (39) employs the

relative velocity information, which can be obtained by dif-

ferentiating the relative distance or by vision-based sensors.

The following theorem requires the regressor Φ(t) in (21)

to be persistently exciting (PE), which means that for all

to ≥ 0,
∫ to+δ0

to

Φ(t)Φ(t)T dt ≥ α0I (42)

for some constants δ0 > 0 and α0 > 0 that do not depend

on to. This PE condition ensures the information richness

of the time-varying signal Φ(t), and guarantees parameter

convergence as we prove next:

Theorem 1: Suppose that the information topology Gv is

time-invariant and connected. Consider the coordination laws

in (23), (24) and (25) where v(t) is uniformly bounded and

piecewise continuous, parameterized as (19) in which φ j(t),

φ̇ j(t), j = 1, · · · ,r are uniformly bounded and the regressor

Φ(t) in (20) is PE as in (21), ui is defined in (39) and Hi,

i = 1, · · · ,N, and ψk, k = 1, · · · ,M are designed as in (4)-(6)

and (8)-(12), respectively. Then, all trajectories (z(t), ξ(t), θ̂(t))

starting in G×Rp·r·(N−1) are bounded and converge to the set

E∗

E∗ =
{

(z, ξ, θ̂)|ξ = 0, (D⊗ Ip)ψ(z) = 0, z ∈ R(DT ⊗ Ip), θ̂ = θ∗
}

,

(43)

where G is as in (18), θ̂ = [θ̂T
2
, · · · , θ̂T

N
]T , and θ∗ = 1N−1 ⊗ θ.

Moreover, when Property 1 holds, the set A× θ∗ is asymp-

totically stable with region of attraction G×Rp·r·(N−1), where

A is in (27). �

The proof of Theorem 1 makes use of the following

lemma:

Lemma 1: Let

Ẋ = f (X, t), (44)

where X ∈ Rn and f (X, t) : Rn ×R≥0 → Rn. If f (X, t) → 0

and Ω(t)T X(t)→ 0, where Ω(t) ∈ Rn is upper bounded and

satisfies the PE property in (42), then X→ 0. �

Proof of Theorem 1: We denote by θ̃i the error variable

θ̃i = θ̂i− θ i = 2, · · · ,N (45)

where θ = [(θ1)T , · · · , (θr)T ]T and note from (40) that

˙̃θi = Λi(Φ(t)⊗ Ip)ui i = 2, · · · ,N. (46)

For consistency with (13) and (14), we set θ̃T
1
≡ 0p·r, and

define

θ̃ = [θ̃T
1 , θ̃

T
2 , · · · , θ̃T

N]T

where 0p·r denotes a column vector with p · r entries equal

to zero. Then from (15), we rewrite (23) and (24) in the

compact form

ż = (DT ⊗ Ip)(1N ⊗ v(t)+ y+ ṽ) (47)

where 1N denotes N-vector of ones and

ṽ := (IN ⊗ΦT (t)⊗ Ip)θ̃. (48)

Because 1N is the null space of DT , we rewrite (47) as

ż = (DT ⊗ Ip)(y+ ṽ). (49)

To prove the stability of the closed-loop system described

by the adaptive scheme (4), (46) and (47), we exploit the

passivity properties of the interconnected system. To this end,

we introduce the following storage functions, V f (z),Vb(ξ)

and Va(θ̃), for the feedforward, feedback and adaptive sub-

systems, respectively:

V f (z) :=

M
∑

k=1

Pk(zk) Vb(ξ) :=

N
∑

i=1

S i(ξi) (50)

Va(θ̃) :=
1

2

N
∑

i=2

θ̃T
i Λ
−1
i θ̃i.
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Using the property

(DT ⊗ Ip)(1N ⊗ v(t)) = 0 (51)

which results from the fact that the sum of the rows of D is

zero, and using (47), we get

V̇ f = ψ
T (DT ⊗ Ip){1N ⊗ v(t)+ y+ (1N ⊗ΦT (t)⊗ Ip)θ̃}

= {(D⊗ Ip)ψ}T (y+ ṽ). (52)

Next, because the feedback blocks Hi are passive by (6), we

get

V̇b ≤ −
∑

i

Wi(ξi)+uT y. (53)

Finally, using (46), we obtain

V̇a =

N
∑

i=2

θ̃T
i Λ
−1
i

˙̃θi

=

N
∑

i=2

θ̃T
i (Φ(t)⊗ Ip)ui

= ṽT u. (54)

From (52), (53) and (54), the Lyapunov function

V(z, ξ, θ̃) = V f (z)+Vb(ξ)+Va(θ̃) (55)

yields the negative semidefinite derivative

V̇1 = −
∑

i

Wi(ξi)−
Mv
∑

k=1

γk(żk)T żk ≤ 0 (56)

which implies global stability and boundedness of all the

signals (z(t), ξ(t), θ̃). We further conclude from Barbalat’s

Lemma that ξ→ 0 and żk→ 0, k = 1, · · · ,Mv. We next show

u→ 0. To this end we note that

ξ̈i =
∂ fi

∂ui

u̇i+
∂ fi

∂ξ
ξ̇i (57)

is continuous and uniformly bounded because u̇ and

ξ̇ are continuous functions of the bounded signals

(z(t), ξ(t), θ̃(t),Φ(t), Φ̇(t)) and because fi(·, ·) and γk(·) are C1.

Since ξi → 0 and ξ̈i is continuous and bounded, it follows

from [13, Lemma 1] that ξ̇i → 0, which, from (4) and (5),

guarantees ui→ 0. Since żk→ 0 also, we conclude from (39)

that (D⊗ Ip)ψ(z)→ 0.

To conclude the proof of convergence to E∗ in (43), we

need to show θ̃i→ θ. We establish this by first showing that

|v̂i − v(t)| → 0 and, next by using the PE property (42) and

Lemma 1 to prove that |v̂i− v(t)| → 0 implies θ̃i→ θ.

Since ξ → 0, we conclude y → 0. It then follows from

(49) and żk→ 0 that (Dv⊗ Ip)T ṽ→ 0. Recall ṽ1 is identically

zero and the null space of DT
v is spanned by 1N because Gv

is connected. We thus conclude ṽ→ 0, which implies that

|v̂i − v(t)| → 0. To further show parameter convergence, we

note that

ṽ = (IN ⊗ΦT (t)⊗ Ip)θ̃→ 0 (58)

and that
˙̃θi = Λi(Φ(t)⊗ Ip)ui→ 0 (59)

since ui→ 0. Because the signal ΦT (t) is PE, it then follows

from Lemma 1 that θ̃i→ 0, which concludes the proof.

Convergence to A×θ∗ means that the difference variables

zk tend to the target sets Ak. It also implies that θ̃ = 0, u = 0

and thus, y in (23) (24) is zero and ṽ in (48) is zero, which

means that both objectives B1 and B2 are achieved.

The PE property of Φ(t) is only used to guarantee the

parameter convergence θ̂i→ θ. When Φ(t) is not PE in some

situations, Theorem 1 still ensures żk→ 0, which means that

all the agents reach the same velocity in the limit.

Proof of Lemma 1: We rewrite (44) as

Ẋ = −Ω(t)Ω(t)T X+ ζ(t) (60)

where ζ(t) := Ω(t)Ω(t)T X + f (X, t), and note that ζ(t) → 0

since Ω(t)T X and f (X, t) both converge to zero and Ω(t) is

bounded. Solving for X from the linear time-varying model

(60), we obtain

X = Ξ(t, t0)X(t0)+

∫ t

t0

Ξ(t, τ)ζ(τ)dτ (61)

where Ξ(t, t0) is the state transition matrix. Because Ω(t) is

PE and because ζ(t)→ 0 as t→∞, it follows from standard

results in adaptive control [14], [15] that X→ 0.

V. M E R

We now include the relative velocity information in the

external feedback ui in the adaptive design in Section III-.2.

We assume that the topology of the relative velocity is the

same as that of the relative distance; that is, each agent has

the other two agents as neighbors. Following the modified

adaptive design in (39)-(40), we obtain

ui = −
3
∑

k=1

{dikψk(zk)+dikγk(żk)} (62)

where we take ψk(zk) = ln(|zk |) zk

|zk | and γk(żk) = żk.
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Fig. 2. The modified adaptive design recovers the convergence properties
of the nonadaptive design.
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Fig. 3. Parameter convergence with the modified adaptive design.

Figure 2 shows the snapshots of the group formation with

the same set of initial conditions as in Section III. The

group now exhibits a translational motion with xi circling

around the origin, which means that the nonadaptive results

are recovered. The parameter convergence is achieved as

shown in Figure 3. Note from Theorem 1 that the parameter

convergence is guaranteed regardless of the initial conditions.

VI. C

We studied a coordination problem where the reference

velocity is available to only one agent while the others

estimate this information with an adaptive design. Although

the basic adaptive design in [1] guaranteed that the desired

formation is achieved, parameter convergence may fail. We

proposed a new adaptive redesign, which employed relative

velocity feedback, in addition to relative position feedback,

to achieve parameter convergence. We illustrated parameter

convergence by numerical examples.
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