
Formal Analysis of Piecewise Affine Systems under Parameter
Uncertainty with Application to Gene Networks

Boyan Yordanov and Calin Belta

Abstract— In this paper, we consider discrete-time
continuous-space Piecewise Affine (PWA) systems with
uncertain parameters, and study temporal logic properties
of their trajectories. Specifically, given a PWA system with
polyhedral parameter uncertainties and a Linear Temporal
Logic (LTL) formula over linear predicates in its state
variables, we attempt to find the largest region of initial states
from which all trajectories of the system satisfy the formula.
Our method is based on the iterative computation and model
checking of finite transition systems simulating the original
PWA system. We illustrate our method by computing the
basins of attraction for the two equilibria of a PWA model of
a two-gene network.

Index Terms— gene networks, piecewise affine systems, pa-
rameter uncertainty, abstraction, formal analysis.

I. INTRODUCTION

Temporal logics and model checking [10] are customarily
used for specifying and verifying the correctness of digital
circuits and computer programs. However, due to their re-
semblance to natural language, expressivity, and existence of
off-the-shelf algorithms for model checking, temporal logics
have the potential to impact several other areas. Examples
include analysis of systems with continuous dynamics [11],
control of linear systems from temporal logic specifications
[21], [17], task specification and controller synthesis in
mobile robotics [19], [12] and specification and analysis of
qualitative behavior of genetic circuits [2], [3], [4].

In this paper we focus on piecewise affine systems (PWA)
that evolve along different affine dynamics (in discrete time)
in different polytopal regions of the (continuous) state space.
PWA systems are widely used as models in many areas,
including systems and synthetic biology, where they are
particularly fitting for describing gene circuits. For such
applications, states of the system usually represent concen-
trations of species (mRNA, proteins and other molecules).
Additionally, for most gene networks, dynamics are affine,
with the exception of gene regulation function (GRF), which
captures the effect of concentrations of various transcription
factors on the activity of genes they control. Recent experi-
mental techniques, based of fluorescent reporter genes [13],
allow for the collection of a large amount of input-output
data relating transcription factor concentrations and gene
activity. There also exist computationally attractive tech-
niques for the identification of PWA models from such data,

B. Yordanov is with the Department of Biomedical Engineering, Boston
University, Boston, MA 02215, USA yordanov@bu.edu

C. Belta is with the Center for Information and Systems Engineering,
Boston University, Brookline, MA 02446, USA cbelta@bu.edu

This work was partially supported by NSF 0432070 and NSF CAREER
0447721 at Boston University.

which include Bayesian methods, bounded-error procedures,
clustering-based methods, Mixed-Integer Programming, and
algebraic geometric methods (see [16] for a review). By
combining experimental and computational techniques, PWA
models of gene networks can be efficiently obtained.

PWA systems are also quite general, since they can ap-
proximate nonlinear dynamics with arbitrary accuracy, and
are proven to be equivalent with several other classes of
hybrid systems [15]. Even so, a PWA system with fixed
parameters might not provide a good model. This is espe-
cially true for gene networks, where processes depend on
various, hard to control external factors such as temperature
and concentrations of chemicals not part of the system. To
develop a model that can capture the rich behavior of systems
under a range of conditions, a PWA system with uncertain
parameters can be used. For such models, the dynamics in
each region of the state space can take on parameters from
a polytopal range.

A rich spectrum of properties of gene networks are
naturally expressed in Linear Temporal Logic (LTL) [10]
formulas over linear predicates in the state variables. Exam-
ples include remaining within certain allowed concentration
ranges (invariance), getting to certain target concentrations
(reachability) or avoiding certain dangerous concentrations
(safety). We are interested in analyzing PWA models with
uncertain parameters using properties described as LTL for-
mulas. Specifically, given a system in a bounded polytope
X in RN and an LTL formula φ, we attempt to find the
largest region Xφ ⊆ X such that all trajectories of the
system originating in Xφ satisfy the property expressed by
φ, no matter what (allowed) parameters the system takes on.
However, PWA systems have an infinite number of states,
and model checking cannot be used directly. We use the
polytopes from the definition of the PWA system and the
linear predicates in the formula to define equivalence classes,
and model check the produced quotients. Our method is
iterative, and based on the notions of transition system,
simulation, and bisimulation [10].

From a theoretical and computational point of view, this
work can be seen in the context of literature focused on
the construction of finite quotients of infinite systems (see
[1] for a review), and is closely related to [20], [21],
[17]. Unlike counterexample guided refinement [9], which
eliminates spurious runs in the abstraction, our approach
relays on iterative refinement. Although the main problem is
similar to the focus of our previous work [22], the methods
are significantly different, as a result of the added parameters
uncertainty. One of the main contributions of this paper is to

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThB10.3

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 2767

show that, even in this case, all the steps of our solution are
computable for PWA systems, and can be reduced to opera-
tions on polyhedral sets, which can be performed efficiently
[18]. Additionally, by using an in-house model checker
[17] rather than off-the-shelf tool, we manage to integrate
polyhedral operations and model checking efficiently. The
embedding of discrete-time systems into transition systems
is inspired from [20], [21]. However, while the focus there
is on characterizing the existence of bisimulation quotients,
in this work we focus on computation and refinement of
simulation and bisimulation quotients, while including the
model checking process.

From an application point of view, this paper relates to
[3], [5], [7], [4], where temporal logics are used to specify
properties of biomolecular networks. These works aim at
checking whether a system satisfies dynamical properties
for given (sets of) initial conditions. In contrast, we search
for the largest set of initial conditions for which the given
properties are satisfied, yielding more informative results
instead of simple Yes/No answers.

II. PRELIMINARIES

A. Transition Systems, Simulations, and Bisimulations

Definition 1: A transition system is a tuple T = (Q,→
,Π,�), where Q is a set of states, →⊆ Q×Q is a transition
relation, Π is a finite set of atomic propositions, and �⊆
Q×Π is a satisfaction relation.

A transition (q, q′) ∈→ is also denoted by q → q′. The
transition system T is finite if its set of states Q is finite,
non-blocking if, for every state q ∈ Q, there exists q′ ∈ Q
such that (q, q′) ∈→ and deterministic if, for all q ∈ Q, there
exists at most one q′ ∈ Q such that (q, q′) ∈→.

For an arbitrary state q ∈ Q, we define Πq = {π ∈
Π | q � π}, Πq ∈ 2Π as the set of all atomic propositions
satisfied at q. A trajectory or run of T starting from q is
an infinite sequence r = r(1)r(2)r(3) . . . with the property
that r(1) = q, r(i) ∈ Q, and (r(i), r(i + 1)) ∈→, for all
i ≥ 1. A trajectory r = r(1)r(2)r(3) . . . defines a word
w = w(1)w(2)w(3) . . ., where w(i) = Πr(i). The set of all
words generated by the set of all trajectories starting at q ∈ Q
is called the language of T originating at q and is denoted
by LT (q). A subset X of the state set Q (X ⊆ Q) is called
a region of T . The set of all words generated by all runs of
T originating at all states of X is called the language of T
originating at X and is denoted by LT (X).

For an arbitrary region X , we define the set of states
Pre(X) that reach X in one step as

Pre(X) = {q ∈ Q | ∃q′ ∈ X, q → q′} (1)

Similarly, we define the set of states Post(X) that can be
reached from X in one step as

Post(X) = {q′ ∈ Q | ∃q ∈ X, q → q′} (2)

An equivalence relation ∼⊆ Q × Q over the state space
of T is proposition preserving if for all q1, q2 ∈ Q and all
π ∈ Π, if q1 ∼ q2 and q1 � π, then q2 � π. Among the

several proposition preservation equivalence relations that
can be defined, propositional equivalence defined as q1 ∼ q2

if and only if Πq1 = Πq2 is of special interest. A proposition
preserving equivalence relation naturally induces a quotient
transition system T/∼ = (Q/∼,→∼,Π,�∼). Q/∼ is the
quotient space (the set of all equivalence classes). The tran-
sition relation →∼ is defined as follows: for X1, X2 ∈ Q/∼,
X1 →∼ X2 if and only if there exist q1 ∈ X1 and q2 ∈ X2

such that q1 → q2. The satisfaction relation is defined as
follows: for X ∈ Q/∼, we have X �∼ π if and only if there
exist q ∈ X such that q � π. It is easy to see that

LT (X) ⊆ LT/∼(X), (3)

for any X ∈ Q/∼ (with a slight abuse of notation, we use
the same symbol X to denote both a state of T/∼ and the
corresponding region of equivalent states of T). The quotient
transition system T/∼ is said to simulate the original system
T , which is written as T/∼ ≥ T .

Definition 2: A proposition preserving equivalence rela-
tion ∼ is a bisimulation of a transition system T = (Q,→
,Π,�) if, for all states p, q ∈ Q, if p ∼ q and p → p′, then
there exist q′ ∈ Q such that q → q′ and p′ ∼ q′.
If ∼ is a bisimulation, then the quotient transition system
T/∼ is called a bisimulation quotient of T , and the transition
systems T and T/∼ are called bisimilar, denoted by T/∼ w
T . An immediate consequence of bisimulation is language
equivalence, i.e., LT (X) = LT/∼(X), for all X ∈ Q/∼.

B. Linear Temporal Logic and Model Checking

To specify temporal logic properties for trajectories of
PWA systems, in this paper we use Linear Temporal Logic
[10]. Informally, the LTL formulas are recursively defined
over a set of atomic propositions Π, by using the standard
Boolean operators (e.g., ¬ (negation), ∨ (disjunction), ∧
(conjunction)) and temporal operators, which include U
(“until”), � (“always”), ♦ (“eventually”). LTL formulas are
interpreted over infinite words in the power set 2Π of Π,
as are those generated by the transition system T from
Definition 1. If φ1 and φ2 are two LTL formulas over Π,
formula φ1Uφ2 intuitively means that (over some word) φ2

will eventually become true and φ1 is true until this happens.
For an LTL formula φ, formula ♦φ means that φ becomes
eventually true, whereas �φ indicates that φ is true at all
positions of a word. More expressiveness can be achieved
by combining the mentioned operators. For example, ♦�φ
means that φ will eventually become true and then remain
true forever, while �♦φ means that φ is true infinitely often.

Given a finite transition system T = (Q,→,Π,�) and a
formula φ over Π, checking whether the words of T starting
from a region X satisfy φ (written as T (X) � φ) is called
model checking. If we denote by Lφ the set of all words
(language) satisfying φ, then model checking means deciding
the language inclusion LT (X) ⊆ Lφ. We also say that a
transition system satisfies a formula (T � φ) from X if and
only if T (X) � φ.

2768

If T/∼ is a quotient of T , then for any equivalence class
X ∈ Q∼ and formula φ, we have:

T/∼(X) � φ ⇒ T (X) � φ. (4)

In addition, if ∼ is a bisimulation, then

T/∼(X) � φ ⇔ T (X) � φ (5)

Properties (4) and (5) (which follow immediately from
(3)) allow one to model check finite quotients and extend the
results to the (possibly infinite) original transition system.

Definition 3: A region X ⊆ Q of a transition system T
is the largest region that satisfies a formula φ if and only
if q ∈ X ⇔ T (q) � φ. In other words, if X is the largest
satisfying region for φ, then there is at least one trajectory
violating φ that originates from each state outside of X .

III. PROBLEM FORMULATION

Let X ,Xl, l ∈ L be a set of open polytopes in RN , where
L is a finite index set, such that Xl1

⋂
Xl2 = ∅ for all l1, l2 ∈

L, l1 6= l2 and
⋃

l∈L X̄l = X̄ , where X̄ is the closure of X .
A discrete-time continuous-space piecewise affine (PWA)

system with polytopal parameter uncertainty is defined as:

xk+1 = Alxk + bl, xk ∈ Xl, l ∈ L, k = 0, 1, 2, . . . (6)

where parameters Al and bl are uncertain, but known to
belong to polytopal uncertainty sets PA

l ⊆ RN×N and
Pb

l ⊆ RN , respectively.
X is assumed to be an invariant for the trajectories of

(6) under all values of the parameters. We are interested in
studying properties of trajectories of system (6) specified in
terms of a set of linear predicates of the form

Π = {πi |πi : cT
i x + di < 0, i = 1, . . . ,K}, (7)

where x, ci ∈ RN and di ∈ R. Informally, the semantics
of system (6) can be understood in the following sense: a
trajectory x0x1x2 . . . produces a word w0w1w2 . . ., where
each wi ∈ 2Π lists the propositions from Π which are
satisfied by xi. Then such words can be checked against
satisfaction of LTL formulas φ over Π. A formal definition is
given in Section V through an embedding transition system.

Specifically, we consider the following problem:
Problem 1: Given a discrete-time continuous-space piece-

wise affine system with parameter uncertainty (6) and an
LTL formula φ over a set of linear predicates (7), find a set
Xφ ⊆ X such that all trajectories of (6) originating in Xφ

satisfy formula φ for all allowed parameters.
We propose a solution of Problem 1, involving the con-

struction of equivalence classes, induced by the polytopal
partition of the state space and linear predicates, and subse-
quent iterative refinement and model checking of the finite
quotients. This approach is conservative, in the sense that
obtaining a largest region (Definition 3) is not guaranteed.

IV. ITERATIVE CONSTRUCTION AND
VERIFICATION OF SIMULATION QUOTIENTS

A characterization of bisimulation (Definition 2) can be
given using the Pre operator from Equation (1) and leads to
the iterative procedure for the construction of the coarsest
bisimulation ∼ given in [6]. In general, the bisimulation
algorithm does not terminate but despite that, the satisfaction
of an LTL formula φ by T might be decided. Indeed, the
equivalence relation produced at each step can be used to
construct finite simulation quotients T/∼, which can then be
model checked against an LTL formula (see Equation (4)).
A similar idea was used in [8] for the universal fragment
ACTL of CTL.

In our previous work [22], we combined the bisimulation
procedure with model checking for an algorithm that relays
on the computation of Pre() and attempts to find the largest
region Xφ ⊆ Q (Definition 3) that satisfies an LTL formula
φ. The initial partition, given by propositional equivalence,
was iteratively refined and the produced finite quotient tran-
sition systems were model checked against both φ and ¬φ,
partitioning the set of states Q into two subsets: Xφ (the set
of all states satisfying the formula) and X¬φ (the set of all
states satisfying the negation of the formula).

If Pre() is not available but Post() (Definition 2) is, the
set of transitions in T/∼ can still be obtained:

(X, X ′) ∈→∼ if and only if Post(X) ∩X ′ 6= ∅ (8)

Although the construction of the quotient T/∼ can be
performed in the absence of Pre(), refinement cannot be
done as an implementation of the bisimulation procedure.
Instead, a splitting strategy, which does not depend on
the topology of the quotient can be used. The subregions,
resulting from such refinement might not provide as much
detail about the system as bisimulation refinement, since they
don’t consider the dynamics, but given enough iterations,
regions Xφ and X¬φ might still be expanded.

A procedure for refinement and model checking of a quo-
tient at each iteration in the absence of Pre() is summarized
as Algorithm 1. An in-house model checker, optimized for
the particular case where each state of the system is con-
sidered as initial, is implemented [17]. Two Büchi automata
(one for the formula and one for its negation) are constructed
from the LTL formula (using the LTL2BA package [14])
before iterating through the algorithm. A product automaton
of the quotient with each Büchi automaton is constructed at
the beginning of each iteration. Then, within an iteration,
only the initial states of the two product automata are
changed, which is much faster than their initial construction.

If there are no satisfying runs (defined as trajectories
visiting a final state infinitely often) for the negation of
the formula originating in a particular state of the product
automaton then the formula is satisfied from that state
(similarly, lack of satisfying runs for the formula signifies
the satisfaction of its negation).

Algorithm 1 will terminate either when a partition of
the state space is obtained in Xφ and X¬φ or when a

2769

Algorithm 1 Determine the largest X such that T (X) � φ
when Pre() is not computable

Initialize ∼ with propositional equivalence;
Initialize Xφ := ∅, X¬φ := ∅;
Construct Büchi Bφ and B¬φ;
while number of iterations is less than limit do

Construct T/∼;
Construct Product Automata Pφ = Bφ × T/∼ and
P¬φ = B¬φ × T/∼;
for every Xt ∈ Q/∼, Xt 6∈ Xφ, Xt 6∈ X¬φ do

adjust initial state in Pφ and P¬φ for Xt;
if there does not exist a satisfying run in P¬φ then

Xφ := Xφ ∪Xt;
else if there does not exist a satisfying run in Pφ

then
X¬φ := X¬φ ∪Xt;

end if
end for
if Xφ ∪X¬φ = Q then

return Xφ, X¬φ;
end if
for every X ∈ Q/∼, X 6∈ Xφ, X 6∈ X¬φ do

split X;
end for

end while
return Xφ, X¬φ;

preset iteration limit is reached. Once an equivalence class
is labeled during the execution, it is memorized and no
longer considered for refinement or model checking. We do
not need to refine a state that has been found to satisfy
the formula or its negation, since all or no trajectories,
respectively, originating at that state satisfy the formula. We
do not need to model check that state any more, because
additional refining anywhere else in the system would not
change the satisfaction of a formula by the state. This
optimization limits the explosion of states that have to be
considered as refinement progresses and computation can be
targeted to smaller regions where more accurate partitioning
is needed. Additionally, since equivalence classes are refined
in parallel, i.e., all classes that need refinement are split
once at every iteration, if the execution of Algorithm 1 is
terminated because a preset number of iterations is exceeded,
the refinement would not be concentrated in only one region.

Remark 1: Algorithm 1 can be applied directly, even
when the Post() operation is not exactly computable but an
overapproximation, Post() can be obtained. In such cases,
an overapproximation T̄ /∼ of the quotient is constructed
that has the same states as T/∼ but may contain additional
(spurious) transitions. Since language inclusion (Equation 3)
is not violated, T̄ /∼ can still be used in Algorithm 1. The
overall method, however, becomes more conservative.

V. FINITE QUOTIENTS OF PWA SYSTEMS

To formally define the satisfaction of a formula φ over Π
by system (6), we embed it into a transition system:

Definition 4: An embedding transition system for (6)
and the set of predicates Π can be defined as Temb =
(Qemb,→emb,Πemb,�emb), where

• Qemb =
⋃

l∈L Xl,
• (x, x′) ∈→emb for x ∈ Xl if and only if there exist

l ∈ L, Al ∈ PA
l and bl ∈ Pb

l such that x′ = Alx + bl,
• Πemb = L

⋃
Π,

• �emb is defined as follows: if π = l ∈ L, then x �emb π
if and only if x ∈ Xl; if π = πi ∈ Π, then x �emb π if
and only if cT

i x + di < 0,
Given a subset X ⊆ Qemb, we say that all trajectories of

system (6) originating in X satisfy formula φ if and only if
Temb(X) satisfies φ, which was defined in Section II-B.

The embedding transition system Temb has infinitely many
states and cannot be model checked directly. However,
starting from propositional equivalence, finite quotients can
be iteratively constructed. If Pre() is computable, then
the algorithms described in [22] can provide a solution
to Problem 1. Alternatively, if Pre() is not computable
but Post() can be computed exactly, Algorithm 1 can be
used instead. Finally, if Post() cannot be computed exactly
but an overapproximation Post() can be obtained, then
Problem 1 can be solved conservatively by constructing the
overapproximation T̄ /∼ within Algorithm 1 (Remark 1).

The computation of the (initial) propositional equivalence
relation ∼ amounts to checking the non-emptiness of the
open polytopes given by the intersection of each Xl with
all subsets of Π (recall that Xl are pairwise disjoint). The
equivalence classes formed by all such nonempty sets will
be the states of the first quotient Qemb/∼ and all operations
with those states are polyhedral operations.

With this representation of equivalence classes in the
quotient transition system, and given a region X ⊆ Xl, l ∈ L
from Equation (2) and Definition 4, we have

Post(X) = {x′ ∈ RN | x′ = Ax + b, for all (9)
A ∈ PA

l , b ∈ Pb
l , x ∈ X}

Under parameter uncertainty, the Post() of a convex
region is not necessarily convex. In Proposition 1, we show
that if X is a polytope included in Xl for some l ∈ L, the
convex hull of the affine transformations of all vertices of
X , with all vertices of PA

l and Pb
l as parameters, provides

a polyhedral overapproximation of Post(X).
Proposition 1: A polyhedral overapproximation of

Post(X) in Equation (9) can be computed as

Post(X) = Conv{Avm

l xvk + bvs

l , for all (10)
m ≤ M,k ≤ K, s ≤ S}

where X = Conv{xv1 , . . . , xvK},X ⊆ Xl, PA
l =

Conv{Av1
l , . . . , AvM

l } and Pb
l = Conv{bv1

l , . . . , bvS

l }
Proof: http://iasi.bu.edu/˜yordanov/papers/ACC08.pdf

The computation of Post() described above returns a
polyhedral set and, therefore, an overapproximation of the
quotient transition system T̄ /∼ can be constructed (see
Remark 1). All the remaining computation involved in the

2770

execution of Algorithm 1 consists only of polyhedral set
operations and model checking.

The regions Xφ and X¬φ returned by Algorithm 1 cor-
respond to regions of initial conditions of the system with
the property that that all runs originating at Xφ and no
runs originating at X¬φ satisfy the formula no matter what
parameters are selected at every step. If Xφ

⋃
X¬φ = X

(here we abuse the notation by ignoring the facets of the
polytopes), then Xφ is the largest region of initial conditions
for the system satisfying the formula.

A software tool incorporating Algorithm 1 (with a quad-
tree splitting strategy) and bisimulation refinement (Algo-
rithm 3 of [22] for the deterministic, fixed parameter case)
was implemented in MATLAB and is freely downloadable
at http://iasi.bu.edu/˜cbelta/software.htm.

Remark 2: There are several simplifying assumptions that
we make in the formulation and solution of Problem 1. First,
we assume that the polytope X is an invariant for all trajecto-
ries of (6). However, this assumption is not restrictive, since
X can be assumed large enough to contain all possible state
values in a particular process. Second, we assume that the
predicates in Equation (7) are given over strict inequalities,
and only the reachability of open full dimensional polytopes
is captured in the semantics of the embedding and of the
quotients. However, this seems to be enough for practical
purposes, since only sets of measure zero are disregarded,
and it is unreasonable to assume that equality constraints
can be detected in a real world application.

VI. ANALYSIS OF A TWO-GENE NETWORK

As in our previous work [22], we illustrate the proposed
method by analyzing the genetic network shown in Fig. 1.

Fig. 1. A genetic switch consisting of two mutual repressors. High levels
of one of the products shut down the expression of the other gene.

To analyze the system, we developed a two dimensional
discrete time PWA model using ramp functions to represent
gene regulation. A ramp function is defined by two threshold
values, which induce three regions of different dynamics. At
low concentrations of repressor (below threshold 1) the regu-
lated gene is fully expressed, at high repressor concentrations
(above threshold 2) expression is only basal and the response
between the two thresholds is graded. Since there are two
repressors, two ramp functions are used and, therefore, the
system has a total of nine rectangular invariants (denoted as
X1, . . . ,X9 with L = {1, 2, . . . , 9} as the set of labels).

The initial model was developed with fixed parameters
for each region (not shown due to space constraints but
available at http://iasi.bu.edu/˜yordanov/papers/ACC08.pdf)
and hyper-rectangular parameter uncertainty was introduced
by allowing each component of the parameters Al and bl

for region l ∈ L to vary in a range of size specified as a
percentage of the fixed parameter value and centered around

it (parameter components equal to 0 were also allowed to
vary in a small range).

Under the fixed parameters, dynamics 3 and 7 have unique,
asymptotically stable equilibria inside rectangles X3 and X7.
Biologically, the equilibria correspond to the two modes of
the system (each gene can be fully expressed, while the other
is expressed only basally).

An interesting problem is finding the regions of attraction
for the two equilibria and exploring how those regions
change when parameter uncertainty is introduced. For this,
additional propositions are not necessary, i.e., Π = ∅ and
therefore, in Definition 4, Πemb = L. By exploiting con-
vexity properties of affine functions on polytopes, it can be
easily proved that under the fixed parameters, X3 and X7

are invariants for dynamics 3 and 7, respectively (this is also
obvious from the lack of outgoing transitions from those
regions other than a self loop in Fig. 2 (A)). From this,
we can immediately conclude that X3 and X7 are regions
of attraction for the two equilibria. Therefore, our problem
reduces to finding maximal regions satisfying LTL formulas
φ1 = ”♦�X3” and φ2 = ”♦�X7” i.e. we want to find
maximal sets of initial conditions, from which trajectories
will eventually reach regions X3 or X7 and stay there forever.

The overapproximation first quotient T̄ /∼ (or exact T/∼
under fixed parameters) of the embedding Temb (Definition
4) determined by propositional equivalence has nine states
under all uncertainties and transitions shown in Fig. 2. As ex-
pected, more transitions are introduced in the finite quotient
as parameters are allowed to vary in larger ranges (although
some of the additional transitions might be due to the
underlaying conservatism). We note that at 5% uncertainty
we cannot guarantee that X7 is an invariant for trajectories
of the system (Fig. 2 (C)) while at 10% uncertainty, there is
no guarantee that X3 is an invariant either (Fig. 2 (D)).

A B

C D

Fig. 2. A graphical representation of the first quotient transition system
under fixed parameters (A), and an overapproximation of the first quotient
for 1% (B), 5% (C), and 10% (D) uncertainty (square brackets around the
state label represent self loops).

Because of the rectangular initial partition of the state
space, 2N -trees were used as an efficient splitting strategy.
After 4 iterations, our method identifies only an attracting
region for the equilibria at X3 for 5% uncertainty (Fig. 3
(A,B)). Biologically, this signifies that the stability of the two
modes of the system changes as variation in the parameters is

2771

introduced and, at 5% uncertainty we cannot guarantee that
once gene 1 is activated it will remain activated (perform-
ing the analysis with different formulas might reveal other
possible types of behavior).

Results from the computation with various levels of uncer-
tainty are compared with the ones obtained using Algorithm
3 from [22] under fixed parameters (Fig. 3). As expected,
increasing the level of uncertainty in the parameters de-
creases the size of the identified regions of state space
(but a region identified at higher uncertainty is always a
subset of the one identified at lower uncertainty). Because the
refinement scheme used in [22] is different, less polytopes are
partitioned per iteration of the algorithm, and therefore more
iterations are required to achieve similar level of detail (as
indicated by the total number of polytopes after performing
the computation).

A B

C D

E F

Fig. 3. Computation for φ1 (A,C,E) and φ2 (B,D,F) after 4 iterations
under 5% (A,B) and 1% (C,D) uncertainty and 15 iterations under fixed
parameters (E,F) (Algorithm 3 from [22]). Regions satisfying the formula
are shown in green, while regions satisfying the negation are shown in red.

Even if computation is performed for many iterations,
under parameter uncertainty it is possible that a subset of
the state space is never included in the identified regions-
a property resulting from nondeterminism introduced in the
embedding transitions system. Even though complete parti-
tioning of the state space might not be possible, performing
more iterations of the procedures provides further refinement
and, therefore, greater detail of the identified regions (initial
iterations attempt to capture large regions, while subsequent
ones expand Xφ and X¬φ less but provide greater resolution
on their boundaries).

VII. CONCLUSION

We showed that finite simulation quotients of PWA sys-
tems can be efficiently constructed and model checked
against an LTL formula to analyze properties of their tra-
jectories, even under polyhedral parameter uncertainty. Ad-
ditionally, we analyzed a PWA model of a genetic switch to
determine the effect of parameter uncertainty on the regions
of attraction for the two equilibria of the system. In the future
we will focus on models of gene networks constructed from

experimental data and identification of subsets of parameters,
for which a property is satisfied (parameter synthesis).

REFERENCES

[1] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proceedings of the IEEE, vol. 88, pp.
971–984, 2000.

[2] M. Antoniotti, F. Park, A. Policriti, N. Ugel, and B. Mishra, “Founda-
tions of a query and simulation system for the modeling of biochemical
and biological processes,” ser. Proceedings of the Pacific Symposium
on Biocomputing, R. Altman, A. Dunker, L. Hunter, and T. Klein,
Eds., 2003, pp. 116–127.

[3] G. Batt, D. Ropers, H. de Jong, J. Geiselmann, R. Mateescu, M. Page,
and D. Schneider, “Validation of qualitative models of genetic regula-
tory networks by model checking : Analysis of the nutritional stress
response in Escherichia coli,” Bioinformatics, vol. 21, no. Suppl.1, pp.
i19–i28, 2005.

[4] G. Batt, C. Belta, and R. Weiss, “Model checking genetic regulatory
networks with parameter uncertainty,” in HSCC, ser. Lecture Notes in
Computer Science, vol. 4416, 2007, pp. 61–75.

[5] G. Bernot, J.-P. Comet, A. Richard, and J. Guespin, “Application of
formal methods to biological regulatory networks: Extending Thomas’
asynchronous logical approach with temporal logic,” Journal of The-
oretical Biology, vol. 229, no. 3, pp. 339–347, 2004.

[6] A. Bouajjani, J.-C. Fernandez, and N. Halbwachs, “Minimal model
generation,” in CAV 90: Computer-Aided Verification, ser. Lecture
Notes in Computer Science, R. P. Kurshan and E. M. Clarke, Eds.,
vol. 531. Springer, 1990, pp. 197–203.

[7] N. Chabrier-Rivier, M. Chiaverini, V. Danos, F. Fages, and
V. Schächter, “Modeling and querying biomolecular interaction net-
works,” Theoretical Comp. Science, vol. 325, no. 1, pp. 25–44, 2004.

[8] A. Chutinan and B. H. Krogh, “Verification of infinite-state dynamic
systems using approximate quotient transition systems,” IEEE Trans-
actions on automatic control, vol. 46, no. 9, pp. 1401–1410, 2001.

[9] E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Stursberg,
and M. Theobald, “Abstraction and counterexample-guided refinement
in model checking of hybrid systems,” International Journal of Foun-
dations of Computer Science, vol. 14, no. 4, pp. 583–604, 2003.

[10] E. M. Clarke, D. Peled, and O. Grumberg, Model checking. MIT
Press, 1999.

[11] J. Davoren, V. Coulthard, N. Markey, and T. Moor, “Non-deterministic
temporal logics for general flow systems,” in HSCC: 7th International
Workshop, 2004, pp. 280–295.

[12] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Hybrid controllers
for path planning: a temporal logic approach,” in Proceedings of the
2005 IEEE Conference on Decision and Control, 2005.

[13] T. Gardner, Personal communication, Boston University, 2006.
[14] P. Gastin and D. Oddoux, “LTL with past and two-way very-weak

alternating automata,” in Proceedings of MFCS’03, B. Rovan and
P. Vojtáš, Eds., vol. 2747. Springer, 2003, pp. 439–448.

[15] W. P. M. H. Heemels, B. D. Schutter, and A. Bemporad, “Equivalence
of hybrid dynamical models,” Automatica, vol. 37, no. 7, pp. 1085–
1091, 2001.

[16] A. L. Juloski, W. Heemels, G. Ferrari-Trecate, R. Vidal, S. Paoletti, and
J. Niessen, “Comparison of four procedures for the identification of
hybrid systems,” Lecture Notes in Computer Science, vol. 3414/2005,
pp. 354–369, 1993.

[17] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from LTL specifications,” in HSCC: 9th International
Workshop, ser. Lecture Notes in Computer Science, J. Hespanha and
A. Tiwari, Eds. Springer, 2006, vol. 3927, pp. 333 – 347.

[18] M. Kvasnica, P. Grieder, and M. Baotić, “Multi-Parametric Toolbox
(MPT).”

[19] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of
multiagent motion tasks based on LTL specifications,” in 43rd IEEE
Conference on Decision and Control, 2004.

[20] G. J. Pappas, “Bisimilar linear systems,” Automatica, vol. 39, no. 12,
pp. 2035–2047, 2003.

[21] P. Tabuada and G. Pappas, “Model checking LTL over controllable
linear systems is decidable,” ser. Lecture Notes in Computer Science,
O. Maler and A. Pnueli, Eds. Springer, 2003, vol. 2623.

[22] B. Yordanov, G. Batt, , and C. Belta, “Model checking discrete-time
piecewise affine systems: application to gene networks,” in European
Control Conference (ECC), 2007.

2772

