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Abstract— We consider the L2-gain of nonlinear Port-
Hamiltonian systems. Using the Hamiltonian and an additional
scaling matrix, we show that an upper bound on the L2-gain
can be computed by solving a matrix inequality. The L2-gain
is typically used in combination with the small-gain theorem.
In particular it can be used to guarantee robust stability with
respect to gain-bounded model uncertainties. This application of
the L2-gain is demonstrated with a biochemical fermentation
process where the specific cell growth rate is unknown but
contained in a parameter interval.

I. INTRODUCTION

Port-based network modeling of physical systems leads

to a geometrically defined class of nonlinear systems called

Port-Hamiltonian systems. Port-Hamiltonian systems have

the advantage that when a set of subsystems is interconnected

to form a network, structural information about the network

is readily available from the model description. The total

energy of the network is contained in the Hamiltonian,

which should be seen as a storage function for the system,

while the interconnection pattern is contained explicitly in

an interconnection matrix. The energy dissipation, or the

damping present in the network, is contained in a damping

matrix. In short, Port-Hamiltonian systems give a transparent

view of the underlying network structure. For more on Port-

Hamiltonian systems and their origin, see e.g. [1], [2].

The class of Port-Hamiltonian systems has received an

increasing amount of interest from the control community

in recent years. Several controller design methods based on

energy concepts and passivity have been developed for Port-

Hamiltonian systems. A controller design method especially

emphasizing and utilizing structural information is Intercon-

nection and Damping Assignment Passivity-Based Control

(IDA-PBC), which has proven successful for a range of

applications (see e.g [3]–[6]).

The input-to-output behavior of Port-Hamiltonian systems

has also been investigated, but then mainly considering pas-

sivity and passivity-based output-feedback control schemes

(see e.g. [7] and references therein). A different tool for

investigating the input-to-output behavior is the system gain.

The input-to-output gain of a system is used for instance

when applying the small-gain theorem, which can be used to

guarantee robust stability of a nominal system with respect

to norm bounded uncertainties [8], [9]. In this paper it is

shown that an upper bound on the L2-gain of a nonlin-

ear Port-Hamiltonian system can be found by solving a
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matrix inequality. This upper bound can be conservative,

but in certain cases, when the Hamiltonian is the sum of

independent storage functions, it is possible to reduce the

conservativeness by using a scaling matrix.

A second order biochemical fermenter model is used to il-

lustrate a possible application of the L2-gain result presented

in this paper. Passivity based control of a fermenter model

has been presented in [10] but does not address robustness

properties of the closed-loop system. The fermenter model

considered here is described by a Port-Hamiltonian system

and has an uncertainty in the specific cell growth rate. A

controller is designed, which robustly stabilizes the fermenter

with respect to this uncertainty.

The outline of the paper is as follows: In the next section

we first define the class of Port-Hamiltonian systems we

are considering and present the standard stability condition

for Port-Hamiltonian systems. Also, the L2-gain for general

nonlinear systems along with the corresponding dissipation

inequality is briefly presented. In Section III we specialize

this result to Port-Hamiltonian systems. In Section IV we

present an example where robust control of a fermentation

process is considered. Section V provides a short summary

of the presented results and an outlook.

II. PRELIMINARIES

A. Port-Hamiltonian systems

A Port-Hamiltonian system is a dynamical system de-

scribed by the equations

ẋ = Q(x)∇H(x)+ G(x)u, (1)

y = C(x)∇H(x), (2)

with state x(t) ∈ R
n, input u(t) ∈ R

p and output y(t) ∈ R
q.

The scalar and continuously differentiable function H(x) is

the Hamiltonian of the system, and serves as a storage func-

tion candidate. The interconnecting ports to the environment

are G(x) ∈ R
n×p and C(x) ∈ R

q×n. The structure matrix

Q(x) ∈ R
n×n represents the internal interconnections and the

damping; that is, it can be split into a skew-symmetric part

J(x) and a symmetric part R(x) as Q(x) = J(x)−R(x), where

J(x) is called the interconnection matrix and R(x) is called

the damping matrix. We use the structure matrix Q(x) for

notational convenience. The ∇-operator is a column vector

defined as ∇ = [ ∂
∂x1

, . . . , ∂
∂xn

]T .

Evaluating the time derivative of the Hamiltonian along

the system trajectories yields

Ḣ(x) =
1

2
∇HT (x)

(
Q(x)+ Q(x)T

)
∇H(x)+ ∇HT (x)G(x)u.

(3)
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The system with zero input will have an asymptotically stable

equilibrium point xd if (i) H(x) has an isolated minimum at

xd and if (ii) Q(x)+Q(x)T is negative definite. Furthermore,

if (i) and (ii) are satisfied, and if the output matrix is chosen

C(x) = GT (x), then Ḣ(x) < yT u and hence the system with

input u and output y = GT (x)∇H(x) is passive. The output

y = GT (x)∇H(x) is, for this reason, called the passive output.

The stability condition given by Q(x)+Q(x)T < 0 can be

conservative. In certain cases the condition can be relaxed

for example to Q(x) being diagonally stable by using a

parameterized Hamiltonian as storage function. For more

on diagonal stability and diagonally stable matrices, see e.g.

[11], [12]. This approach will be outlined in Section III.

B. L2-stability and L2-gain

In this subsection we briefly present the definitions of L2-

stability and L2-gain as stated in [8]. A mapping from an

input u to an output y is said to be L2-stable if the output

is L2-norm bounded for all L2-norm bounded inputs. The

mapping is said to be L2-stable with L2-gain less than γ
if ‖y(t)‖L2

≤ γ‖u(t)‖L2
+ β for all u with bounded L2-

norm. The bias term β ≥ 0 is a constant that depends on

the initial condition. An upper bound on the L2-gain of a

time-invariant nonlinear system can by found by solving the

Hamilton-Jacobi-Bellman inequality. For completeness, we

state this theorem here:

Theorem 2.1 ( [8], Theorem 5.5): Consider the time-

invariant nonlinear system

ẋ = f (x)+ G(x)u, x(0) = x0 (4)

y = h(x) (5)

where f (x) is locally Lipschitz, and G(x), h(x) are contin-

uous over R
n. The matrix G is n× p and h : R

n → R
q. The

functions f and h vanish at the origin; that is, f (0) = 0 and

h(0)= 0. Let γ be a positive number and suppose there exists

a continuously differentiable, positive semidefinite function

V (x) that satisfies the inequality

H (V, f ,G,h,γ)
de f
= ∇TV (x) f (x)

+
1

2γ2
∇TV (x)G(x)GT (x)∇V (x)+

1

2
hT (x)h(x) ≤ 0 (6)

for all x ∈ R
n. Then, for each x0 ∈ R

n, the system (4)-(5) is

finite-gain L2-stable and its L2-gain is less than or equal

to γ .

III. L2-GAIN OF A PORT-HAMILTONIAN SYSTEM

The dissipation inequality used in Theorem 2.1 is only

a sufficient condition and requires a storage function V (x).
Furthermore, when minimizing the L2-gain subject to this

dissipation inequality, the result will depend on the choice

of storage function. It is well known that for a general

nonlinear system, a storage function is not easy to find.

For Port-Hamiltonian systems, one possibility is to use the

Hamiltonian as a storage function. As shown in the previous

section, the Hamiltonian is used as storage function to show

stability and passivity of Port-Hamiltonian systems, and it

thus seems a “natural” choice. It may however lead to con-

servative results. A storage function using the Hamiltonian

and additional parameters gives more degrees of freedom and

may lead to reduced conservativeness. Therefore, we propose

to use as storage function a positive semidefinite function

V (x) satisfying

∇V (x) = P∇H(x), (7)

where P ∈ R
n×n is a symmetric scaling matrix. A necessary

integrability condition for V (x) is given by the Perron-

Frobenius theorem (see e.g. [11]), which requires the sym-

metry of its Hessian, i.e.

∇2V (x) = ∇(P∇H(x)) (8)

has to be symmetric. Assuming that H(x) ≥ 0, then the

integrability condition is met and the storage function V (x)
is positive semidefinite (p.s.d.) if P is chosen as:

P =







p.s.d. if H(x) = xT x,

diagonal and p.s.d. if H(x) = ∑n
i=1 Hi(xi),

pI > 0 else.

The first case, that H(x) = xT x, holds for example for

linear systems. In that case, the scaling matrix results in

a new storage function V (x) = xT Px. The second case,

namely H(x) = ∑n
i=1 Hi(xi), is from a mathematical point of

view not obvious. Nevertheless, in many physical examples,

the overall Hamiltonian H(x) is the sum of independent

Hamiltonians of interconnected subsystems. This is indeed

the case for the biochemical fermenter considered in the next

section.

Using a storage function V (x) satisfying ∇V (x) = P∇H(x),
we get the following corollary of Theorem 2.1 for the L2-

gain of Port-Hamiltonian systems:

Corollary 3.1: Consider the Port-Hamiltonian system

(1)-(2) where H(x) ≥ 0, Q(x)∇H(x) is locally Lipschitz and

G(x), C(x)∇H(x) are continuous over R
n. The gradient

∇H(x) vanish at the origin. Let γ be a positive number and

suppose there exists a positive semidefinite matrix P such that

∇(P∇H(x)) is symmetric and that satisfies the inequality

[
PQ(x)+ Q(x)T P+C(x)TC(x) PG(x)

G(x)T P −γ2I

]

≤ 0 (9)

for all x ∈ R
n. Then, for each x0 ∈ R

n, the system (1)-(2) is

finite-gain L2-stable and its L2-gain is less than or equal

to γ .

Proof: Using a storage function V (x) satisfying (7)

yields

H (V,Q∇H,G,C∇H,γ) =
1

2
∇T H(x)

(
PQ(x)+ Q(x)T P

+
1

γ2
PG(x)G(x)T P+C(x)TC(x)

)
∇H(x) ≤ 0 (10)

where the inequality follows from taking the Schur comple-

ment of the lower diagonal block of (9). The rest follows

from Theorem 2.1.
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Of course one could minimize γ over P subject to the

condition (9) in order to tighten the upper bound on the L2-

gain. Also, requiring both P and H(x) to be strictly positive

definite, the standard stability condition Q(x) + Q(x)T < 0

can be relaxed to requiring PQ(x)+Q(x)T P < 0. If P is any

positive diagonal matrix, this is the same as requiring Q(x)
to be diagonally stable [11].

For constant system matrices Q, G, and C, the inequality

condition (9) is a standard linear matrix inequality (LMI),

and for linear systems it corresponds to the bounded-real

lemma [13], [14]. In the most general case (9) is a state

modulated matrix inequality, which is generally neither an

LMI nor a convex problem. Nevertheless we are in some

cases able to solve such a matrix inequality also for state

modulated matrices, using the boundedness of the matrix

elements and exploiting the freedom in the choice of the

scaling matrix P.

To give a simple example of the application of Corol-

lary 3.1 and how the scaling matrix P can be used to reduce

conservativeness, consider the scalar system

ẋ = −h(x)+ gu (11)

y = ch(x), (12)

where h(x) satisfies the sector condition xh(x) > 0, ∀x 6= 0

and h(0) = 0. Using the Hamiltonian

H(x) =

∫ x

0
h(s)ds > 0, (13)

the system can be written in Port-Hamiltonian form as

ẋ = −∇H(x)+ gu (14)

y = c∇H(x), (15)

and an upper bound on the L2-gain is given by solving the

LMI [
−2p + c2 pg

pg −γ2

]

≤ 0. (16)

Using p = 1, i.e. neglecting the degree of freedom in p, gives

the somewhat “artificial” condition c2 < 2, and if this holds

then γ2 ≤ g2/(2− c2). On the other hand, minimizing γ by

varying p ≥ 0 gives the minimizer p∗ = c2, and we thus

get γ2 ≤ γ2
∗ = c2g2 as an upper bound for the L2-gain. In

words, the L2-gain of the system is smaller than or equal to

the product of the input and the output gains.

IV. ROBUSTNESS ANALYSIS OF A BIOCHEMICAL

FERMENTER MODEL

In this section a PI-type controller for a second order

fermentation process, as illustrated in Fig. 1, is derived. We

then consider a model/plant mismatch by transforming the

closed-loop system into a nominal Port-Hamiltonian system

interconnected with a norm bounded uncertainty. The matrix

inequality (9) is applied to find an upper bound on the L2-

gain of the nominal system and by using the small-gain

theorem, the robust stability of the overall uncertain system

with respect to uncertainty in the specific cell growth rate is

investigated.

A. Model description

The dynamic model of a second order continuous bio-

chemical fermenter is taken from [15] and is given by the

equations

ċx = µ(cs)cx −
q

V
cx (17)

ċs = −
µ(cs)

Y
cx +

(
S f − cs

) q

V
, (18)

where cx denotes the cell concentration and cs the substrate

concentration. The term µ = µ(cs) denotes the specific cell

growth rate, q is the volumetric inflow rate of the reactor and

is equal to the outflow rate, V is the total reactor volume and

is assumed to be constant, S f is the feed of substrate entering

the reactor and Y is the biomass/substrate yield coefficient.

The specific cell growth rate µ(cs) could for example be

given by the Monod-kinetics with an additional substrate

overshoot term

µ(cs) =
µmaxcs

d1 + cs + d2c2
s

, (19)

which for any positive choice of the parameters µmax, d1 and

d2, is bounded by 0 ≤ µ(cs) ≤ µmax.

Rewriting the model (17)-(18) with state x = [x1, x2]
T =

[cx, cs]
T and dilution rate u = q

V
as input leads to the Port-

Hamiltonian system description

ẋ =

[
µ(x2) 0

− µ(x2)
Y

0

]

︸ ︷︷ ︸

Q(x)

x +

[
−x1

S f − x2

]

︸ ︷︷ ︸

G(x)

u, (20)

with Hamiltonian H(x) = 1
2

xT x, structure matrix Q(x) and

input matrix G(x).
The state-space model (20) is restricted to positive states,

since concentrations are not negative. The cell concentration

x1 must be strictly positive, otherwise the cells are washed

out and the model reduces to a continuous stream of sub-

strate. The state space of the model is therefore given by

X =
{
(x1,x2) ∈ R

2 | x1 > 0,x2 ≥ 0
}

. (21)

Analyzing the equilibrium point of the model leads, be-

sides the trivial solution, to the relations

µd = µ(x2d) = ud (22)

0 = S f − x2d −
x1d

Y
(23)

Fig. 1. Continuous biochemical fermenter
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where the index d denotes the desired equilibrium point.

The system (20) is a single-input system, and thus only one

independent steady-state variable can be assigned, the other

one results from equation (23).

The steady state input ud directly assigns the steady state

cell growth rate µd , which motivates the reformulation of

(20) to

ẋ =

[
µ(x2)−u 0

− µ(x2)
Y

−u

]

x +

[
0

S f

]

u, (24)

where it can be seen that the input u can be used to influence

the effect of the specific cell growth rate µ(x2) in the first

state. Therefore a goal for the controller is to cancel or to

dominate the undesired influence of µ(x2) on the system,

thereby directly assigning a new closed-loop structure matrix.

B. Controller design

A feedback control law u = β (x) can be used to shape the

closed-loop structure matrix negative definite and to assign

a closed-loop Hamiltonian with a global minimum at the

desired equilibrium point xd . As mentioned above, the input

directly influences the effect of µ(x2), and we cancel out this

term by choosing the control law

β (x) = µ(x2)+ v(x), (25)

where v(x) is a scalar function vanishing at the desired

equilibrium point; i.e. β (xd) = µd = ud . With (25) and using

the steady-state relationship (23), the closed loop takes the

Port-Hamiltonian form

ẋ =

[
0 0

− µ(x2)
Y

−µ(x2)

]

(x− xd)+

[
−x1

S f − x2

]

v(x) (26)

= Q0(x)∇H0(x)+ G(x)v(x), (27)

with Hamiltonian H0(x) = 1
2
(x−xd)

T (x−xd). Because of the

zero in the upper left element of the structure matrix Q0(x),
the closed loop (27) is only marginally stable for v(x) = 0.

Energy shaping and passivity based feedback is used as

a design tool for determining an asymptotically stabilizing

control v(x). To this end, the closed-loop Hamiltonian is

chosen as

Hd(x) =
1

2
(x− xd)

T P−1(x− xd), (28)

where P is a positive definite matrix

P =

[
1 − 1

Y

− 1
Y

1
Y 2 + 1

p

]

, (29)

with p > 0. The parameter p is used to shape the closed-loop

Hamiltonian. The desired Hamiltonian Hd(x) clearly has a

minimum at the desired equilibrium point. The term v(x) in

the control law is now chosen proportional to the passive

output with the desired Hamiltonian, that is

β (x) = µ(x2)− kpyp, (30)

where the passive output is defined as

yp = GT (x)∇Hd(x). (31)

The closed loop using this control is given by

ẋ =
(
Q0(x)P− kpG(x)G(x)T

)
∇Hd(x) = Qd(x)∇Hd(x) (32)

where Qd(x) is the closed-loop structure matrix. Multiplying

out yields

Qd = kp

[

−x2
1 x1(S f − x2)

x1(S f − x2) −(S f − x2)
2 − 1

pkp
µ(x2)

]

, (33)

which is symmetric and negative definite for all x1 > 0.

Hence, the equilibrium point x = xd is asymptotically stable

for any choice of controller parameters kp > 0 and p > 0.

Remark 1: Note that the equilibrium point is not globally

asymptotically stable, even though Hd(x) is globally positive

definite. The system description is only valid for positive

states, and the level curves of Hd(x) eventually cross the axis

x1 = 0 or x2 = 0. It is not possible to guarantee, with this

particular choice of Hamiltonian, that all trajectories starting

within some level curve which crosses one of the axis xi = 0,

stay in the positive orthant of the state-space. What can be

guaranteed is that for all initial conditions in the set defined

by Hd(x) < c, where Hd(x) = c defines the smallest level

curve crossing either x1 = 0 or x2 = 0, all states will converge

to their desired values.

C. Extension to PI-control

Although we do not exactly know all influences on the cell

population, such as the specific growth rate, we still want to

make sure that the biomass concentration will converge to

the desired steady state. Therefore an integral term is added

to the controller, integrating any deviation from the steady

state. Integrating the passive output, and adding this to the

control law, yields the PI-type controller

β (x) = µ(x2)− kpyp − k2
I

∫ t

0
yp(τ)dτ. (34)

Adding the integral state defined by

ẋ3 = kIyP, x3(0) = 0, (35)

to the system description leads to the extended Port-

Hamiltonian system

ẋe =

[
Qd(x) −kIG(x)

kIG(x)T 0

][
∇Hd(x)

x3

]

, (36)

with the extended state vector xe = [x1,x2,x3]
T and Hamil-

tonian He
d(xe) = Hd(x)+ 1

2
x2

3. The extended structure matrix

can be split into the structure matrix of the stable system

(32) and a skewsymmetric matrix containing the integral

extension. When considering the time-derivative of He
d(xe),

see (3), the skewsymmetric matrix cancels out and thus the

equilibrium point [x1d ,x2d ]
T

is asymptotically stable.

D. Robustness Analysis

It is now assumed that the fermenter process is uncertain

in the specific cell growth rate µ(x2). Typically µ(x2) is

approximated by a positive rational function which is upper

bounded by a maximum growth rate µmax, for example the
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one given in (19). Using the L2-gain and small-gain argu-

ments, we now show that by letting the controller dominate

the uncertainty, robust stability of the closed-loop system

with respect to a norm bounded uncertainty in µ(x2) can be

guaranteed.

Assume that the actual growth rate of the system is a

function µ(x2), bounded within µ ∈ [0, µmax], given by

µ(x2) =
1

2
µmax (1 + δ (x2)) , (37)

where δ (x2) is a scalar, static function of x2 satisfying

||δ (x2)||∞ = |δ (x2)| ≤ 1. (38)

Applying the small-gain theorem, the uncertainty δ (·) can

be enlarged to a wider uncertainty class, namely any stable

dynamic system ∆ with L2-induced norm less than or equal

to one, which contains the uncertainty δ (·) as a special case.

It is also not necessary that δ is a function of only x2. For

instance, µ may depend on both states, which can be handled

in this setup without changes.

In the previous section, the controller directly canceled

out the specific growth rate. Obviously, as the exact value of

µ(x2) is unknown, this is no longer possible. Instead, we seek

to dominate the effect of µ(x2) by replacing the term µ(x2)
with µmax in the control law defined by (34). The fermenter

model (20) controlled by (34), and with the additional state

x3 defined in (35), is given by

ẋe =





µ(x2) 0 0

− µ(x2)
Y

0 0

−kIx1 kI(S f − x2) 0



xe + G(x)β (x)

=





µmax 0 0

− µmax

Y
0 0

−kIx1 kI(S f − x2) 0



xe + G(x)β (x)

+





(
1
2

µmax(1 + ∆)− µmax

)
x1

− 1
Y

(
1
2

µmax(1 + ∆)− µmax

)
x1

0





=

[
Qd(x) −kIG(x)

kIG(x)T 0

]

∇He
d(xe)

+





− 1
2

µmaxx1 + 1
2
∆µmaxx1

− 1
Y

(
− 1

2
µmaxx1 + 1

2
∆µmaxx1

)

0



 , (39)

which is the desired closed loop (36), where µ(x2) is

replaced by µmax, plus an additional uncertainty term. Setting

the input to the uncertainty ∆ to z and its output to w = ∆(z),
the system can be seen as an interconnection of a nominal

system N and the uncertainty ∆, which contains δ (x2) as

a special case, as illustrated in Fig. 2, and (39) can be

reformulated to

ẋe =

[
Qd(x) −kIG(x)

kIG(x)T 0

]

∇He
d(xe)+





− 1
2

µmaxx1 + w
1

2Y
µmaxx1 −

1
Y

w

0





z =
1

2
µmaxx1. (40)

In order to apply the small-gain theorem as stated in e.g. [8],

bounded values can be added to the inputs and outputs of the

w

ez

ew

ŵ

∆

N
ẑ

z

Fig. 2. Interconnection of nominal plant N and uncertainty ∆

dynamical system ∆, as this does not change the L2-gains.

The input/output transformation

ŵ = w+ ew = w−
1

2
µmaxx1d (41)

ẑ = z− ez = z−
1

2
µmaxx1d (42)

is applied such that the inputs and the outputs at the equilib-

rium point are zero, that is for x = xd we have ŵd = ẑd = 0.

From this transformation we finally get the nominal system

N in the desired Port-Hamiltonian form

ẋe =

[
QN(x) −kIG(x)

kIG(x)T 0

]

∇He
d(xe)+

[
GN

0

]

ŵ (43)

ẑ =
1

2
µmax[G

T
N , 0 ]∇He

d(xe), (44)

where the nominal structure matrix is

QN(x) = Qd(x)−
1

2
µmaxGNGT

N (45)

and the input matrix is given by GN = [1, − 1
Y

]T .

From the small-gain theorem it is clear that the nominal

system N is robustly stable with respect to ∆ if it has L2-

gain less than one. Applying Corollary 3.1 to N described

by (43)-(44) with the diagonal positive definite scaling matrix

D =
1

2
µmaxγ2I > 0 (46)

yields, after some calculations, that the resulting matrix

inequality (9) holds if

Qd(x)+ Qd(x)
T +

µmax

2

1− γ2

γ2
GNGT

N ≤ 0. (47)

Because Qd(x)+Qd(x)
T < 0 for x1 > 0, plugging γ = 1 into

(47) yields a strict inequality. By continuity, (47) also holds

for γ approaching one from below, and thus the L2-gain of

N is strictly less than one. Using the small-gain theorem,

robust stability of the nominal system N with respect to the

uncertainty ∆ in (37) can be concluded.

E. Simulation results

The fermenter system (17)-(18) with the PI-controller (34)

is simulated starting from a non steady-state initial condition.

The model parameter values are taken from [15] and are

given in Table I. In the simulations, the cells have the specific
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growth rate µ(x2) given by (19), while the controller is using

the upper bound, namely

β (x) = µmax − kpyp − kI

∫ t

0
kIyp(τ)dτ. (48)

The controller parameters kp = 0.125 and kI = 0.14, and the

Hamiltonian shaping parameter p = 0.1, were found to give

an acceptable transient response. In Fig. 3 it is shown how

the system states converge to the desired steady state solution

xd . Simulations using the proportional control (30) without

the integral part yields, as expected, a shifted steady state

(not shown).
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Fig. 3. PI-control of the fermenter model. The tuning parameters are
kp = 0.125, kI = 0.14, and p = 0.1.

TABLE I

PARAMETER VALUES FOR THE BIOCHEMICAL FERMENTER

parameter value unit

µmax 1 [s−1]
d1 0.03 [mol m−3]
d2 0.5 [m3 mol−1]
Y 0.5 [mol/kgBM]
S f 10 [mol m−3 s−1]
cxd 4.8907 [kgBM m−3]
csd 0.2187 [mol m−3]

V. SUMMARY

We have considered the L2-gain of nonlinear Port-

Hamiltonian systems. Using the Hamiltonian together with

a scaling matrix, an upper bound for the gain was given

in terms of a matrix inequality, which in the linear case

corresponds to the bounded-real lemma. An application of

this result was shown by doing a robustness analysis for

a controlled fermentation process. A PI-type controller was

derived for this process assuming all parameters to be known.

Requiring the L2-gain of the controlled nominal system to

be less than one for a certain input/output pair, we showed

that the overall system was robustly stable with respect to

uncertainties in the specific cell growth rate.

It should be noted that what has been presented in the

paper is an analysis result; given a controller, the L2-

gain of the closed-loop system can be calculated. In certain

cases, namely when considering a control of the type u =
K(x)∇H(x), the results can easily be extended to solve the

synthesis problem via matrix inequalities. This corresponds

in the linear case to the robust controller synthesis problem

with static state feedback.
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[6] J. K. Johnsen and F. Allgöwer, “Interconnection and damping assign-

ment passivity-based control of a four-tank system,” in Lagrangian

and Hamiltonian Methods for Nonlinear Control 2006, ser. LNCIS,
F. Bullo and K. Fujimoto, Eds., vol. 366. Springer, 2007, pp. 111–
122.

[7] R. Ortega, A. Loria, P. J. Nicklasson, and H. Sira-Ramı́rez, Passivity–

based Control of Euler–Lagrange Systems, ser. Communications and
Control Engineering. Springer, 1998.

[8] H. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.
[9] A. J. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear

Control, 2nd ed. Springer, 2000.
[10] E. Fossas, R. M. Ros, and H. Sira-Ramı́rez, “Passivity-based control

of a bioreactor system,” Journal of Mathematical Chemistry, vol. 36,
no. 4, pp. 347–360, 2004.

[11] E. Kaszkurewics and A. Bhaya, Matrix Diagonal Stability in Systems
and Computations. Boston: Birkhäuser, 2000.
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